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Abstract
A framework for modeling multi-criteria and multi-agent decision making processes 
as a non-cooperative game including a phase for solving the game by using the con-
cept of equilibrium solution is presented. In the presence of a non-singular solu-
tion, the framework includes a phase for refining the solution by the application of 
a social welfare function. The framework is named Multi-Criteria and Multi-Agent 
Framework. The framework makes possible the strategic performance in complex 
decision-making, creating transparency within the process of selecting alternatives 
that are under evaluation in a multi-criteria perspective by agents with heterogene-
ous preferences. This paper includes a simulation to demonstrate the applicability of 
the framework to a complex engineering problem such as the choice of a Wastewater 
Treatment Plant for a municipality. Convergence of choices of five experts that par-
ticipated in the simulation was demonstrated by the application of the framework.

Keywords  MCDM · Game theory · Utility function · Equilibrium selection 
problem · Social welfare functions

1  Introduction

Selecting the best alternative among a set of different propositions is often a com-
plex decision-making problem. Methods with the purpose of aiding this process 
have been proposed with a strong emphasis on deterministic approaches, includ-
ing the evaluation of economic and/or operational aspects of the alternatives under 
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consideration (Padalkar & Gopinath, 2016). Recently, the use of Multi-criteria Deci-
sion-Making (MCDM) methods has gained popularity, since they provide means for 
modeling and solving complex decision-making problems under multiple and con-
flictive criteria, by adopting the concept of a satisficing solution (Garrido-Baserba, 
et  al., 2016; Pohekar & Ramachandran, 2004; Simon, 1979). However, MCDM 
methods are mostly designed for the use of a single agent and are not appropriate, 
a priori, to be applied in the scenario of multi-agent decision making processes, 
which is the scenario of most of the current decision-making processes within 
organizations.

In the literature, propositions can be found for the use of MCDM methods within 
a multi-agent scenario through the aggregation of different agents’ preferences into 
a unity, usually using arithmetic or geometric mean.1 It is noteworthy to cite one 
of the first uses of such procedure, which can be seen in the paper of Lockett et al. 
(1987), that used the arithmetic mean for presenting the discrepancies of the Ana-
lytical Hierarchy Process (AHP) between individual and group scenarios. Due to the 
possibility of losing information in scenarios with high heterogeneous preferences 
(Basak, 1988; Leoneti, 2016), other approaches suggest the adaptation of the clas-
sical MCDM methods for their suitable operation within a multi-agent scenario. In 
this direction, the contributions of Dyer & Forman (1992), Basak & Saaty (1993), 
Chen (2000), Lai et  al. (2002), Shih et  al. (2007), Escobar & Moreno-Jimenéz 
(2007), Arnette et  al. (2010), Altuzarra et  al. (2010), Sanayei et  al. (2010), Dong 
et  al. (2010), Hatami-Marbini and Tavana (2011), Huang et  al. (2013), Wu et  al. 
(2018) can be cited. Conversely, although avoiding the use of aggregation of agents’ 
preferences, such adapted MCDM methods still contemplate some aggregation pro-
cedures, and therefore, do not allow to fully model the heterogeneity of the agents’ 
preferences for finding a satisficing solution.

In contrast, game theory is a technique designed for modeling the strategic itera-
tion of multiple agents with heterogeneous preferences and to support their choice. 
The choice that agents can reach through a game theory structure is usually based 
on the concept of equilibrium solutions (Hipel et al., 2011). According to Hipel and 
Fang (2005), in the presence of multiple agents with divergent objectives or value 
systems, game theory would be the most appropriate decision-making technique 
for better modeling the conflicting aspirations of agents in a fair and sustainable 
manner.2 Nevertheless, most game theory models assume a scalar to represent the 
outcomes (payoffs) of the strategic interactions of the agents. In consequence, the 

1  Huang et al. (2013) present other possible aggregation approaches, including: (i) relative closeness; (ii) 
separation measure; (iii) fuzzy consensus; (iv) evidential reasoning; and (v) Borda count.
2  It should be stressed that the development of game theory is mostly related to the analytical analysis 
of simplified models, which, despite their capacity of explaining reasonably well strategic interaction of 
agents for specific cases, might be inflexible to be used in other conflict situations. In this context, a noto-
rious contribution is the Graph Model for Conflict Resolution, first appearing in Kilgour et al. (1987) and 
later in the text of Fang et al. (1993), which is a method for modeling and analyzing strategic conflicts for 
a broader scope of applications with more flexibility on the principles of game theory. According to Kil-
gor & Hipel (2005), the basis for all the definitions and all of the analysis of the method is the creation of 
different alternatives in relation to the status quo and their comparison using ordinal preference informa-
tion provided by multiple-agents for evaluating the possible transition states to reach an agreement.
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outcomes are analyzed on a one-dimensional basis, which disregards the potential 
benefits that could be provided by multi-criteria analysis.

An initial attempt to model multi-criteria problems using the structure of games 
was introduced by Shapley (1959) and Blackwell (1956). The so-called vector payoff 
games (or multi-criteria games) contemplates heterogeneous agents and their multi-
ple decision criteria that are modeled by means of vector utility functions (Sasaki, 
2018). An example of the application of vector payoff games to a complex environ-
mental problem can be seen in Lejano & Ingram (2012) for the tragedy of commons. 
Nevertheless, an exchange ratio between each component of the vector should be 
known by the designer of the game, which makes this approach very difficult to be 
applied, since the analyst may lack the knowledge or resources to elicit such utility 
functions, especially when there are numerous criteria involved (Voorneveld et al., 
2000). It should be noted that this is the same type of difficulty generally associ-
ated to MCDM methods that depends on the elicitation of utility functions, such 
as Multi Attribute Utility Theory (MAUT). Given that difficulty, the vector payoff 
games approach had not gained strong and continuous efforts for its applications and 
for further developments.

Other approaches focused on hybrid methodologies that linked multi-criteria 
decision-making techniques and game theory, aimed to favor the analysis of differ-
ent objectives within a game theoretical structure where the heterogeneous prefer-
ences of agents could be fully considered without amalgamation. Towards that inte-
gration, a remote example can be seen in Szidarovszky and Duckstein (1984) that 
proposed to use the principles of game theory for solving a multi-objective program-
ming model in which different viewpoints were represented by objective functions. 
It is noteworthy that the authors offered means for finding a satisficing solution to 
group multi-criteria problems, rather than seeking an overall optimal solution, as in 
the multi-objective programming approach. This direction gained notoriety in the 
literature, from which other examples can be seen, including Chen (Chen, 2000), 
Madani and Lund (2011), Ke et al. (2012), Wibowo and Deng (2013), Aplak and 
Sogut (2013), Deng et al. (2014), and Jing et al. (2018). Nevertheless, the modeling 
of the games in such approaches still depends on specific elicitation procedures that 
need to be conducted by the analyst, which represents the similar difficulties from 
approaches such as vector payoff games or MAUT. Furthermore, in the presence of 
a non-singular solution, i.e. multiple equilibria solutions, a criterion for equilibrium 
selection is not addressed in the mentioned approaches, which mostly used Nash 
equilibrium (Nash, 1951) as the equilibrium solution concept for solving the games.

