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Abstract
A coalitional ranking problem is described by a weak order on the set of nonempty 
coalitions of a given agent set. A social ranking is a weak order on the set of agents. 
We consider social rankings that are consistent with stable/core partitions. A parti-
tion is stable if there is no coalition better ranked in the coalitional ranking than the 
rank of the cell of each of its members in the partition. The core-partition social 
ranking solution assigns to each coalitional ranking problem the set of social rank-
ings such that there is a core-partition satisfying the following condition: a first agent 
gets a higher rank than a second agent if and only if the cell to which the first agent 
belongs is better ranked in the coalitional ranking than the cell to which the second 
agent belongs in the partition. We provide an axiomatic characterization of the core-
partition social ranking and an algorithm to compute the associated social rankings.
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1  Introduction

The coalitional ranking problem refers to the problem of finding an ordinal rank-
ing over the set of agents (called social ranking), given an ordinal ranking over its 
power set (called coalitional ranking). Such problems and their social ranking solu-
tions have been recently investigated by Khani et al. (2019), Bernardi et al. (2019), 
Algaba et  al. (2021) and Béal et  al. (2022). These studies consider single-valued 
solutions, that is, social ranking solutions that assign to each coalitional ranking of 
the considered domain a unique social ranking. In this article, we are interested in 
set-valued solutions, that is, social ranking solutions that assign to each coalitional 
ranking problem of the domain a set, possible empty, of social rankings.

A social ranking solution can be viewed either as the ordinal counterpart of a 
solution for cooperative games with transferable utility – where for each payoff vec-
tor, agents are ranked according to the payoff they receive for their participation in 
the game – or as the inverse of the well-known problem of ranking groups of objects 
from a ranking over the individual objects (see, e.g., Barberà et al. 2004).

We propose a set-valued social ranking solution derived from a no-blocking con-
dition inherent to the concept of core in many social environments. Precisely, our 
solution is constructed from the idea that the population of agents can be socially 
organized into a partition. Given a coalitional ranking problem, a partition is blocked 
by a coalition if the latter has a strictly higher rank in the coalitional ranking than the 
cells of the partition to which its members belong. A partition that is not blocked by 
any coalition is a stable partition or a core-partition. Any partition induces a natural 
social ranking: an agent is better ranked than a second agent if the cell to which the 
first agent belongs is better ranked in the coalitional ranking than the cell to which 
the second agent belongs. A social ranking is a core-partition social ranking if it is 
induced by a core-partition. The Core-partition social ranking solution introduced 
in this article assigns to each coalitional ranking the set of all core-partition social 
rankings. In other words, each selected social ranking is induced by an organization 
of the population into a partition that cannot be blocked by any coalition.

We consider the domain of all coalitional ranking problems that can be con-
structed from any finite agent set, that is, a domain of coalitional ranking problems 
with a variable set of agents. The Core-partition social ranking solution is non-
empty-valued on this domain.

Our main result is an axiomatic characterization of the Core-partition social rank-
ing solution which invokes three axioms.

The first axiom is based on a specific expansion of the population of agents. So 
consider an initial coalitional ranking problem. Assume now that the population is 
expanded in such a way that the coalition of all newly added agents wins unani-
mous support: this coalition is the unique maximal coalition in the larger coalitional 
ranking, the relative ranking between any two original coalitions remains the same, 
and each other coalition with both new and original agents has an arbitrary ranking. 
Then, our axiom imposes that the solution set of this new coalitional ranking on a 
larger set of agents is computed from the solution set of the initial one by putting the 
set of newcomers at the top of each social ranking of this solution set. In a sense, if 
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a set of newcomers wins unanimous support in a coalitional ranking, then they are 
socially top-ranked. This axiom both has the flavor of some consistency-type axioms 
(if one starts from the larger problem and if the coalition of top-ranked agents is 
removed from it) and of the so-called bracing lemma which also relates the solution 
sets before and after a similar population expansion. On these points, we refer to 
Thomson (2011) for more details.

The second axiom is an invariance axiom built from a monotonicity condition. 
Imagine that in a coalitional ranking problem two disjoint coalitions have the same 
rank and their union lies in their lower counter set, i.e., the union of these coalitions 
has a lower rank than their constituent. Hence, the two coalitions have no interest 
in merging. The axiom indicates that the solution set is invariant to any monotonic 
transformation of the coalitional ranking induced by an improvement of this union, 
provided that this union remains in the lower contour set of the two original coali-
tions. This axiom is reasonable because the (equal) individual performance of these 
two coalitions is always at least as good as that of their union.

The last axiom is based on a decomposition principle. It specifies the conditions 
under which the solution set of a coalitional ranking problem can be decomposed 
as the union of the solution sets of variants of this coalitional ranking when some 
specific top coalitions of the coalitional ranking are each promoted as the only top 
coalition, ceteris paribus. Such a decomposition is possible according to the axiom 
if the set of top coalitions is closed/stable by union of disjoint coalitions.

The rest of the article is organized as follows. Section  2 presents the connec-
tions between our model, other approaches to the coalitional ranking problems and 
other literatures. In particular, we explain what distinguish our approach from some 
results on hedonic games. Section 3 gives basic notation and definitions. Section 4 
presents core-partitions and the core-partition social ranking solution and provides 
some of their properties. The axiomatic study is contained in Sect.  5. Section  6 
proves that the three axioms invoked in our characterization are logically independ-
ent. Section  7 provides an intuitive algorithm which computes all core-partitions. 
Section 8 concludes.

2 � Related Literature

On the coalitional ranking problem, Khani et  al. (2019) introduce and axiomati-
cally characterize a social ranking solution that is inspired from the Banzhaf index 
for cooperative voting games (Banzhaf 1964). Bernardi et  al. (2019) and Algaba 
et al. (2021) study lexicographic solutions based on the idea that the most influen-
tial agents are those which belong to (small) coalitions ranked in the highest posi-
tion in the coalitional ranking, and provide several axiomatic characterizations of 
these solutions. Béal et  al. (2022) characterize two other lexicographic solutions: 
the resulting social rankings are computed from the individual performance of the 
agents, then, when this performance criterion does not allow to decide between two 
agents, a collective performance criterion is progressively applied to the coalitions 
of higher size. As we already underlined, the main differences with our approach are 
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that these solutions are single-valued whereas we consider set-valued solutions and 
that our framework allows for a variable population of agents.

A coalitional ranking can also be seen as a specific hedonic game. In a hedonic 
game, each agent is endowed with a preference (a weak order) over the set of coali-
tions to which it can belong and a popular objective is to find core-partitions. In 
order to do so, a coalition blocks a partition if all its members prefer this coalition 
to their respective cell of the partition. A partition is stable if it cannot be blocked 
by any coalition. A coalitional ranking problem can be considered as a specific 
hedonic game in which the preferences of any pair of agents agree when they com-
pare two coalitions containing these two agents. This property, introduced in Farrell 
and Scotchmer (1988),1 is sufficient for the nonemptiness of the set of core-parti-
tions. The core of a hedonic game has received much attention in the literature. For 
instance, Banerjee et al. (2001) relax the common ranking property. They introduce 
two properties of top coalitions, which are sufficient to ensure the nonemptiness of 
the core of a hedonic game. Iehlé (2007) provides a necessary and sufficient condi-
tion under which the core of a hedonic game is nonempty. This condition is based on 
a concept of pivotal balancedness. Karakaya and Klaus (2017) consider the domain 
of hedonic games with strict preferences. They offer, among other (im)possibili-
ties results, an axiomatic characterization of the core on the subdomain of hedonic 
games with a nonempty core in terms on Maskin monotonocity and Coalitional una-
nimity. In this context, Maskin monotonocity indicates that if a partition is selected 
by the solution set at some hedonic game, then it is also selected at a hedonic game 
where this partition improved in the preference ranking of the agents, ceteris pari-
bus. Coalitional unanimity requires that a coalition which is unanimously best for all 
its members is always part of a partition of the solution set. Even if the literature on 
hedonic games (with the common ranking property) and our work are build around 
the concept of core-partitions, the similarities end there. We do not axiomatize the 
set of core-partitions but the set of social rankings that are consistent with core-
partitions in the sense explained in the introduction. As a consequence, even if some 
axioms from both literatures seem to have the same flavor, they do not deal with the 
same objects.

