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Abstract
n players choose investment levels that determine a bargaining problem. Investments 
model pre-bargaining preparations such as arming and hiring legal aid—costly 
actions that turn out to be beneficial only if the agents do not reach an agreement. In 
the bargaining problem, payoffs are distributed according to an exogenously given 
bargaining solution. Investment influences positively the investor’s disagreement 
payoff, but it also has a cost, which is modeled as a shrinkage of the feasible set. 
Two types of shrinkage are considered. Under either one, the investment is a waste 
from an ex-post point of view, because the agents end up reaching an agreement. 
The equilibrium level of wastefulness is increasing in the bargaining solution’s disa-
greement sensitivity. The Kalai-Smorodinsky solution is less disagreement sensitive 
than the Nash solution, and is therefore better.

Keywords Bargaining · Pre-bargaining investment · Disagreement sensitivity

JEL Classification D61 · D74

1 Introduction

Bargaining situations are often preceded by a stage in which agents invest in their 
fallback positions, although they can benefit directly from this investment only in 
case of conflict, which never materializes—because after the fallback investments 
have been made, a compromise is reached between the bargaining parties. For exam-
ple, before the beginning of negotiations, each party “lawyers up,” because if negoti-
ations break down the parties go to court, and each side prepares for this eventuality, 
although it does not materialize in equilibrium. International disputes are another 
example: a country benefits from having a strong army, even if, in equilibrium, all 
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jets remain in their hangars. By its sheer presence, a strong army/strong legal team 
steers the terms of the deal in the agent’s favor. This effect rationalizes costly pre-
bargaining activities, despite the fact that the investment could have been spent more 
productively, by increasing the parties’ joint surplus, rather than the individual fall-
back positions.

In Nash’s (1950) bargaining model, a bargaining problem is defined as a pair, 
(S, d), where S is the set of feasible utility allocations, out of which a single alloca-
tion needs to be selected, and d is some Pareto inefficient point of S that specifies 
the players’ fallback positions (the “disagreement point”). A bargaining solution is 
a function that assigns a feasible utility allocation to every problem. Such a problem 
(S, d) can be used as a building block in a 2-stage game that models the aforemen-
tioned phenomenon: first, the players make investments that determine the feasible 
set and the disagreement point, where investment by player i affects favorably the 
disagreement payoff di but hurts the feasibility set S; next, given (S, d), payoffs are 
distributed according to some exogenously given bargaining solution. Below I study 
such 2-stage games.

I start with the basic model, in which each player i chooses an investment level, 
ai ∈ [0, 1] . The investments determine a feasible set and a disagreement point as 
follows:

• (I) The feasible set is �(a1,… , an) ⋅ S , where S is some fixed set and � is a shrink-
age function that satisfies �(0,⋯ , 0) = 1 and is strictly decreasing; that is, the 
greater pre-bargaining investment is, the larger the shrinkage is.

• (II) The disagreement point is (a1 −
1

n

∑
ai,⋯ , an −

1

n

∑
ai) . Namely, in the 

event of disagreement, each player’s payoff is equal to the advantage above, or 
disadvantage below, the average investment.

The rationale for (I) is that every dollar spent in preparations is a waste from the 
social point of view, irrespective of who spent it. For example, in the international 
relations context, every dollar a country spends in improving its military capabili-
ties is a waste in the following sense: given that armed conflict does not materialize 
in equilibrium, the dollar could have been directed to alternative productive usages 
within the country, and at least theoretically could have been used to increase wel-
fare in other countries. In the legal example mentioned above, every dollar spent on 
“lawyering up” is lost if no one goes to court in equilibrium.

The rationale for (II) is that “disagreement” means “fight.” More formally, 
given disagreement, the players participate in a zero-sum game, and the vector 
(a1 −

1

n

∑
ai,⋯ , an −

1

n

∑
ai) stands for the equilibrium-payoffs in this game. In 

this game, improving i’s position goes hand-in-hand with hurting i’s opponents, and 
all that matters is how one stands with respect to others. Being above average is 
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advantageous and translates to a positive payoff, whereas being below translates to a 
negative payoff.1 ,2

A bargaining solution’s disagreement sensitivity is the degree to which an incre-
ment in one’s disagreement payoff increases one’s solution payoff. Under some con-
ditions, the basic model has a unique equilibrium. The equilibrium investment level 
is increasing in the bargaining solution’s disagreement sensitivity. This investment 
is wasteful, because in equilibrium everybody invests the same amount, so the disa-
greement point does not change (it remains the origin), but the feasible set shrinks. 
Thus, disagreement sensitivity implies a Pareto ranking of bargaining solutions.

Next, I turn to the modified model, where the effect of investments on the disa-
greement point is the same as in the basic model, but the shrinkage of the feasible 
set is different. In the modified model, there is no “uniform shrinkage” across all 
dimensions, but an individual shrinkage. Specifically, if player i’s investment is ai , 
the i-th coordinate of the feasible set shrinks by a factor [1 − c(ai)] , where c is an 
increasing convex function. Under the assumption that the bargaining solution is 
scale covariant, the results are the same as those of the basic model: there exists a 
unique equilibrium, and the equilibrium wastefulness is increasing in the bargaining 
solution’s disagreement sensitivity.