Following the evident relationship of complementarities between multi-criteria 
and game theory, the aim of this paper is to present a framework for modeling a 
multi-agent and multi-criteria decision-making problem as a non-cooperative game 
for considering the strategic interaction among agents based on their distinctive 
preferences. These preferences are related to the agents’ evaluation of the multiple 
criteria, such as those that pursue environmental, social, and economic aspects of 
sustainability. In this scenario, the framework allows to find alternatives that satisfy 
equilibrium conditions for solving the game. Also, in the presence of more than one 
equilibrium, a refinement to the solution is proposed by the application of a social 
welfare function. This study contributes to the literature by presenting a framework 
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that, based on the use of utility functions, provides means for the modeling of multi-
criteria and multi-agent complex decision-making problems as a non-cooperative 
game from which a solution that is based on equilibrium concepts can be reached 
as the social choice. This framework can be used to support the process of selecting 
alternatives in the presence of multiple heterogeneous agents through the resolution 
of the problem without the need for amalgamating their preferences. Consequently, 
the framework makes possible to fully consider each agent with their set of differ-
ent objectives and value systems, which are represented by a set of criteria and their 
respective preferences.

The mechanism of the framework is built on the theoretical assumption of 
expected agent’s behavior when trading alternatives within a strategic interaction 
environment, which is the tendency to reject proposals when realizing that the pro-
posal significantly either favors or disfavors their counterparts (Blount & Bazerman, 
1996; Camerer, 2003). The necessary conditions to assume this rational behavior 
of the agents under this scenario is based on the assumption of Binmore (1988), 
namely: (i) the fact that it involves a finite and known number of agents, alterna-
tives, and criteria; and (ii) the agents have already dealt with similar situations sev-
eral times and have got the ability to learn from it. Therefore, the rational behavior 
assumed is based on the assumption that agents are familiar with: (i) choosing alter-
natives taking into account the choices of their counterparts; and, if necessary, (ii) 
trading for alternatives that are not very different between them.

For illustrating the application of the framework herein proposed, the scenario of 
the choice of a Wastewater Treatment Plant (WWTP) for a municipality has been 
chosen. Garrido-Baserba, et al. (2016) and Madani and Lund (2011) advocate that 
engineering problems related to water resources are complex problems that usually 
involve the interaction of multi-agents with multiple conflictive objectives. In this 
sense, choosing a WWTP for a municipality can be considered a good illustration 
for the application of the framework to a complex scenario with multiple agents, 
which is very common in current societal and technological systems, as described 
by Hipel and Fang (2005). It should be stressed, however, that the framework can be 
applied to any other kind of problem involving multiple criteria and multiple agents, 
which is here also illustrated by means of a numerical example.

Section 2 presents the background of the framework, Sect. 3 presents each step of 
the framework in a detailed level with their respective references of Sect. 2, Sect. 4 
presents a numerical example, and Sect. 5 presents a simulated example of complex 
multi-criteria group decision-making problem, which is the choice of a WWTP to a 
municipality. Finally, the comparison of the presented framework with the state of 
art is presented in Sect. 6 and the final remarks are part of Sect. 7.
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2 � Technical backgrounds

2.1 � The General Structure of a Multi‑Criteria and Multi‑Agent method

The general structure of multi-criteria methods includes two mathematical objects, 
namely: (i) a matrix, usually called decision matrix; and (ii) a vector, usually called 
weighting vector, which is obtained by the application of an elicitation procedure to 
the agent involved in the decision-making process. The decision matrix 

{
xij
}
 is com-

posed by i = 1, 2,… ,m alternatives and j = 1, 2,… , n discrete and/or continuous 
criteria (attribute or variable) of cost and/or benefit type, which is the basis of the 
structure of an MCDM problem. For the scenario of multi-agent decision making, 
the number of weighting vectors is necessarily more than one (equal to the num-
ber of the agents) and the number of matrixes might eventually be more than one, 
depending on the set of criteria that each agent is taking into account (Kilgour & 
Hipel, 2005; Keeney, 2013). Consequently, in a multi-agent environment, the deci-
sion matrixes 

{
xij
}
k
 are conventionally composed by i = 1, 2,… ,m alternatives and 

j = 1, 2,… , nk criteria, which correspond to the set of criteria of each k-th agent.
Franco & Montibeller (2010) state that the creation of such decision matrixes 

involves several steps, in the following order: (i) the identification of the agent’s fun-
damental values and objectives; (ii) the choice of the criteria for measuring each 
identified value or objective; and (iii) the characterization of the alternatives, which 
comprises the performance measurement for each evaluation criteria. For assist-
ing in the proposition of such decision matrixes, Marttunen et  al. (2017) present 
a review of Problem Structure Modeling (PSM) techniques, which includes: (i) 
Soft Systems Methodology (SSM); (ii) Strategic Assumptions Surfacing and Test-
ing (SAST); and (iii) Strategic Options Development and Analysis (SODA). Other 
widely known PSM techniques are the Strategic Choice Approach (SCA) and Value-
Focused Thinking (VFT).

After the modeling of the decision matrix, it is eventually necessary to apply a 
standardization process,3 since criteria generally have different units of measure-
ment and can be either of benefit or cost type (Kosareva et al., 2018; Vafaei et al., 
2016). Yoon and Hwang (1995) present two functions for standardizing the decision 
matrix: (i) linear standardization, and (ii) vector standardization, both keeping the 
ordinal property from the original criterion. These functions are the most common, 
others being the logarithmic standardization technique and fuzzification (Kosareva 
et al., 2018; Vafaei et al., 2016; Leoneti & Gomes, 2021).

Subsequently, the process of measuring the relative preference of each agent over 
the criteria of the decision matrix, named elicitation, is performed for providing the 
weight vectors that are used to weight the standardized decision matrix. Accord-
ing to Jia et  al. (1998), there are different elicitation techniques created for dif-
ferent purposes. When the ratio scale properties of the agent’s judgments need to  

3  This process is usually called “normalization process” in the literature. However, instead of using the 
term normalization, the term standardization is used here, since the variables do not necessarily need to 
follow the normal distribution.
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be preserved, there are techniques such as the Swing and the Trade-off techniques. 
Techniques that preserve only the ordinal properties of agents are classified as rank-
order techniques, including the Rank-Sum (RS), the Rank-Reciprocal (RR), and the 
Rank-Ordered Centroid (ROC) techniques. Ahn (2011) complements by describing 
subjective techniques that determine the weights solely according to the preferential 
judgments of the decision-maker, which includes the Simple Multi-attribute Rating 
Technique by Swing (SMART), the revised Simos’ procedure, the AHP, and objec-
tive techniques in which the weighting vectors are defined by solving mathemati-
cal models without any consideration of the agents’ preferences, for example, the 
entropy method.