The frameworks of hedonic games with the common ranking property and coali-
tional ranking problems are merged into a new class of coalition formation games by 
Lucchetti et al. (2022). They focus on core-partitions in various settings in which the 
agents’ preferences over coalitions depend on both the coalitional ranking and the 
agents’ position according to a social ranking within each coalition. In one of these 
settings, these two criteria are used lexicographically: among two coalitions contain-
ing an agent, this agent prefers the first coalition to the second if the former is bet-
ter ranked than the latter in the coalitional ranking or if the two coalitions have the 
same coalitional rank and the social ranking solution better ranks the agent when it 
is applied to the first coalition than to the second. In this setting, core-partitions may 
not exist. The authors provide algorithms which determine core-partitions when 
they exist.

1  It is is called the common ranking property in Banerjee et al. (2001).
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The concept of preference-approval structure introduced by Brams and Sanver 
(2009) has some distant link with our approach. A preference-approval structure is 
a pair consisting of a social ranking over a finite set of alternatives and a subset 
of approved or acceptable alternatives such that any approved alternative should be 
ranked strictly higher than any disapproved alternative in the social ranking. A par-
allel with social rankings induced by partitions can be made as follows. Consider the 
bipartition that distinguishes the approved alternatives from the disapproved alterna-
tives. If a coalitional ranking were to exist on all non-empty subsets of alternatives, 
then it would be reasonable to assume that the coalition of approved alternatives 
is better ranked than the coalition of disapproved alternatives. Then, the condition 
that any approved alternative should be ranked strictly higher than any disapproved 
alternative in the social ranking is exactly what our (core)-partition social ranking 
solution would impose from the aforementioned bipartition and the hypothetical 
coalitional ranking. Dong et al. (2021) axiomatize a distance function between pref-
erence-approval structures. This function is then used in a preference aggregation 
model where each agent is endowed with its own preference-approval structure.

Finally, the approach in Piccione and Razin (2009) also shares some similarities 
to ours. The authors investigate social rankings emerging from core-partitions asso-
ciated with a coalitional ranking. Nonetheless, there are several differences between 
the two articles. Firstly, Piccione and Razin (2009) consider coalitional rankings 
which are strict total orders while we consider weak orders. Secondly, they impose 
a separability condition on their coalitional rankings: for four disjoints coalitions, 
if a first coalition is ranked higher that a second coalition and if a third coalition is 
ranked higher than a fourth coalition, then the union of the first and third coalition 
is ranked higher than the union of the second and fourth coalition. Contrary to this 
rather narrow class of coalitional rankings, we allow for all weak orders over the set 
of nonempty coalitions. Thirdly, the ranking induced by a partition used in Piccione 
and Razin (2009) is consistent with the ranking of the cells of the partition but they 
further decide between two agents belonging to the same cell by comparing the cor-
responding singletons. As a consequence, a social ranking in Piccione and Razin 
(2009) is always a strict total order on the population of agents while we allow for 
weak orders. Fourthly, the stability concept adopted by Piccione and Razin (2009) 
is based on a blocking condition that is weaker than the classical one, so that the set 
of their stable social rankings is larger than the set of core-partitions. The authors’ 
main results are a full description of the (nonempty) set of partitions that are stable 
under all the coalitional rankings in their specific class and an axiomatic characteri-
zation of this set.

3 � Notation and Definitions

For any finite set A, denote by ΩA the set of nonempty subsets of A and by R(A) 
the set of weak orders on A, i.e., the set of all reflexive, transitive and complete 
binary relations on A. Given a weak order ≿∈ R(A) , if A is nonempty, M(A,≿) rep-
resents its nonempty set of maximal/top elements, i.e., M(A,≿) is the greatest/best 
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equivalence class with respect to the quotient order. For any subset B of A, ≿B stands 
for the restriction of ≿ to the subset B, i.e.,

Let ℕ be the universe of agents and F  be the collection of all finite sets of ℕ . For any 
set of agents N ∈ F  , any element of ΩN is a called a coalition. A coalitional rank-
ing problem is a pair (ΩN ,≿) where N ∈ F  is the agent set and ≿∈ R(ΩN) is the 
coalitional ranking. For two coalitions S, T ∈ ΩN , S ≿ T  means that S is at least as 
highly ranked as T in ≿ . The asymmetric and symmetric part of ≿ are denoted by ≻ 
and ∼ respectively. For a coalitional ranking ≿∈ R(ΩN) and a coalition S ∈ Ω

N
 , the 

lower contour set of ≿ at S is the set

Denote by

the domain of coalitional rankings. A social ranking on N is a weak order ⋗ in 
R(N) . In a similar way as above, > denote the asymmetric part of ⋗ and ⋅ its sym-
metric part. Denote by

the set of social rankings that one can construct from any finite set of agents of ℕ.
For any coalitional ranking problem (ΩN ,≿) ∈ RΩ and any coalition S ∈ ΩN , the 

coalitional ranking subproblem induced by (ΩN ,≿) ∈ RΩ and S is the restricted 
coalitional ranking ≿S to the set ΩS.

A social ranking (set-valued) solution is a correspondence f ∶ RΩ ⇉ Rℕ 
which assigns to each coalitional ranking problem (ΩN ,≿) ∈ RΩ(N) a possi-
bly empty set of social rankings f (ΩN ,≿) ⊆ R(N) . If N = � , then ΩN = � and 
R(N) = R(ΩN) = {�} . In such a case, one uses the convention that f (Ω�, �) = {�} . 
The social ranking solution f is nonempty-valued on RΩ if it holds that 
f (ΩN ,≿) ≠ � for each (ΩN ,≿) ∈ RΩ(N).

4 � Core‑Partitions and the Core‑Partition Ranking Solution

Core partitions of a coalitional ranking problem
Given N ∈ F  , a partition on N is a set P = {P1,… ,Pk} of mutually disjoint 

nonempty coalitions that covers N, i.e., P is such that

∀x, y ∈ B, x ≿B y ⟺ x ≿ y.

L(≿, S) = {T ∈ ΩN ∶ S ≿ T}.