The standardized decision matrix and the weighting vectors are then operated 
through the application of an algebraic operator, which can be represented by an 
MCDM method, for providing different possible outcomes, including: (i) ranking; 
(ii) classification; or (iii) selection of the alternatives. The general structure of such 
algebraic operators is that based on pairwise comparison of alternatives,4 which 
occurs by the performance comparison of each alternative per criterion. When the 
performance of a criterion is better for a given alternative (bigger for benefit criteria 
and lower for cost criteria) than another, the former must be better scored by the 
pairwise procedure. Some of the most widely used MCDM methods are: (i) AHP; 
(ii) Elimination et Choice Traduisant la Realité (ELECTRE); (iii) Preference Rank-
ing Organization Method for Enrichment Evaluations (PROMETHEE); (iv) Tech-
nique for Order Preference by Similarity to Ideal Solution (TOPSIS); (v) Measuring 
Attractiveness by a Categorical Based Evaluation TecHnique (MACBETH); and (vi) 
Multi-attribute Utility Theory (MAUT) (Leoneti & Pires, 2017).

Here, the standardized decision matrix and the weighting vectors are used as 
input for the creation of a non-cooperative game by an algebraic operator repre-
sented by a utility function, of which the details of its application are described in 
the next section.

2.2 � The General Structure of a Non‑Cooperative Game and its Solution Based 
on Equilibrium Solution Concepts

The non-cooperative game is the branch of game theory that models situations 
where agents have no guarantee that their counterparts would implement agreements 
made, which is more adherent to group decision-making scenarios. The general 
structure of a non-cooperative game can be summarized by the tuple <K,Ak,≺k>, 
where K is the number of the agents, Ak is the set of mk alternatives for each agent 
k = 1,… ,K , and ≺k is the preferences’ relations of each agent k = 1,… ,K on all 

4  When all pairs of objects can be compared, pairwise procedures are commonly employed to obtain 
perceptions of similarities. According to Hair et  al. (2006) three procedures are commonly used: (i) 
objective pair comparison, the most commonly used method for obtaining similarity judgments; (ii) sub-
jective pair comparison, a method that uses objects to aid in the pairwise comparison; and (iii) derived 
pairwise comparison, which is based on the process of creating measures to be used in the pairwise com-
parison.
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alternatives of the set Ak . The values for the operator ≺k are given by a utility func-
tion �k ∶ ℝ

K
→ [0, 1] , which provides outcomes (payoffs) for each possible strategy 

that an agent may chose in response to a particular counterpart’s action.
The rational principles of such utility functions are those summarized by von 

Neumann and Morgenstern (1944). The authors extended the interpretation of Ber-
noulli’s classic utility theory by adding the idea of pairwise comparison of alterna-
tives in a strategic interaction environment. According to the rational principles of 
classic utility theory, agents make their choice aiming to improve the expected util-
ity of goods subjected to the Weber and Fechner Law, which states that the agent’s 
perception is subjective and proportional to a logarithm intensity (Lengwiler, 2009; 
Stevens, 1986). Von Neumann and Morgenstern (1944), complementarily, suggested 
that this measure should be relative and subjected to the relationship of each pair 
of strategies.5 In this sense, considering two hypothetical alternatives x and y , the 
operator ≺k must assume the state x ≺k y , when the alternative y is strictly prefer-
able to the alternative x ; x≼ky , when the alternative y is preferable to the alterna-
tive x ; x ≈k y , when the alternative x is indifferent to the alternative y ; x≽ky , when 
the alternative x is preferable to the alternative y ; and x ≻k y , when the alternative 
x is strictly preferable to the alternative y . It follows that in the case x ≺k y , then 
𝜋k(x) < 𝜋k(y) ; case x≼ky , �k(x) ≤ �k(y) ; case x ≈k y , �k(x) = �k(y) , and so on.

When the chronological order of agents’ choices is not considered, the struc-
ture for presenting the values of the utility function is a matrix. The matrix form 
is usually called the strategic form, where no information is provided to any agent 
with relation to their counterparts’ previous choices, which is the scenario of games 
with incomplete information (Osborne, 1994). The payoff of each agent is given 
by the arrangement of agent’s choice together with their counterparts’ choices. 
Therefore, in the particular case of non-cooperative games in the strategic form, 
the order of the multi-dimensional matrix is given by the number of arrangements 
A1 × A2 ×… × AK . Particularly to the case of multi-agent decision making where it 
is mandatory that agents share the same set of alternatives (a unique set A containing 
m elements), the number of arrangements is given by mK , where m is the number of 
the alternatives of the set A , and K is the number of agents. Consequently, within 
the elicitation process for generating the utility functions �k for each of the K agents, 
each one of those possible arrangements should be contemplated. These values pro-
vide the payoff tables for each agent that composes the non-cooperative game.

Leoneti (2016) proposed a utility function that allows calculating those payoffs 
for each arrangement in A1 × A2 ×… × AK through the pairwise comparison of vec-
tor alternatives. This utility function can be seen in the equation

(1)�k
(
xk, Y

)
= �k

(
xk, IAk

) K∏
k≠p,p=1

�k

(
xk, yp

)
.�k

(
yp, IAk

)

5  One could note that this is similar to the pairwise process that occurs in the MCDM approach, which 
makes the integration between multicriteria approach and game theory possible.
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where �k is the payoff that the k-th agent would obtain in the arrangement of its alter-
native xk with the subset of alternatives Y(yp≠k) proposed by all other K−1 agents 
jointly with p = 1,… , p ≠ k,… ,K , being each alternative represented by vectors 
constituted by the nk multiple independent benefit criteria, and IAk (Ideal Alterna-
tive) is the utopian alternative that is composed by the best value of each criteria 
that the agent k could obtain. The pairwise comparison function � ∶ ℝnk×2

+  → [0,1], 
inspired by Deng (2007), gives the value for the pairwise comparison between these 
alternatives according to the equation

where �xkxp =
‖‖xk‖‖cos�xkxp is the scalar projection of the vector representing the 

alternative xk onto the vector representing the alternative xp , and 
‖‖‖xp

‖‖‖ =

√(
x1
p

)2

+
(
x2
p

)2

+…+
(
x
nk
p

)2 is the norm of the respective vector with nk 
components.