RΩ =
⋃

N∈F

R(ΩN),

Rℕ =
⋃

N∈F

R(N)

⋃

q∈{1,…,k}

Pq = N and ∀q, r ∈ {1,… , k}, q ≠ r, Pq ∩ Pr = �.
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For a given agent i ∈ N and a partition P, P(i) stands for the unique coalition/cell 
in P containing i. Denote by P(N) the set of partitions of N. For any two parti-
tions P = {P1,… ,P

k
} and P� = {P�

1
,… ,P�

k�
} on N, P′ is coarser than P if, for each 

P�
q
∈ P� , there is a nonempty subset Aq ⊆ {1,… , k} such that

Given a coalitional ranking problem (ΩN ,≿) ∈ R and a partition P ∈ P(N) , one 
says that P is blocked by coalition S ∈ ΩN if,

In words, P is blocked by S if, for each agent in S, coalition S is ranked higher than 
the coalition/cell in P containing this agent. The interpretation is that if agents prefer 
to be assigned to the best possible coalitions, then each one prefers to be in S than 
in the cell that the partition assigns to each of them. In this sense, P is not stable. A 
partition P is a core-partition if it is stable, i.e., if it cannot be blocked by any non-
empty coalition. Equivalently, P is a core-partition if, for each S ∈ ΩN , there is i ∈ S 
such that P(i) ≿ S . Denote by CP(ΩN ,≿) ⊆ P(N) the set of core-partitions of the 
coalitional ranking problem (ΩN ,≿).

Example 1  Assume that N = {1, 2, 3, 4, 5} . Consider the coalitional ranking problem 
(ΩN ,≿) such that

for each other pair of coalitions {S, T} . This coalitional ranking admits five equiva-
lence classes and

Its set CP(ΩN ,≿) of core-partitions contains three elements:

Example 2  Let N = {1, 2,… , n} , and consider the coalitional ranking problem 
(ΩN ,≿) where coalitions are ranked according to the smallest index they contain:

Hence S is ranked at the min(S)-th equivalence class of (ΩN ,≿) , where the best 
equivalence class contains all coalitions S ∋ 1 and the worst equivalence class is the 
singleton {n} . For a nonempty coalition T ⊆ N , consider i = min(T) . For any S ∋ i , 
S ≿ T  , from which one concludes that CP(ΩN ,≿) = P(N).

Remark 1  The notion of core-partition has been extensively used in coalition forma-
tion games. It is known that for N ≠ ∅ , CP(ΩN ,≿) ≠ � (see, e.g., Farrell and Scotch-
mer, 1988, Banerjee et al. 2001). The computation of CP(ΩN ,≿) and the discussion 

P�
q
=

⋃

r∈Aq

Pr.

∀i ∈ S, S ≻ P(i).

{1, 2} ∼ {2, 3} ≻ {4, 5} ∼ {3, 4} ≻ N ∼ {2} ∼ {3} ≻ {1} ≻ S ∼ T ,

M(ΩN ,≿) =
{
{1, 2}, {2, 3}

}
.

P =
{
{1, 2}, {4, 5}, {3}

}
, P� =

{
{2, 3}, {4, 5}, {1}

}
, P�� =

{
{1, 2}, {3, 4}, {5}

}
.

∀S, T ,∈ ΩN , (S ≿ T) ⟺ (min(S) ≤ min(T)).
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on the nonemptiness of core partitions (already mentioned in the introduction) are 
postponed to section 7.

4.1 � The Core‑partition social ranking solution

Let us now establish a link between partitions and social rankings. Each coalitional 
ranking problem (ΩN ,≿) ∈ RΩ and each partition P ∈ P(N) induce a social ranking 
in R(N) denoted by ⋗(≿,P) such that

In words, the agents are ranked consistently with the rank of their cell. We are inter-
ested in social rankings that emerge from core-partitions. Formally, a core-partition 
social ranking for a coalitional ranking problem (ΩN ,≿) ∈ RΩ is a social ranking 
⋗∈ R(N) such that there is a core-partition P ∈ CP(ΩN ,≿) satisfying ⋗=⋗(≿,P) . 
Denote by CSR the social ranking solution which assigns to each coalitional rank-
ing problem (ΩN ,≿) the set of its core-partition social rankings CSR(ΩN ,≿) . By 
Remark 1, we know that CSR is nonempty-valued on RΩ.

Example 3  Consider again Example  1. Using CP(ΩN ,≿) , the set CSR(ΩN ,≿) of 
core-partition social rankings is formed by the following social rankings:

and

For a coalitional ranking problem (ΩN ,≿) ∈ RΩ and a partition P ∈ P(N) , define

as the set of cells of P that belong to the best equivalence class of (ΩN ,≿).
In the following, we establish properties for MP(ΩN ,≿) and CP(ΩN ,≿) that 

will be useful for the rest of the article. The first part of Proposition  1 indicates 
that MP(ΩN ,≿) is nonempty if P is a core-partition; the second part of Proposition 1 
indicates that a core-partition is consistent in the sense that by removing the cells of 
MP(ΩN ,≿) from P, we get a core-partition of the coalitional ranking restricted to the 
set of remaining agents. Even if Part (ii) follows from Proposition 3 in Karakaya and 
Klaus (2017), we provide a short proof for completeness.

Proposition 1  For each (ΩN ,≿) ∈ RΩ and each P ∈ CP(ΩN ,≿) , it holds that: 

	 (i)	 for each S ∈ M(ΩN ,≿) , there is T ∈ MP(ΩN ,≿) such that S ∩ T ≠ � . Thus, 
MP(ΩN ,≿) ≠ �;

∀i, j ∈ N, i ⋗(≿,P) j ⟺ P(i) ≿ P(j).

1 ⋅(≿,P) 2 >(≿,P) 4 ⋅(≿,P) 5 >(≿,P) 3, 2 ⋅(≿,P�) 3 >(≿,P�) 4 ⋅(≿,P�) 5 >(≿,P�) 1,

1 ⋅(≿,P��) 2 >(≿,P��) 4 ⋅(≿,P��) 3 >(≿,P��) 5.

MP(ΩN ,≿) = P ∩M(ΩN ,≿)
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	 (ii)	 P�MP(ΩN ,≿) ∈ CP
(
N�(∪S∈MP(ΩN ,≿)

S),≿N�(∪S∈MP(ΩN ,≿)S)

)
.

Proof  Fix any (N,≿) ∈ RΩ and any P ∈ CP(ΩN ,≿).
Part (i). Pick any nonempty S ∈ M(ΩN ,≿) and P ∈ CP(ΩN ,≿) . Assume that, for 

each T ∈ MP(ΩN ,≿) , S ∩ T = � . It results that, for each i ∈ S , P(i) does not belong 
to M(ΩN ,≿) so that S ≻ P(i) . This implies that P ∉ CP(ΩN ,≿) , a contradiction. 
Thus, if P ∈ CP(ΩN ,≿) , then, for each S ∈ M(ΩN ,≿) , there is T ∈ MP(ΩN ,≿) such 
that S ∩ T ≠ � . It follows that MP(ΩN ,≿) ≠ � for P ∈ CP(ΩN ,≿).

Part (ii). First observe that P�MP(ΩN ,≿) is a partition of N�(∪S∈MP(ΩN ,≿)
S) , where 

the set ∪S∈MP(ΩN ,≿)
S ≠ � by point (i) of Proposition  1. The case in which 

N�(∪S∈MP(ΩN ,≿)
S) is empty is trivial. So, assume that there is a nonempty coalition 

T ⊆ N�(∪S∈MP(𝜔N ,≿)
S) such that, for each i ∈ T  , T ≻N�(∪S∈MP(ΩN ,≿)S)

P(i) , where 
P(i) ∈ P�MP(ΩN ,≿) . Obviously, T ,P(i) ⊆ N , and, for each i ∈ T  , T ≻ P(i) , which 
yields that P is not a core-partition of (ΩN ,≿) , a contradiction. Conclude that 
P�MP(ΩN ,≿) is a core-partition of (N�(∪S∈MP(ΩN ,≿)

S),≿N�(∪S∈MP(ΩN ,≿)S)
) . 	�  ◻

Remark 2  Given (ΩN ,≿) and ⋗∈ CSR(ΩN ,≿) , let P
⋗
 be the partition of N into 

equivalent classes according to ⋗ , and consider a partition P ∈ CP(ΩN ,≿) such 
that ⋗=⋗(≿,P) . A priori, P

⋗
 and P can be different. For each S ∈ P and each i, j ∈ S , 

P(i) = P(j) so that i ⋅ j . By definition of P
⋗
 , there is T ∈ P

⋗
 such that i, j ∈ T  . There-

fore, S ⊆ T  , which implies that P
⋗
 is coarser than any P ∈ CP(ΩN ,≿) such that 

⋗=⋗(≿,P) . In particular, the best equivalence class M(N,⋗) of ⋗ is given by:

Example 4  Assume that N = {1, 2, 3, 4, 5} . Consider the coalitional ranking problem 
(ΩN ,≿) such that

for each other pair of coalitions {S, T} . Obviously, the partition

and the associated core-partition social ranking ⋗(≿,P) is given by

The partition P
⋗(≿,P)

 of N induced by the equivalence classes of ⋗(≿,P) is given by

and P
⋗(≿,P)

 is coarser than P.

M(N,⋗) = ∪S∈MP(ΩN≿)
S.

{1, 2} ∼ {2, 3} ∼ {4, 5} ∼ {3, 4} ≻ N ∼ {2} ∼ {3} ≻ {1} ≻ S ∼ T ,

P =
{
{1, 2}, {4, 5}, {3}

}
∈ CP(ΩN ,≿),

1 ⋅(≿,P) 2 ⋅(≿,P) 4 ⋅(≿,P) 5 >(≿,P) 3.

P
⋗(≿,P)

=
{
{1, 2, 4, 5}, {3}

}
,
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5 � Axiomatic Study

In this section, we introduce three new axioms for a (set-valued) social ranking solu-
tion and examine how permissive or restrictive they are by means of examples or by 
considering a relevant subdomain of the full domain. It turns out that the combina-
tion of these axioms characterizes the social ranking solution CSR . As underlined 
by Thomson (2001), this axiomatic approach is classical and common to many col-
lective choice problems. According to Thomson (2019),

The axiomatic analysis holds a central place in economic design. It allows us 
to go beyond current practice and hypothetical examples. It provides explicit 
arguments for the use of particular allocation rules in terms of meaningful cri-
teria of good behavior (...)

Our axioms are naturally part of this approach. They discuss the consequences of 
modifications of the two components of the coalitional ranking problem: an expan-
sion of the population of agents and relevant changes in the considered coalitional 
ranking. The agents have frequently to face such modifications in group decision 
making situations. So consider the full domain RΩ and let f ∶ RΩ ⇉ Rℕ be any 
such social ranking solution.

The first axiom is based on a specific expansion of the population of agents. So 
consider an initial coalitional ranking problem, say (N�S,≿�) . Assume now that the 
population is expanded in such a way that the coalition S of all newly added agents 
wins unanimous support: S is the unique maximal coalition in the larger coalitional 
ranking (N,≿) , the relative ranking between any two original coalitions remains the 
same, and the other coalitions have an arbitrary ranking (except that they do not 
belong to the best equivalent class). Hence, the restriction ≿N∖S of ≿ to the original 
population N∖S coincides with ≿′ . Then, our axiom imposes that the solution set of 
this new coalitional ranking problem (N,≿) is computed from the solution set of the 
initial problem (N�S,≿�) by adding to each selected social ranking for (N�S,≿�) the 
members of S as the only maximal elements.

To state formally this axiom, a definition is needed. For each (ΩN ,≿) ∈ RΩ , 
each S ∈ ΩN and each ⋗∈ R(N�S) , denote by ⋗+S∈ R(N) the social ranking on N 
obtained from ⋗ by adding S as the set of maximal elements, i.e. M(N,⋗+S) = {S} , 
and, for each i, j ∈ N�S , i ⋗+S j if and only if i ⋗ j.

Unanimous extension (UE) For each (ΩN ,≿) ∈ RΩ such that M(ΩN ,≿) = {S} , it 
holds that

In order to state the next axiom, we introduce a new operation on a coalitional rank-
ing problem (ΩN ,≿) ∈ RΩ . For a given coalition S ∈ ΩN , we say that an alterna-
tive coalitional ranking problem (ΩN ,≿

�) ∈ RΩ is induced from (ΩN ,≿) by a S 
-improvement if the two following conditions hold:

∙ L(≿, S) ⊆ L(≿�, S);
∙ ∀R,T ∈ ΩN�{S} , R ≿′ T ⟺ R ≿ T .

f (ΩN ,≿) =
{
⋗
+S∶⋗∈ f (ΩN�S,≿N�S)

}
.
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In words, the position of S (weakly) improves while the relative ranking of any 
other pair of coalitions is unchanged.

The next axiom relies on a principle of invariance of the solution set to some 
improving move. Consider a situation where two disjoint coalitions have the same 
rank and their union has a lower rank. Then, this principle of invariance indicates 
that improving the rank of this union, ceteris paribus, does not alter the solution 
set, provided than the new rank of the union has still a rank not higher than that of 
the two original coalitions. For social choice functions, this principle is related in a 
certain way to the Maskin monotonicity principle (Maskin 1999). Loosely speak-
ing, this Maskin monotonicity indicates that if an alternative is selected in a certain 
problem, then it is also selected in a related problem obtained when some elements 
from which the alternative is constructed improved, ceteris paribus. In our case, this 
principle applies to specific problems where two disjoint coalitions have the same 
rank, their union is lower ranked, and the improving move is bounded from above by 
the equivalence class to which these two disjoint coalitions belong.

Invariance to merger upgrading (IMU) For each (ΩN ,≿) ∈ RΩN
 , each pair 

of coalitions {S, T} ⊆ ΩN such that S ∩ T = � , S ∼ T  and (S ∪ T) ∈ L(≿, S) , and 
each (ΩN ,≿

�) ∈ RΩN
 induced from (ΩN ,≿) by a (S ∪ T)-improvement where 

(S ∪ T) ∈ L(≿�, S) , it holds that f (ΩN ,≿) = f (ΩN ,≿
�).

Example 5  Consider Example  4. If one takes S = {1, 2} and T = {3, 4} then 
S ∩ T = � , S ∼ T  and (S ∪ T) ∈ L(≿, S) . Note that S, T ∈ M(ΩN ,≿) . Consider 
(ΩN ,≿

�) induced from (ΩN ,≿) by improving S ∪ T = {1, 2, 3, 4} up to the best 
equivalence class so that

for each other pair of coalitions {S, T} . Now if f satisfies (IMU), then 
f (ΩN ,≿) = f (ΩN ,≿

�).
Note also that one can also improve {2, 3, 4, 5} and {1, 2, 4, 5} in the same way by 

considering respectively S = {2, 3} ∼ T = {4, 5} , and S = {1, 2} ∼ T = {4, 5}.