For the solution of the non-cooperative game, the application of an equilibrium 
solution concept to the payoff tables is necessary. Hipel et al. (2011) summarized 
possible equilibrium solution concepts for non-cooperative games, including: (i) 
general meta-rationality; (ii) symmetric meta-rationality; (iii) sequential stability; 
(iv) non-myopic stability; (v) limited-move stability; and (vi) Nash equilibrium. 
Among them, the most known and used equilibrium solution concept for solving 
non-cooperative games is the one proposed by Nash (1951). According to Osborne 
and Rubinstein (1994), an arrangement is a Nash equilibrium if, and only if, 
�k
(
s∗
1
, s∗

2
,… , s∗

k
,… , s∗

K−1
, s∗

K

)
≥ �k

(
s∗
1
, s∗

2
,… , sk,… , s∗

K−1
, s∗

K

)
 , for all k = 1, 2,… ,K  

agents, meaning that no agent’s payoff can be increased if they individually choose 
to move from that arrangement. However, according to Binmore (2007), the Nash 
equilibrium could not be considered, a priori, a good outcome for a social choice, 
since it may not be unique and/or Pareto efficient. When more than one equilib-
rium is found in a game, it is necessary to eliminate undesirable equilibria (Maskin, 
1999). This process is known as the equilibrium selection problem (Harsanyi & 
Selten, 1988), which is addressed in the next section.

2.3 � The General Structure of the Equilibrium Selection Problem and the Social 
Welfare Functions

The general structure of an equilibrium selection problem involves a finite set of K 
agents, a finite set of alternatives A′ (with at least three elements), which can be a 
subset of an original set of alternatives A after a previous filtering phase for elimi-
nating unfeasible social solutions, and a social welfare function � ∶ ℝ

K
→ ℝ , which 

is used for ranking the set of alternatives A′ . Thus, the best ranked equilibrium can 
be selected as a solution to the social choice. However, Maskin (1999) demonstrated 

(2)�k

�
xk, xp

�
=

⎡
⎢⎢⎣
�xkxp

���xp
���

⎤
⎥⎥⎦

�

. cos �xkxp , and � =

�
1, if�xkxp ≤

���xp
���

−1, otherwise
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that social welfare functions should be designed under the assumption of monoto-
nicity and no-veto power. It should be noted, therefore, that there is no unique for-
mal approach for equilibrium selection (Mailath, 1998). Consequently, the choice 
of such social welfare functions, rather than be determined by axiomatic guidance, 
should be focused on meeting the philosophical and anthropological aspects of the 
social dilemma (Kamaga, 2018).

A well-known social welfare function is the MaxMin social welfare function, 
which aims to maximize the minimal utility among the equilibria found. In other 
words, it aims to find the worst outcome among the equilibria found, and then to 
use this set of minimal outcomes as a reference for selecting the maximal outcome 
among them. The MaxMin social welfare function is related to the concept of egali-
tarian solutions according to Rawls’s theory of justice (1971), which provides that 
the agent with the lowest utility in the group would be in the best possible scenario. 
It is considered a pessimistic and risk averse approach. Another famous social wel-
fare function is the MaxMax social welfare function (also known as pure utilitari-
anism), which aims to sum the agents’ outcomes per each equilibrium found, and 
then to use this set of aggregated values as a reference for selecting the equilibrium 
with the maximum summation among them. The MaxMax social welfare function is 
commonly related to the utilitarian principle of Bentham’s theory of justice (1977), 
which states that social welfare is achieved when the sum of the group’s utility is 
maximized. In Arrow et al. (2010), it is discussed very common social welfare func-
tions, including: (i) LexiMin; (ii) weighted utilitarianism; (iii) Gini index; and (iv) 
Nash’s bargaining solution. Other developed welfare functions to be applied to the 
equilibrium selection problem include those proposed by Matsui and Matsuyama 
(1995) and Kim (1996).

Finally, after the selection of an equilibrium, a consultive procedure can be per-
formed with the agents in order for the group to accept or decline the solution pro-
posed. Such procedure can be performed by the use of qualitative techniques, such 
as negotiation, or quantitative techniques, such as voting procedures.

3 � The Proposed Framework

This section presents the framework to assist multi-agents in evaluating multiple 
criteria for selecting alternatives by modeling their strategic interaction as a non-
cooperative game, in order to find alternatives that satisfy equilibrium solution con-
cepts. In the presence of more than one equilibrium, the framework contemplates 
the adoption of a social welfare function for the refinement of the solution found.

Let k = 1, 2,… ,K denote the K agents involved in a decision-making process and 
let i = 1, 2,… ,m be the alternatives to be chosen. Consider that each agent k will 
use multiple criteria for their evaluation of m alternatives,6 hence j = 1, 2,… , nk 
are the criteria used by the k-th agent. The following steps summarizes the 

6  It is not a necessary condition that each agent has their own set of criteria for evaluation. The situation 
where the set of criteria is shared with some or all agents for their evaluation and choice is also possible.
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implementation of the framework to support multi-criteria and multi-agent decision 
making processes.

Step 1 Each agent presents their own decision matrix containing the alternatives 
(the same as the other agents) and criteria (not necessarily the same as the other 
agents) that will be used within the process of choice.

Step 2 An elicitation procedure is applied to each agent in order to obtain their 
weighting vectors.

Step 3 Each decision matrix is standardized using a function for standardizing 
decision matrixes (each cost criterion is also converted to benefit criterion in this 
process), and weighted, by using the weighting vectors produced by the elicitation 
procedure, which will generate a standardized and weighted decision matrix for each 
agent.

Step 4 For each agent of the set of K agents the payoffs are calculated by means 
of a utility function applied to each of the mK arrangements formed by the agent’s 
initial alternative and the alternative proposed by each specific counterpart from the 
sub-set of K−1 agents. Finally, the non-cooperative game is composed by K column 
vectors (one for each of the agents k = 1, 2, ...,K ) with mK components, which are 
the agents’ payoff for each of the possible arrangements . The results of this process 
are the payoff tables.7

Step 5 An equilibrium solution concept is applied to the payoff tables for finding 
the equilibria solutions to the game.

Step 6 If more than one equilibrium is found, a social welfare function is applied 
for selecting a social choice among the equilibria.

Step 7 Additionally, a negotiation phase or a voting procedure can be carried out 
for accepting or declining the equilibrium selected.

In order to the better identification of the different techniques that can give sup-
port within the framework, the available techniques described in the Sect. 2 are sum-
marized in Table 1.

For illustrating the application of the framework, a numerical example is firstly 
presented. Subsequently, the choice of a WWTP to a municipality is demonstrated 
with the participation of five experts.

4 � A numerical example

Let us consider a hypothetical group decision situation where three agents 
{P1,P2,P3} are going to decide from a set of non-dominated alternatives 
{A1,A2,A3} the one to be selected as the social choice. Each agent has their own 

7  It can be noted that from all steps of the framework, the more operationally demanding is step 4, in 
which it is requested the elicitation of the utility functions of all agents in order to calculate their pay-
offs tables. This is may not be an easy task, even abstracting from communication costs (Maskin, 1999). 
Here, from the operationalization of the multiple objectives through a pairwise comparison procedure, 
the framework translates the multi-criteria structure into a non-cooperative game for solving the game by 
means of an equilibrium solution concept, which is considered the rational solution to strategic interac-
tions.
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set of criteria, being: P1 ∶ {C1,C2} , P2 ∶ {C3,C4,C5} , and P3 ∶ {C2,C6} . For 
the purpose of making the calculations easier, all criteria were set in ℕ∗ and were 
of the benefit type (the more the better). It is noteworthy that one criterion, the 
criterion C2 , is shared by two agents, P1 and P3 . The next paragraphs illustrate 
the framework application.