The last axiom implements a decomposition property. It specifies situations where 
the solution set of a coalitional ranking problem can be expressed as the union of the 
solution sets of coalitional ranking problems built from the original one and contain-
ing a unique maximal element. The situations where such a decomposition is possible 
is related to the structure of the set of maximal elements of the coalitional ranking 
problem. A subset of coalitions C ⊆ ΩN is stable by union of disjoint elements if 
for any pair of coalitions {S, T} ⊆ C such that S ∩ T = � , then S ∪ T ∈ C.2 Assume 
that the set of maximal coalitions of a coalitional ranking problem is stable by union 
of disjoint elements. In such a situation, the axiom indicates that the solution set 

{1, 2} ∼� {1, 2, 3, 4} ∼� {2, 3} ∼� {4, 5} ∼� {3, 4} ≻� N ∼� {2} ∼� {3} ≻� {1} ≻� S ∼� T ,

2  The difference with union stable set systems as studied in Algaba et al. (2021) is that only the union 
of pairs of intersecting coalitions is considered; and the difference with union closed systems as studied 
in van den Brink et al. (2011) is that the union of all pairs of coalitions is considered. Thus, each union 
closed system is union stable and stable by union of disjoint elements.
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coincides with the union of the solution sets of variants of the original coalitional 
ranking problem obtained, for each maximal coalition intersecting all other maximal 
coalitions, by putting this maximal coalition as the unique maximal coalition, ceteris 
paribus.

For each (ΩN ,≿) ∈ RΩ define

as the set of intersecting coalitions in M(ΩN ,≿) . Now, for each (ΩN ,≿) ∈ RΩ and 
each S ∈ IM(ΩN ,≿) , denote by (ΩN ,≿

S) the unique coalitional ranking problem 
induced from (ΩN ,≿) by a S-improvement such that M(ΩN ,≿

S) = {S}.

Remark 3  If M(ΩN ,≿) is stable by union of disjoint elements, then IM(ΩN ,≿) ≠ �.

Decomposition by top upgrading (DTU) Consider any (ΩN ,≿) ∈ RΩ such that 
M(ΩN ,≿) is stable by union of disjoint elements. Then, it holds that

Example 6  Consider again Example 4. Applying the three improvements presented 
in Example 5 brings the following coalitional ranking:

and {1} ≻∗ S ∼∗ T  for each other pair of coalitions {S, T} . Remark that M(ΩN ,≿
∗) is 

stable by union of disjoint elements and that

Hence if f satisfies (DTU), then f (Ω
N
,≿∗) = f (Ω

N
, (≿∗){1,2,3,4}) ∪ f (Ω

N
, (≿∗){1,2,4,5})

∪f (Ω
N
, (≿∗){2,3,4,5}).

The next result states that the combination of Unanimous extension, Invariance 
to merger upgrading and Decomposition by top upgrading characterizes the core-
partition social ranking solution CSR.

Proposition 2  The social ranking solution CSR is the unique solution on RΩ sat-
isfying Unanimous extension (UE), Invariance to merger upgrading (IMU), and 
Decomposition by top upgrading (DTU).

Proof  The proof is divided into two parts (a) and (b).
(a) One shows that CSR satisfies the above three axioms. Pick any (ΩN ,≿) ∈ RΩ.
Unanimous extension Assume that M(ΩN ,≿) = {S} for some S ∈ ΩN . To show:

IM(ΩN ,≿) =
{
S ∈ M(ΩN ,≿) ∶ S ∩ T ≠ �,∀T ∈ M(ΩN ,≿)

}
,

f (ΩN ,≿) =
⋃

T∈IM(ΩN ,≿)

f (ΩN ,≿
T ).

{1, 2} ∼∗ {1, 2, 3, 4} ∼∗ {1, 2, 4, 5} ∼∗ {2, 3, 4, 5} ∼∗ {2, 3} ∼∗ {4, 5} ∼∗ {3, 4}

≻∗ N ∼∗ {2} ∼∗ {3} ≻∗ {1},

IM(ΩN ,≿
∗) = {{1, 2, 3, 4}, {1, 2, 4, 5}, {2, 3, 4, 5}}.
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To this end, it is sufficient to show that P ∈ CP(ΩN ,≿) if and only if P is of the form 
P = {S} ∪ P� where P� ∈ CP(ΩN�S,≿N�S) . For the “if part”, consider such a partition 
P ∈ P(N) and any T ∈ ΩN . Two cases can be distinguished:

∙ if T ∩ S ≠ � , pick i ∈ T ∩ S . One obtains P(i) = S ≿ T  because S ∈ M(ΩN ,≿);
∙ if T ∩ S = � , then T ∈ ΩN�S . Because P′ is a core-partition of (ΩN�S,≿N�S) , 

there is i ∈ T  such that P�(i) ≿N�S T  . Hence, P(i) = P�(i) ≿ T .
From the above two cases, conclude that P cannot be blocked by T, and so 

P ∈ CP(ΩN ,≿).
For the “only if part”, by part (i) of Proposition 1, MP(ΩN ,≿) ∩M(ΩN ,≿) ≠ � 

so that S ∈ P and MP(Ω,≿) = {S} . Part (ii) of Proposition  1 implies that 
P� = P�{S} ∈ CP(ΩN�S,≿N�S) , as desired.

Now, if P = {S} ∪ P� ∈ CP(ΩN ,≿) for some P� ∈ CP(ΩN�S,≿N�S) , then its asso-
ciated social ranking ⋗(≿,P) belongs to CSR(ΩN ,≿) and obviously ⋗(≿,P)=⋗

+S
(≿N�S ,P

�)
 . 

Reciprocally, P� ∈ CP(N�S,≿N�S) gives rise to a unique social ranking 
⋗
(≿N�S ,P

�)
∈ CSR(N�S,≿N�S) from which the social ranking ⋗+S

(≿N�S ,P
�)
=⋗(≿,P) is a core-

partition social ranking of CSR(ΩN ,≿) . Thus, (1) holds, as desired.
Invariance to merger upgrading Consider a pair {S, T} ⊆ ΩN such that S ∩ T = � , 

S ∼ T  and (S ∪ T) ∈ L(≿, S) , and any coalitional ranking problem (ΩN ,≿
�) ∈ RΩ 

induced from ≿ by a (S ∪ T)-improvement with (S ∪ T) ∈ L(≿�, S) . To show: 
CSR(ΩN ,≿) = CSR(ΩN ,≿

�) . One proceeds by double inclusion.
∙ CSR(ΩN ,≿) ⊆ CSR(ΩN ,≿

�) . By definition of CSR , it suffices to show that 
CP(ΩN ,≿) ⊆ CP(ΩN ,≿

�) . Pick any P ∈ CP(N,≿) , which means that, for each 
R ∈ ΩN , there is i ∈ R such that P(i) ≿ R . For each R ∈ ΩN�{(S ∪ T)} , note that 
P(i) ≿ R implies P(i) ≿� R because S ∪ T  is the only improved coalition in the coa-
litional ranking ≿′ . If R = S ∪ T  , then, since there is i ∈ S such that P(i) ≿ S and 
(S ∪ T) ∈ L(≿, S) ∩ L(≿�, S) , one obtains P(i) ≿� S ≿� (S ∪ T) , whether P(i) = S ∪ T  
or not. Hence, P ∈ CP(N,≿�).