Step 1 Each agent presents their own decision matrix containing the alternatives 
and criteria. The hypothetical decision matrixes can be seen in Table 2.

Step 2 It is assumed arbitrarily that as the result of an elicitation procedure, the 
following weighting vectors were obtained: P1 ∶ {0.3, 0.7} , P2 ∶ {0.6, 0.2, 0.2} , 
P3 ∶ {0.8, 0.2}.

Step 3 Since all criteria are of the benefit type, the conversion of any cost criteria 
was not necessary. Therefore, all criteria were standardized using a standardization 
technique, e.g. the vector standardization technique, as can be seen in the equation

where 
{
xij
}
k
 is the performance of alternative i for the criterion j in the view of 

agent k , and 
{
sij
}
k
 is the correspondent standardized value. The application of the 

equation generated the standardization decision matrixes presented in Table 3.

(3)
�
sij
�
k
=

�
xij
�
k�∑nk

j=1

�
xij
�2

k

Table 2   Decision matrixes of 
the hypothetical situation

Alternatives P1 P2 P3

C1 C2 C3 C4 C5 C2 C6

A1 4 7 30 49 98 7 9
A2 6 2 65 21 55 2 12
A3 8 1 43 72 12 1 18

Table 3   Standardized decision 
matrixes

Alternatives P1 P2 P3

C1 C2 C3 C4 C5 C2 C6

A1 0.371 0.953 0.359 0.547 0.867 0.953 0.384
A2 0.557 0.272 0.778 0.234 0.487 0.272 0.512
A3 0.743 0.136 0.515 0.804 0.106 0.136 0.768

Table 4   Standardized and 
weighted decision matrixes

Alternatives P1 P2 P3

C1 C2 C3 C4 C5 C2 C6

A1 0.111 0.667 0.216 0.109 0.173 0.191 0.307
A2 0.167 0.191 0.467 0.047 0.097 0.054 0.410
A3 0.223 0.095 0.309 0.161 0.021 0.027 0.615
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Subsequently, the standardized decision matrixes were weighted by using the 
weighting vectors obtained from the elicitation procedure, which generated the 
standardized and weighted decision matrixes that can be seen in Table 4.

Step 4 A utility function must be applied to each standardized and weighted 
decision matrix for generating the payoffs tables which contains the 27 ( mK ) pos-
sible arrangements associated with the strategic choice of the three agents. It was 
used the utility function presented in Leoneti (2016) for generating such payoff 
tables for the agents, which can be seen in Table 5.

Step 5 The Nash equilibrium solution concept was applied to the generated 
payoff tables. For searching Nash equilibria, the add-in for Microsoft Excel® 
named Nash Equilibrium Finder was employed, (Sugiyama and Leoneti, 2021), 
which uses an exhaustive search algorithm for searching all pure Nash equilibria 
within a non-cooperative game. Table 6 presents the two Nash equilibria found.

Table 5   Payoff tables Arrangements �
P1

�
P2

�
P3

A1 A1 A1 0.826 0.137 0.146
A2 A1 A1 0.020 0.088 0.132
A3 A1 A1 0.001 0.113 0.086
A1 A2 A1 0.101 0.104 0.126
A2 A2 A1 0.024 0.234 0.179
A3 A2 A1 0.004 0.138 0.116
A1 A3 A1 0.048 0.098 0.111
A2 A3 A1 0.010 0.120 0.171
A3 A3 A1 0.002 0.158 0.248
A1 A1 A2 0.101 0.104 0.126
A2 A1 A2 0.024 0.234 0.179
A3 A1 A2 0.004 0.138 0.116
A1 A2 A2 0.012 0.080 0.109
A2 A2 A2 0.029 0.626 0.243
A3 A2 A2 0.009 0.168 0.157
A1 A3 A2 0.006 0.075 0.096
A2 A3 A2 0.012 0.321 0.232
A3 A3 A2 0.006 0.192 0.336
A1 A1 A3 0.048 0.098 0.111
A2 A1 A3 0.010 0.120 0.171
A3 A1 A3 0.002 0.158 0.248
A1 A2 A3 0.006 0.075 0.096
A2 A2 A3 0.012 0.321 0.232
A3 A2 A3 0.006 0.192 0.336
A1 A3 A3 0.003 0.070 0.084
A2 A3 A3 0.005 0.165 0.222
A3 A3 A3 0.004 0.220 0.716
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Step 6 It can be noticed that a set of non-singular solution was found for the 
game. In this case, the selection of one equilibrium to be adopted as the social choice 
should be performed by using a social welfare function. Here, the solution provided 
by both well-known social welfare functions, MinMax and the MaxMax, converged 
to the equilibrium NE1, which involves a consensus solution on the alternative A1. 
This solution is the one provided by the application of the framework.

Step 7 Given the nature of the numerical example, here this step is not addressed.

5 � A Simulation: The Choice of a WWTP to a Municipality

Five Brazilians experts in the design of WWTP projects for municipalities, all of 
them civil engineers, were invited to participate in a simulation of the choice of a 
WWTP for a hypothetical Brazilian municipality with the following characteris-
tics: (i) population of 40,000 inhabitants; (ii) effluent Biochemical Oxygen Demand 
(BOD) concentration of 305 mg/L; (iii) effluent nitrogen concentration of 30 mg/L; 
and (iv) effluent flow of 7 × 103 m3/d. An on-line questionnaire was made available 
and during the period between December 2019 and January 2020 the experts were 
invited to participate by means of an email that contained an access link. The next 
paragraphs detail the steps of the simulation.

Step 1 The decision matrix of the simulated problem was created by using six 
sustainability indicators for WWTP recurrently found in the literature, namely: (i) 
implementation cost (IC); (ii) operation and maintenance cost (O&MC) (iii) residual 
BOD; (iv) residual Nitrogen (N) (v) the required area for implementation (RA); and 
(vi) sludge production (SP) (Leoneti et al. 2013). Six commonly used alternatives by 
Brazilian municipality populations of 40 thousand inhabitants were used, according 
to data from the Brazilian National Sanitation Research (IBGE 2008), namelly: (i) 
Upflow Anaerobic Sludge Blanket Digestion Reactor (UASB), followed by Aerobic 
Activated Sludge (WWTP A); (ii) UASB followed by Facultative Lagoon (WWTP 
B); (iii) UASB followed by High Load Biological Filter (WWTP C); (iv) UASB fol-
lowed by Aerated Lagoon (WWTP D); (v) UASB followed by Facultative Aerated 
Lagoon (WWTP E); and (vi) Anaerobic Lagoon followed by Facultative Lagoon 
(WWTP F). The performances of the alternatives for each criterion were valued by 
the functions represented in the Appendix section, for which the inputs were the 
data from the hypothetical municipality. The decision matrix containing the WWTP 
considered to the hypothetical Brazilian municipality was presented to the experts 
by means of the on-line questionnaire and can be seen in Table 7.