∙ CSR(ΩN ,≿) ⊇ CSR(ΩN ,≿
�) . Pick any ⋗∈ CSR(Ω,≿�) and any 

P� ∈ CP(ΩN ,≿
�) such that ⋗=⋗(≿�,P�) . If S ∪ T ∉ P� , then define P = P� ; and if 

S ∪ T ∈ P� , then define P =
(
P��{S ∪ T}

)
∪ {S} ∪ {T} . Because S ∪ T ∈ P� only 

happens when S ∼� T ∼� S ∪ T  , one necessarily has ⋗(≿,P)=⋗(≿�,P�) . Let us show 
that P ∈ CP(ΩN ,≿) so that ⋗∈ CSR(ΩN ,≿) . For each R ∈ ΩN , there is i ∈ R such 
that P�(i) ≿� R . If P�(i) ≠ S ∪ T  , then P(i) = P�(i) ≿ R , whether R = S ∪ T  or not. If 
P�(i) = S ∪ T  , then either i ∈ S or i ∈ T  so that P(i) = S or P(i) = T  . By definition 
of ≿′ , S ∪ T ∈ L(≿�, S) = L(≿�, T) so that, in both cases, P(i) ≿� S ∪ T = P�(i) ≿� R , 
which implies that P(i) ≿ R . Hence, for each R ∈ ΩN , there is i ∈ R such that 
P(i) ≿ R . Conclude that P ∈ CP(ΩN ,≿) so that ⋗=⋗(≿�,P�)=⋗(≿,P)∈ CSR(ΩN ,≿).

Decomposition by top upgrading Assume that M(ΩN ,≿) is stable by union of dis-
joint elements. To show:

(1)CSR(ΩN ,≿) =
{
⋗
+S∶⋗∈ CSR(ΩN�S,≿N�S)

}
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One proceeds by double inclusion.
∙ CSR(ΩN ,≿) ⊆ ∪T∈IM(ΩN ,≿)

CSR(ΩN ,≿
T ) . Pick any ⋗∈ CSR(ΩN ,≿) and any 

P ∈ CP(ΩN ,≿) associated with ⋗∈ CSR(ΩN ,≿) , i.e., ⋗=⋗(≿,P) . It suffices to show 
that there is T ∈ IM(ΩN ,≿) and P� ∈ CP(ΩN ,≿

T ) such that ⋗(≿T ,P�)=⋗(≿,P) . Denote 
by T the union of the possibly several elements in MP(ΩN ,≿) and define P′ as the 
partition obtained from P by replacing the elements of MP(ΩN ,≿) by their union 
T. Because M(ΩN ,≿) is stable by union of disjoint elements, T ∈ M(ΩN ,≿) . 
Clearly, MP� (ΩN ,≿) = {T} , ⋗(≿,P�)=⋗(≿,P) and P� ∈ CP(ΩN ,≿) . It remains to show 
that T ∈ IM(Ω,≿) and that P� ∈ CP(ΩN ,≿

T ) . The first claim results from part (i) 
of Proposition  1 and the definition of IM(Ω,≿) . For the second claim, pick any 
S ∈ ΩN . Because P ∈ CP(ΩN ,≿) , there is i ∈ S such that P(i) ≿ S . If i ∈ T  , then 
T = P�(i) ≿T S . If i ∉ T  , then P�(i) = P(i) ∉ M(ΩN ,≿) . By definition of ≿T and the 
fact that P� ∈ CP(ΩN ,≿) , one obtains P�(i) ≿T S . Hence, P� ∈ CP(ΩN ,≿

T ).
∙ CSR(ΩN ,≿) ⊇ ∪T∈IM(ΩN ,≿)

CSR(ΩN ,≿
T ) . Precisely, one establishes that, for 

each T ∈ IM(ΩN ,≿) , CP(ΩN ,≿
T ) ⊆ CP(ΩN ,≿) so that CSR(ΩN ,≿

T ) ⊆ CSR(ΩN ,≿) . 
For each P� ∈ CP(ΩN ,≿

T ) , MP� (ΩN ,≿
T ) = {T} ⊆ M(ΩN ,≿) where the inclusion 

follows from the fact that T ∈ IM(ΩN ,≿) . Furthermore, T ∈ IM(ΩN ,≿) implies 
MP� (ΩN ,≿) = {T} . Because, P� ∈ CP(ΩN ,≿

T ) , for each S ∈ ΩN , there is i ∈ S such 
that P�(i) ≿T S . If S ∩ T ≠ � , one picks i ∈ S ∩ T  and P�(i) = T ∈ M(ΩN ,≿) so that 
P�(i) ≿ S . If S ∩ T = � , then P�(i) ≠ T  , so that P�(i) ≿ S by definition of ≿T . This 
yields that P� ∈ CP(Ω,≿) , as desired.

(b) One shows that if a social ranking solution f satisfies Unanimous exten-
sion, Invariance to merger upgrading and Decomposition by top upgrading, then 
f = CSR . So, consider such a social ranking solution f. To prove that f = CSR , 
one proceeds by induction on the number n ≥ 0 of agents in a coalitional ranking 
problem.

Initialization. For N = � , by convention f (Ω�, �) = CSR(Ω�, �) = {�}. For 
N = {i} for some i ∈ ℕ , and for the (unique) coalitional ranking ≿ on Ω{i} , {i} ≿ {i} , 
one applies Unanimous extension to f:

meaning that i ⋅ i . Obviously, CSR(Ω{i},≿) = {⋅} , so that f (Ω{i},≿) = CSR(Ω{i},≿)

.
Induction hypothesis. Assume that f (ΩN ,≿) = CSR(ΩN ,≿) holds for any 

(Ω,≿) ∈ RΩN
 such that n < k for some integer k ≥ 1.

Induction step. Consider any coalitional ranking problem (ΩN ,≿) ∈ RΩ such 
that n = k . If M(ΩN ,≿) is not stable by union of disjoints elements, M(ΩN ,≿) 
contains disjoint coalitions S and T such that S ∪ T  is not in M(ΩN ,≿) . Then, con-
struct the coalitional ranking problem (ΩN ,≿

�) induced from (ΩN ,≿) by the (S ∪ T)

(2)CSR(ΩN ,≿) =
⋃

T∈IM(ΩN ,≿)

CSR(ΩN ,≿
T ).

f (Ω{i},≿) =
{
�+{i} ∶ {�} = f (Ω�, �)

}
= {⋅},



979

1 3

A Core‑Partition Ranking Solution to Coalitional Ranking…

-improvement such that S ∪ T ∈ M(ΩN ,≿
�) . Because f and CSR satisfy Invariance 

to merger upgrading, f (ΩN ,≿
�) = f (ΩN ,≿) and CSR(ΩN ,≿

�) = CSR(ΩN ,≿) . Con-
tinue in this fashion to eventually construct a coalitional ranking problem (ΩN ,≿

∗) 
such that, for each S, T ∈ M(ΩN ,≿

∗) where S ∩ T = � , S ∪ T ∈ M(ΩN ,≿
∗) so that 

M(ΩN ,≿
∗) is stable by union of disjoint elements. Because ΩN is a finite set, the 

(unique) coalitional ranking problem (ΩN ,≿
∗) is reached after a finite number of 

steps. If M(ΩN ,≿) is stable by union of disjoint elements, no operation is required 
and ≿=≿∗ . Then, by successive applications of Invariance to merger upgrading, one 
obtains:

Furthermore, by Remark  3, IM(ΩN ,≿
∗) ≠ � . Thus, the conditions underly-

ing Decomposition by top upgrading are met in (ΩN ,≿
∗) . Now, consider any 

S ∈ IM(ΩN ,≿
∗) and construct the coalitional ranking problem (ΩN ,≿

∗S) induced 
from (ΩN ,≿

∗) by the S-improvement such that M(ΩN ,≿
∗S) = {S} . Applying Unani-

mous extension to both f and CSR and the induction hypothesis, one gets:

Because S was arbitrarily chosen in IM(ΩN ,≿
∗) , applying Decomposition by top 

upgrading to both f and CSR and using the equalities (3)-(4) yield that

which completes the induction step.
The statement of Proposition 2 follows from (a) and (b). 	�  ◻

The steps used in the uniqueness part (b) of the previous proof are illustrated 
in the following example.