Table 6   Nash equilibria found 
and their respective payoffs

Nash equilibria Payoffs

P1 P2 P3 P1 P2 P3

NE1 A1 A1 A1 0.826 0.137 0.146
NE2 A2 A2 A2 0.029 0.626 0.243
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Step 2 With basis on the decision matrix, the experts were asked to provide 
a ranking of its criteria and alternatives. The rankings to the criteria that each 
expert provided were subsequently used for translating them into weighting vec-
tors by using the procedures of the ROC technique. According to Barron and 
Barrett (1996) and Ahn (2011) the ROC technique is more accurate than other 
rank-order techniques and is commonly used within multi-agent applications. The 
application of the ROC is performed by the means of the equation

where n is the number of criteria, and w(j) calculates the value for the weight of 
the j-th criterion. Table 8 shows the criteria rankings and weighing vectors of the 
experts.

Step 3 All cost criteria were converted into benefit criteria by using the formula 
1∕xij , making them all of benefit type. The vector standardization function was 
then used for standardizing all the criteria. Subsequently, the decision matrixes of 
each expert were generated by weighting the standardized decision matrix using 
each of the weighting vectors obtained through the elicitation process. Table  9 
shows the standardized and weighted decision matrix of each expert.

Step 4 The utility function presented in Leoneti (2016) was applied to each 
standardized and weighted decision matrix for generating the payoffs to be associ-
ated to each of the 216 ( mK ) possible arrangements that can result from the strategic 

(4)w(j) =
1

n

n∑
l=j

1

l

Table 7   Decision Matrix with the WWTP considered for the hypothetical Brazilian municipality

IC (R$ thou) O&MC 
(R$ thou)

BOD (mg/L) N (mg/L) RA (m2) SP(L/inhab.year)

WWTP A 7,400 800 7.47 7.49 11,600 97,200
WWTP B 5,300 320 13.59 4.44 124,400 19,500
WWTP C 8,600 700 10.19 7.49 11,600 63,200
WWTP D 6,500 480 30.57 7.77 16,400 23,500
WWTP E 6,000 480 13.59 7.77 19,200 20,200
WWTP F 5,800 320 14.41 4.44 211,600 18,000

Table 8   Weight vectors of each expert

IC (R$ thou) O&MC (R$ thou) BOD (mg/L) N (mg/L) RA (m2) SP(L/inhab.year)

Expert 1 0.158 (3rd) 0.242 (2nd) 0.061 (5th) 0.028 (6th) 0.408 (1st) 0.103 (4th)
Expert 2 0.408 (1st) 0.242 (2nd) 0.061 (5th) 0.028 (6th) 0.158 (3rd) 0.103 (4th)
Expert 3 0.242 (2nd) 0.158 (3rd) 0.408 (1st) 0.061 (5th) 0.028 (6th) 0.103 (4th)
Expert 4 0.158 (3rd) 0.408 (1st) 0.061 (5th) 0.028 (6th) 0.242 (2nd) 0.103 (4th)
Expert 5 0.158 (3rd) 0.408 (1st) 0.028 (6th) 0.061 (5th) 0.103 (4th) 0.242 (2nd)
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interaction of the five experts. The use of the utility function generates the payoff 
tables for the experts.

Step 5 The Nash equilibrium solution concept was applied to the generated 
payoff tables. Table 10 presents the pure Nash equilibria found though the search 

Table 9   Standardized and weighted decision matrixes of each expert

IC (R$ thou) O&MC (R$ thou) BOD (mg/L) N (mg/L) RA (m2) SP (L/inhab.year)

Expert 1
WWTP A 0.056 0.054 0.039 0.009 0.241 0.010
WWTP B 0.078 0.134 0.021 0.015 0.022 0.052
WWTP C 0.048 0.061 0.029 0.009 0.241 0.016
WWTP D 0.063 0.089 0.010 0.009 0.170 0.043
WWTP E 0.068 0.089 0.021 0.009 0.145 0.050
WWTP F 0.071 0.134 0.020 0.015 0.013 0.056
Expert 2
WWTP A 0.143 0.054 0.039 0.009 0.093 0.010
WWTP B 0.200 0.134 0.021 0.015 0.009 0.052
WWTP C 0.123 0.061 0.029 0.009 0.093 0.016
WWTP D 0.163 0.089 0.010 0.009 0.066 0.043
WWTP E 0.177 0.089 0.021 0.009 0.056 0.050
WWTP F 0.183 0.134 0.020 0.015 0.005 0.056
Expert 3
WWTP A 0.085 0.035 0.260 0.020 0.016 0.010
WWTP B 0.118 0.088 0.143 0.033 0.002 0.052
WWTP C 0.073 0.040 0.190 0.020 0.016 0.016
WWTP D 0.096 0.058 0.063 0.019 0.012 0.043
WWTP E 0.105 0.058 0.143 0.019 0.010 0.050
WWTP F 0.108 0.088 0.135 0.033 0.001 0.056
Expert 4
WWTP A 0.056 0.090 0.039 0.009 0.142 0.010
WWTP B 0.078 0.226 0.021 0.015 0.013 0.052
WWTP C 0.048 0.103 0.029 0.009 0.142 0.016
WWTP D 0.063 0.151 0.010 0.009 0.101 0.043
WWTP E 0.068 0.151 0.021 0.009 0.086 0.050
WWTP F 0.071 0.226 0.020 0.015 0.008 0.056
Expert 5
WWTP A 0.056 0.090 0.018 0.020 0.061 0.024
WWTP B 0.078 0.226 0.010 0.033 0.006 0.122
WWTP C 0.048 0.103 0.013 0.020 0.061 0.038
WWTP D 0.063 0.151 0.004 0.019 0.043 0.101
WWTP E 0.068 0.151 0.010 0.019 0.037 0.118
WWTP F 0.071 0.226 0.009 0.033 0.003 0.132
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algorithm provided by NEFinder (Sugiyama and Leoneti, 2021) and the respec-
tive agent’s payoff for each equilibrium found.

Step 6 Four Nash equilibria were found using pure strategies, all of them com-
posed by consensus solutions. It should be noted that following the Bentham utili-
tarianism principle, the social outcome would be WWTP “B”, since it led the agents 
to the highest sum of payoffs. However, in this equilibrium a significant unbalanced 
distribution of payoffs is noticed, which corresponds to the different preferences of 
the experts. In this sense, the MaxMin criterion was also considered, since whatever 
the chosen equilibrium is, there will eventually be an unsatisfied expert, which could 
render problems with alternative implementation given the expected rational behav-
ior of rejecting proposals that either significantly favors or disfavors counterparts. 
Therefore, following Rawls’s theory of justice through the MaxMin criterion, the 
WWTP “E” would be the one that maximizes the minimum of the payoffs among 
the equilibria found, being the recommended social outcome.

Step 7 The next section provides the experts’ qualitative discussions regarding 
the result of the simulated case.

6 � Discussions

The experts were requested to indicate which alternatives they would eventually 
accept and which they would suggest as the best alternative to be selected as the 
WWTP for the hypothetical Brazilian municipality. It is possible to see in Table 11 
that only WWTP “E” would be accepted by all experts, which is aligned to the 
choice provided by the framework. In regards to this alternative, Expert 3 stated that 
“small municipalities do not have qualified technical staff for the proper operation 
of UASB reactors […] and the Facultative Aerated Lagoon does not require much 
operation and could mitigate operational failures that occur at UASB”. One can 
notice that if a plurality voting approach was used, which is a common practice for 
solving group decision making problems within committees, WWTP “F” would be 
the winner alternative. However, it would not be an acceptable solution for Expert 
4 who stated that “the required area for implementation is an important criterion 
here”. Furthermore, it should be noted that there is no Nash equilibrium formed by 
this alternative, which could indicate lower chances of commitment to its implemen-
tation (Ziotti & Leoneti, 2020).

Table 11   Acceptable and 
preferable alternatives suggested 
by the experts

Acceptable WWTPs Prefer-
able 
WWTP

Expert 1 D, E, F F
Expert 2 A, B, C, D, E, F C
Expert 3 E, F E
Expert 4 B, D, E B
Expert 5 B, E, F F
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The experts also measured the importance of the different dimensions of sustain-
ability covered by the selected criteria, namely: (i) social dimension, by the criterion 
RA; (ii) environmental dimension, by the criteria residual BOD, residual N, and SP; 
and (iii) economic dimension, by the criteria IC and O&MC. The ranking that the 
experts indicated with regards to the priorities of the sustainability dimensions in 
the process of choosing a WWTP can be seen in Table 12.

Considering the heterogeneous preferences of the agents involved in the selection 
process of the WWTP to the municipality, it can be assumed that each agent ana-
lyzes the alternatives emphasizing one of the three main sustainability dimensions 
of the problem. In this sense, it reinforces that “WWTP E” could be considered a 
satisficing solution to this social choice problem, since this alternative would simul-
taneously meet economic, environmental, and social criteria of sustainability, from 
the experts’ point of view.

From the results it is plausible to assume that the framework aided the group 
decision process with transparency and high accuracy. However, the shortcoming 
of a non-singular solution should be emphasized, which is due to the use of equilib-
rium solution concepts from the theory of non-cooperative games as the pathway for 
solving the social dilemma. Nash equilibrium is a complex computational problem 
and would require the support of a software for being applied, especially when the 
number of arrangements increase. Furthermore, according to Binmore (2007), the 
Nash equilibrium may not be unique and/or Pareto efficient. In this sense, a post 
refinement process for excluding undesirable equilibria might be necessary. There-
fore, on one hand, the framework has demonstrated to be effective, since it success-
fully found an satisficing outcome as the social choice, which originated from the 
solution of an equilibrium selection problem. It should be emphasized that it over-
comes the limitation on the hybrid multi-criteria and game theory approaches found 
in the literature (Dyer & Forman, 1992; Basak & Saaty, 1993; Chen, 2000; Shih 
et al., 2007; Escobar & Moreno-Jimenéz, 2007; Arnette et al., 2010; Altuzarra et al., 
2010; Sanayei et  al., 2010; Dong et  al., 2010; Hatami-Marbini & Tavana, 2011; 
Huang et al., 2013; Wu et al., 2018; Lai et al. 2002; Chen, 2000; Madani & Lund, 
2011; Ke et al., 2012; Wibowo & Deng, 2013; Aplak & Sogut, 2013; Deng et al., 
2014; and Jing et al., 2018). In contrast, it might be not efficient when the number of 
agents or alternatives increases significantly.

A possibility for circumventing this shortcoming was investigated by Ziotti and 
Leoneti (2020) who enlarged the analysis of the non-cooperative game in the light 

Table 12   Priorities of experts in 
the choice of a WWTP

Social dimen-
sion

Environmental 
dimension

Economic 
dimension

Expert 1 1st 2nd 3rd
Expert 2 3rd 2nd 1st
Expert 3 2nd 1st 3rd
Expert 4 2nd 1st 3rd
Expert 5 3rd 2nd 1st
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of the Nash Program. From the perspective of the Nash Program, the solution of a 
non-cooperative game would converge to the same solution of a cooperative game 
if the former is modeled as an enlarged game that would contain the pre-play inter-
action phase that occurs preliminarily of a cooperative game (Binmore, 1994). By 
assuming that all possible arrangements within a non-cooperative game that is 
modeled from a multi-criteria perspective by a utility function would contain all 
the possible outcomes of a pre-play interaction, the authors proposed to use the 
Nash bargaining social welfare function for solving the non-cooperative game. The 
Nash bargaining social welfare function provides a unique rational solution to the 
bargaining problem, which would be given by the maximization of the equation

where �k are the status quo points that represent the outcome that each agent would 
receive if the negotiation would fail, in this case zero, and �k are the respective out-
comes calculated by the application of the utility function.

Here, the application of the Nash bargaining social welfare function also indicates 
that “WWTP E” would be the winning alternative, which is in accordance with the 
solution provided by the framework. In fact, Ziotti and Leoneti (2020) have found 
that the convergence of the Nash bargaining solution to the Nash equilibrium was 
high, having converged in about 87% of the simulated scenarios that were evaluated.

7 � Conclusions

The Multi-Criteria and Multi-Agent Framework proposed in this paper allows to 
model the decision process involving multiple conflicting objectives within group 
decision making, aiming for the searching of satisficing solutions to be understood 
as a recommendation for action towards meeting different goals and values. The 
numerical example and the simulation presented show how the framework can sup-
port complex decision-making processes, providing the possibility to model and 
solve the problem where individuals interact their conflictive preferences strategi-
cally. By stablishing a link between MCDM and game theory, the solutions of the 
framework aim to provide the means to see the problem of selecting alternatives 
from different points of view and to assess different scenarios and agents’ prefer-
ences, thus contributing to extend the possibilities to perform strategically in the 
group decision making. This approach could render more efficient decision-making 
processes for choosing a social outcome that matches the sustainability goals when 
involving heterogeneous agents with different preferences over the criteria under 
consideration (environmental, social and economic).