(3)f (ΩN ,≿
∗) = f (ΩN ,≿) and CSR(ΩN ,≿

∗) = CSR(ΩN ,≿).

(4)

f (Ω
N
,≿∗S)

UE
=
{
⋗
+S∶⋗∈ f (Ω

N�S,≿
∗S
N�S

)
}

Ind. Hypo.
=

{
⋗
+S∶⋗∈ CSR(Ω

N�S,≿
∗S
N�S

)
}

(1 )
=CSR(Ω

N
,≿∗S)

f (Ω
N
,≿)

(3)
=f (Ω

N
,≿∗)

DTU

=
⋃

S∈I
M
(Ω

N
,≿∗)

f (Ω
N
,≿∗S)

(4)
=

⋃

S∈I
M
(Ω

N
,≿∗)

CSR(Ω
N
,≿∗S)

(2 )
=CSR(Ω

N
,≿∗)

(3)
=CSR(Ω

N
,≿),
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Example 7  Consider Example 4. As in Example 5, by successive merger upgrading, 
we get the following coalitional ranking:

and {1} ≻∗ S ∼∗ T  for each other pair of coalitions {S, T} . Hence, by suc-
cessive applications of Invariance to merger upgrading, one obtains that 
f (ΩN ,≿) = f (ΩN ,≿

∗).
As seen in Example 6, M(ΩN ,≿

∗) is stable by union of disjoint elements so that

Each member of this union gives rise to a unique social ranking by applying Unan-
imous extension, because M(ΩN ,≿

S) = {S} and S contains all but one agent. For 
instance:

The three social rankings composing f (ΩN ,≿) correspond to the follow-
ing three core-partitions of (ΩN ,≿) : CP(Ω

N
,≿) = {P1,P2,P3} where 

P
1 =

{
{1, 2}, {3, 4}, {5}

}
 , P2 =

{
{1, 2}, {4, 5}, {3}

}
 and P3 =

{
{2, 3}, {4, 5}, {1}

}
.

Remark 4  Note that on the subdomain of coalitional rankings that are strict total 
orders, Unanimous extension fully characterizes CSR . On this subdomain, one eas-
ily verifies that CSR is single-valued. This means that the two other axioms invoked 
in Proposition 2 are key to dealing with ties in the equivalent classes that often arise 
in less specific coalitional rankings.

The logical independence of the axioms used in Proposition 2 is shown in the fol-
lowing section.

6 � Logical Independence of the Axioms

Unanimous extension is not satisfied Consider the constant solution f C which assigns 
to each coalitional ranking problem the equivalence social relation ⋅ , that is all agents 
belong to the same equivalence class:

Because the image f C(RΩ) is the equivalence relation ⋅ , it obviously satisfies Invari-
ance to merger upgrading, and Decomposition by top upgrading. But f C violates 
Unanimous extension for the following reason: the social ranking ⋗+S used to define 
the solution set f C(ΩN ,≿) whenever M(ΩN ,≿) is a singleton, contains at least two 
distinct equivalence classes when S ≠ N.

{1, 2} ∼∗ {1, 2, 3, 4} ∼∗ {1, 2, 4, 5} ∼∗ {2, 3, 4, 5} ∼∗ {2, 3} ∼∗ {4, 5} ∼∗ {3, 4}

≻∗ N ∼∗ {2} ∼∗ {3} ≻∗ {1},

f (ΩN ,≿
∗) = f (ΩN , (≿

∗){1,2,3,4}) ∪ f (ΩN , (≿
∗){1,2,4,5}) ∪ f (ΩN , (≿

∗){2,3,4,5}).

f (ΩN , (≿
∗){1,2,3,4}) =

{
⋗
+{1,2,3,4}∶⋗∈ f (Ω{5},≿{5})

}
= {1 ⋅ 2 ⋅ 3 ⋅ 4 > 5}.

∀(ΩN ,≿) ∈ RΩ, f C(ΩN ,≿) = {⋅}.
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Invariance to merger upgrading is not satisfied Pick any (ΩN ,≿) ∈ RΩ and 
define I(ΩN ,≿) as:

Note that I(ΩN ,≿) ≠ � . Consider the social ranking solution f I defined recursively 
as follows:

In case M(ΩN ,≿) = {S} , then I(ΩN ,≿) = {S} and so

which is the definition of Unanimous extension. Thus, f I indeed satisfies this axiom. 
In case M(ΩN ,≿) is stable by union of disjoint elements, I(ΩN ,≿) = IM(ΩN ,≿) . For 
each S ∈ IM(ΩN ,≿) , (ΩN ,≿

S) is such that M(ΩN ,≿
S) = {S} = I(ΩN ,≿

S) . Note also 
that ≿S

N⧵S
=≿N⧵S , so that

Consequently,

which shows that f I satisfies Decomposition by top upgrading. To show that f I 
violates Invariance to merger upgrading, consider the coalitional ranking problem 
(ΩN ,≿) with N = {1, 2, 3} and defined as:

It follows that I(ΩN ,≿) = {{1, 2, 3}}, and so f I(ΩN ,≿) = {⋅} , i.e., 1 ⋅ 2 ⋅ 3. Now, 
consider the coalitional ranking problem (ΩN ,≿

�) defined as:

The coalitional ranking problem (ΩN ,≿
�) is an improvement from (ΩN ,≿) induced 

by {2, 3} that satisfies the conditions of Invariance to merger upgrading. One has 
I(ΩN ,≿

�) = {{2, 3}} . By definition of f I and the fact that it satisfies Unanimous 
extension,

a violation of Invariance to merger upgrading.
Decomposition by top upgrading is not satisfied Consider the following solution

I(Ω
N
,≿) =

{
S ∈ Ω

N
∶ ∀T ∈ Ω

N
, (S ∼ T ⇒ S ∩ T ≠ �) ∧ (T ≻ S ⇒ (∃R ∈ Ω

N
,

(R ∼ T) ∧ (R ∩ T) = �))
}
.

∀(ΩN ,≿) ∈ RΩ, f I(ΩN ,≿) =
⋃

S∈I(ΩN ,≿)

{
⋗
+S∶⋗∈ f I(ΩN⧵S,≿N⧵S)

}
.

f I(ΩN ,≿) = {⋗+S∶⋗∈ f I(ΩN⧵S,≿N⧵S)
}
,

f I(ΩN ,≿
S) =

{
⋗
+S∶⋗∈ f I(ΩN⧵S,≿

S
N⧵S

)
}

=
{
⋗
+S∶⋗∈ f I(ΩN⧵S,≿N⧵S

)
}
.

f I(ΩN ,≿) =
⋃

S∈IM(ΩN ,≿)

f I(ΩN ,≿
S),

{2} ∼ {3} ≻ {2, 3} ∼ {1} ≻ {1, 2, 3} ≻ {1, 3} ∼ {1, 2}.