While in MCDM methods the alternatives are simply the labels that represent 
a set of performance values to each criterion in consideration, in game theory the 
focus is precisely on the alternatives, which can be assumed as an amalgamation 
of all diverse types of objectives within a scalar payoff value. The integration pro-
posed here is based on the use of the multi-criteria approach through the pairwise 

(5)N
(
�1,�2,… , πK

)
=
(
�1 − �1

)(
�2 − �2

)
…

(
�K − �K

)
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comparison of criteria to generate the payoffs that will be used within the game 
theory approach. This feature allows the agent to assess eventual concessions to 
be made in the process of trading alternatives when seeking for a consensus solu-
tion in group decision-making, which is in accordance with the expected behavior 
of rational agents defined in this research (Blount and Bazerman, 1996; Camerer, 
2003; Binmore, 1988). Furthermore, the proposed framework contemplates an 
equilibrium selection phase based on social welfare functions in which the ana-
lyst can chose the mathematical formulation that better address different philo-
sophical and anthropological principles.

By means of using utility functions that are generated based on the prefer-
ences of agents within pairwise comparisons, it should be noted that the integra-
tion proposed here does not require the arbitration by the analyst for defining the 
payoffs to the agents, as occurs in vector payoff games. For instance, compared 
to other methods that propose the use of game theory for solving multi-criteria 
problems, the method proposed in Madani and Lund (2011) requires the creation 
of a transition matrix, the method presented in Wibowo and Deng (2013) requires 
intuitionistic assessments for each alternative in a form of an intuitionistic prefer-
ence relation, and the method of Deng et al. (2014) requires the construction of 
the utility function by the arbitration given by the analyst based on the evaluation 
of linguistic terms that range from “very poor” to “very good”. Yet, compared 
to other MCDM methods adapted for a multi-agent environment, such as the 
methods proposed in Sanayei et al. (2010) and Dong et al. (2010), which have a 
good treatment of conflicts, but require the use of linguistic variables and thresh-
olds limits, the framework presented here is cognitively less demanding. Conse-
quently, an advantage of the proposed framework compared to other approaches 
previously reported is that it only requires the elicitation of the weighting vectors 
in order to calculate the payoffs, which makes the level of effort required very low 
while not losing accuracy. Therefore, the proposed framework allows to struc-
ture larger games than those with two agents and two alternatives, which are very 
common in most game theory applications.

Notwithstanding that the use of game theory in group decision-making has been 
previously reported, the existing literature does not provide a general framework 
to model group decision making problems that: (i) considers multiple criteria and 
agents without preferences aggregation; (ii) presents a solution for the interpersonal 
comparison of the utility among agents, since each payoff table is generated by the 
individual evaluation of trade-offs between alternatives; (iii) refines the non-singular 
solution by means of a social welfare function; and (iv) allows shortening the nego-
tiation process. In contrast, the main limitation of the framework is, paradoxically, 
the use of an equilibrium solution concept as the pathway for finding the solutions 
for the game. A feature of an equilibrium solution is that it either may not exist, or 
be more than one, yielding a new problem that is the choice of the best equilibrium 
for the game solution. Finding equilibrium is a very demanding computational task, 
although for the case presented here the computing time was very low and other 
solutions concepts better tractable were presented. Future research could explore the 
search for other kinds of equilibrium solutions with a lower demand for computa-
tional time.
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Appendix

The functions in Leoneti et al. (2013) chosen to be applied as criteria in this research 
were: (i) implementation cost—IC; (ii) operation and maintenance cost—O&MC; 
(iii) residual Biochemical Oxygen Demand—BOD; (iv) residual Nitrogen—N; (v) 
the required area for implementation—RA; and (vi) sludge production—SP, which 
can be seen in Table 13.

Table 13   Functions and values settings for each criteria

Name of the system Range Function Source

Implementation Cost—IC
Preliminary 30–50 R$/ inhab 40 R$/inhab Von Sperling, (2006), p 340
High load biological filter 120–150 R$/ inhab 135 R$/inhab Von Sperling, (2006), p 340
Activated sludge 90–120 R$/ inhab 105 R$/inhab Von Sperling, (2006), p 340
UASB 30–50 R$/ inhab 40 R$/inhab Von Sperling, (2006), p 340
Anaerobic lagoon 30–75 R$/ inhab 52.5 R$/inhab Von Sperling, (2006), p 340
Facultative aerated lagoon 50–90 R$/ inhab 70 R$/inhab Von Sperling, (2006), p 340
Aerated lagoon 65–100 R$/ inhab 82.5 R$/inhab Jordão and Pessôa, (2009), p 852
Facultative lagoon 30–75 R$/ inhab 52.5 R$/inhab Von Sperling, (2006), p 340
Operation and Maintenance Cost—O&MC
Preliminary 1.5–2.5 R$/inhab 2 R$/inhab Von Sperling, (2006), p 340
High load biological filter 10–15 R$/inhab 12.5 R$/inhab Von Sperling, (2006), p 340
Activated sludge 10–20 R$/inhab 15 R$/inhab Von Sperling, (2006), p 340
UASB 2.5–3.5 R$/inhab 3 R$/inhab Von Sperling, (2006), p 340
Anaerobic lagoon 2–4 R$/inhab 3 R$/inhab Von Sperling, (2006), p 340
Facultative aerated lagoon 5–9 R$/inhab 7 R$/inhab Von Sperling, (2006), p 340
Aerated lagoon 5–9 R$/inhab 7 R$/inhab Von Sperling, (2006), p 340
Facultative lagoon 2–4 R$/inhab 3 R$/inhab Von Sperling, (2006), p 340
Residual Biochemical Oxygen Demand—BOD
Preliminary 30–35% BOD 32.5% BOD Von Sperling, (2006), p 339
High load biological filter 80–90% BOD 85% BOD Von Sperling, (2006), p 339
Activated sludge 90–97% BOD 89% BOD Von Sperling, (2006), p 339
UASB 60–75% BOD 67% BOD Von Sperling, (2006), p 339
Anaerobic lagoon 50–85% BOD 65% BOD Metcalf and Eddy, (1991), p 645
Facultative aerated lagoon 75–85% BOD 80% BOD Von Sperling, (2006), p 339
Aerated lagoon 50–60% BOD 55% BOD Jordão and Pessôa, (2009), p 797
Facultative lagoon 75–85% BOD 80% BOD Von Sperling, (2006), p 339
Residual Nitrogen—N
Preliminary 5–10% N 7.5% N Metcalf and Eddy, (1991), p 692
High load biological filter 15–50% N 32.5% N Metcalf and Eddy, (1991), p 170
Activated sludge 15–50% N 32.5% N Metcalf and Eddy, (1991), p 170
UASB 60% N 60% N Von Sperling, (2006), p 339
Anaerobic lagoon 60% N 60% N Von Sperling, (2006), p 339
Facultative aerated lagoon 30% N 30% N Von Sperling, (2006), p 339
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