{2} ∼� {3} ∼� {2, 3} ≻� {1} ≻� {1, 2, 3} ≻� {1, 3} ∼� {1, 2}.

f I(ΩN ,≿
�) = {2 ⋅ 3 > 1} ≠ f I(ΩN ,≿),
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where � ∶ R(ΩN) → R(ΩN) is defined as

The solution f � satisfies Unanimous extension and Invariance to merger upgrad-
ing but not Decomposition by top upgrading. Indeed, if M(ΩN ,≿) = {S} , then 
M(ΩN ,�(≿)) = {S} and

which shows that f � satisfies Unanimous extension. Next, if S, T ∈ ΩN are such that 
S ∩ T = � , S ∼ T  and (S ∪ T) ∈ L(≿, S) , then for any (ΩN ,≿

�) ∈ R(ΩN) induced 
from ≿ by a (S ∪ T)-improvement with (S ∪ T) ∈ L(≿�, S) , it holds that �(≿�) is 
induced from �(≿) by a (S ∪ T)-improvement with (S ∪ T) ∈ L(�(≿�), S) . Thus, f � 
satisfies Invariance to merger upgrading due to the fact that CSR satisfies it. Finally, 
consider the coalitional ranking problem (ΩN ,≿) with N = {1, 2} and defined as 
{1} ∼ {1, 2} ≻ {2} , then ≿�= �(≿) is as follows: {1} ≻� {1, 2} ≻� {2} . On the one 
hand, by definition of f � , one has:

where M(N,⋗) = {1} . On the other hand, M(ΩN ,≿) = {{1}, {1, 2}} is sta-
ble by union of disjoint elements and IM(ΩN ,≿) = M(ΩN ,≿) , so that 
∪S∈IM(ΩN ,≿)

f 𝓁(ΩN ,≿
S) = {⋗,⋗�} , where ⋗′ is such that M(N,⋗�) = {1, 2} . This con-

tradicts Decomposition by top upgrading.

7 � Computing All Core‑Partitions

This section is devoted to the computation of the core-partitions of a coalitional 
ranking problem (ΩN ,≿) from which the set of social rankings CSR(ΩN ,≿) is 
obtained. A non-deterministic algorithm is proposed, which computes all core-
partitions of a coalitional ranking problem. In particular, this algorithm permits 
to conclude that the set of all core-partitions of a coalitional ranking problem is 
nonempty. As noted in Remark 1, this nonemptiness property has already been 
shown by Farrell and Scotchmer (1988) in another context. The idea behind the 
forthcoming algorithm is described informally in the proof of Theorem  1 in 
Farrell and Scotchmer (1988) and in the proof of Theorem 1 in Banerjee et al. 
(2001) in a slightly more general context. It is also given in Lucchetti et  al. 
(2022). Hence, we only give a proof of Proposition 3 below for completeness. In 

∀(ΩN ,≿) ∈ R, f �(ΩN ,≿) = CSR(N,�(≿)),

S�(≿)T ⟺
(
(S ≻ T) or (S ∼ T and |S| ⩽ |T|)

)
.

f
𝓁(Ω

N
,≿) = CSR(Ω

N
,𝓁(≿))

={⋗+S∶⋗∈ CSR(Ω
N�S,𝓁(≿)N�S)}

={⋗+S∶⋗∈ CSR(Ω
N�S,𝓁(≿N�S))}

={⋗+S∶⋗∈ f
𝓁(Ω

N�S,≿N�S)},

f 𝓁(ΩN ,≿) = CSR(ΩN ,≿
�) = {⋗},
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turn, this property implies that CSR is nonempty-valued on RΩ . The algorithm 
is as follows.

Proposition 3  For each (ΩN ,≿) ∈ RΩ , the set of outcomes of the above non-deter-
ministic algorithm is exactly CP(ΩN ,≿).

Proof  Firstly, remark that the execution of the algorithm always terminates after a 
finite number of steps since N is a finite set.

Secondly, we prove that each P = {P1,… ,Pk} ∈ CP(ΩN ,≿) is obtained as some 
output of the algorithm. Denote by t the number of equivalent classes of ≿ and order 
them according to the quotient order: M(ΩN ,≿) is the equivalent class 1 and so on. 
Define the mapping � ∶ {1,… , k} ⟶ {1,… , t} such that Pi belongs to equivalent 
class �(i) according to ≿ . Note that Pi ≿ Pj if and only if �(i) ≤ �(j) . By Remark 2, 
the pre-image �−1(1) is nonempty and each cell Pi such that i ∈ �−1(1) can be cho-
sen in the inner loop 3 − 5 of the algorithm to form the output P while � = N : these 
cells define the set ∪i∈𝜋−1(1)Pi = ∪S∈MP(ΩN ,≿,)

S . Then, according to the second part of 
Proposition 1, we have

As a consequence, starting from 𝜂 = N�(∪S∈MP(ΩN ,≿)
S) , each coalition 

Pi ∈ P�MP(ΩN ,≿) is such that 𝜋(i) > 1 and may be chosen recursively at step 3 or 4 
by the algorithm.

Thirdly, we prove that each output of the algorithm belongs to CP(ΩN ,≿) . So, 
assume P = {P1,… ,Pk} ∈ P(N) is some output of the algorithm. By construction, 
P is a partition of N, whatever the choices made in steps 3 and 4. As above, consider 
� ∶ {1,… , k} → {1,… , t} so that Pi belongs to equivalent class �(i) according to ≿ . 
Pick any S ∈ ΩN . Consider i0 ∈ {1,… , k} such that �(i0) = min{�(i) ∶ Pi ∩ S ≠ �} ; 
the minimizer i0 is possibly not unique. Let us show that Pi0

≿ S . By construction, Pi0
 

enters P at step 3 or 4 for a given 𝜂 ⊆ N . By definition of i0 , for each i ∈ {1,… , k} 
such that Pi ∩ S ≠ � , Pi enters P later in the algorithm. Hence, each j ∈ S belongs to 
a Pi = P(j) such that �(i) ≥ �(i0) so that S ∈ Ω� . By definition of the algorithm, we 
have Pi0

∈ M(Ω𝜂 ,≿𝜂) in (Ω𝜂 ,≿𝜂) . Together with S ∈ Ω� , this implies that Pi0
≿𝜂 S , 

and so Pi0
≿ S . Conclude that each j ∈ Pi0

∩ S satisfies P(j) ≿ S , which means that S 
cannot block P, as desired. 	�  ◻

P�MP(ΩN ,≿) ∈ CP
(
N�(∪S∈MP(ΩN ,≿)

S),≿N�(∪S∈MP(ΩN ,≿)S)

)
.
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Example 8  The key steps of the algorithm can be represented schematically by its 
decision tree. Each node, other than a leaf, is labeled by the set � corresponding to 
the steps 1 and 6 from which a choice is made in step 3 and 4. These choices cor-
respond to the label of each arrow. Each leaf computes the output of the algorithm. 
Consider Example 1. Recall that N = {1, 2, 3, 4, 5} and

for each other pair of coalitions {S, T} . The set CP(ΩN ,≿) of core-partitions contains 
three elements:

Fig. 1 draws the associated decision tree.

8 � Conclusion

Other stability concepts identifying subsets of “stable” partitions have been designed 
for hedonic games (see Aziz and Savani 2016). A possible research agenda would be 
to replicate our approach for these alternative stability concepts, i.e. adapting the 
concept to coalitional ranking problems and finding an axiomatic characterization of 
the social ranking induced by the corresponding stable partitions.
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