The two models express different views on pre-bargaining investment. In the 
basic model, every dollar invested in non-socially-productive pre-bargaining activ-
ity is a lost dollar that could have been divided in some way between the players, 
regardless of who invested it. By contrast, in the modified model, it does matter who 
invested it; for example, a dollar invested in “lawyering up” by player i affects play-
ers i and j differently.

In both models, the equation defining the equilibrium assumes the following 
form:

where Δ(S,𝜇) > 0 is a term that measures the bargaining solution’s disagreement 
sensitivity, E(S) is the egalitarian payoff in the problem whose feasible set is S and 
whose disagreement point is the origin, and MC is the marginal cost of investment.3 
In both models, the above equation has a unique solution. The equation implies that 
the scope of cooperation, as measured by E(S), has a positive effect, in the sense 
of tempering the incentives for wasteful pre-bargaining investment, while disagree-
ment sensitivity works in the opposite direction. The equation also shows that there 
are “increasing returns to cooperation”: if E(S) increases, there is both a first order 

Δ(S,�)

E(S)
= MC,

1 Expressing relative advantages and disadvantages in this way is not new to game theoretic models. See, 
e.g., Kalai and Kalai (2013), as well as the papers mentioned in footnote 9 of their paper.
2 One could think of more general ways to map the investments to a disagreement point. I address this 
issue in Appendix A, where I show that if the mapping satisfies several basic properties, it is necessarily 
of the form postulated above.
3 In the basic model MC = −

��

�ai
 and in the modified model MC = c�.
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effect—namely, a larger collective pie—and a second order effect, which manifests 
in a lower incentive to invest in wasteful activity.

The rest of the paper is organized as follows. Sect. 1.1 reviews the literature. Pre-
liminaries are in Sect. 2. The results concerning general bargaining solutions (in the 
basic model) are described in Sect. 3, and those concerning scale covariant solutions 
(in the modified model) in Sect. 4. Section 5 contains an application to an economic 
environment. Sections  6 and 7 compare the main solutions in the literature—the 
Nash solution (Nash 1950) and the Kalai-Smorodinsky solution (Kalai and Smoro-
dinsky 1975). Conditions are described under which the latter is less disagreement 
sensitive than the former, and is therefore better. Section 8 concludes. Appendix A is 
dedicated to mappings of investment levels to disagreement points, and Appendix B 
contains proofs that are omitted from the main text.

1.1  Related Literature

The paper most closely related to the present one is by Anbarcı et al. (2002), who 
studied a 2-stage game in the first stage of which each of two players splits a budget 
between “guns” and “labor.” These choices determine a cooperative bargaining 
problem that the players face at the second stage. Investing in guns improves one’s 
disagreement payoff, while investing in labor expands the feasible set. Anbarcı et al. 
(2002) compared three bargaining solutions in this environment: the egalitarian 
solution (Kalai 1977), the equal-loss solution (Chun 1988), and the Kalai-Smoro-
dinsky solution. Of these three solutions, the egalitarian solution induces the most 
wasteful pre-bargaining behavior, the equal-loss solution induces the most efficient 
behavior, and the Kalai-Smorodinsky solution is in between the two. Although my 
environment is different from that of Anbarcı et al. (2002), the economic phenome-
non being modeled is essentially the same. The advantages of the analysis proposed 
here are that (1) the ranking of the bargaining solutions is not confined to the afore-
mentioned trio, but is applicable to any solution (if it satisfies certain mild proper-
ties), and (2) that the analysis is valid for any number of players n ≥ 2 . To the best 
of my knowledge, besides the present paper, Anbarcı et al. (2002) is the only one 
that applies the 2-stage structure to a bargaining context, in which the feasible set 
and disagreement point are determined endogenously, with a tradeoff between them. 
Some other papers consider bargaining that is preceded by a pre-bargaining stage, 
but in these papers either d is determined endogenously and S is fixed, or the other 
way around.

A classic example of a 2-stage game with an endogenous d is Nash’s threats game 
(Nash 1953), where S consists of the utility allocations that are obtainable in a given 
normal-form game, and d is determined by the play of this game. After d is deter-
mined, the Nash bargaining solution is applied. The players play the d-choice inter-
action knowing that final payoffs are determined by the Nash bargaining solution. 
This model has been revisited by several authors in economics and game theory. 
For example, DeBrock and Roth (1981) considered a version of this model in order 
to address a certain pathological strike pattern in labor-management disputes—the 
“discontinuous strike,” where the duration of the strike is spread over time. For 
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example, the workers strike for one period, then work for one period, then strike 
again. DeBrock and Roth showed that this unusual pattern can arise in equilibrium 
of a Nash-threat-style-model, in the first stage of which the choice of d is one of 
strike and lockout dates. Another application of Nash’s threats-model can be found 
in a seminal paper by Grossman and Hart (1986), who considered two firm owners 
who interact in periods t = 0, 1 as follows: at t = 0 each owner i takes an action ai 
and at t = 1 , when a = (a1, a2) is given, each owner needs to take one more decision, 
but these, as opposed to the ai’s, are contractible. The a-choice game is played under 
the assumption that the Nash bargaining solution is applied in the second stage.

An example of a game in which S is determined before bargaining appears in a 
classic paper by Kalai and Samet (1985). The authors considered a bargaining game 
prior to which each player decides which alternatives in the feasible set to veto, and 
the solution is applied to the bargaining problem the feasible set of which consists of 
the non-vetoed alternatives. Kalai and Samet showed that it is a dominant strategy 
not to veto anything if and only if the solution is monotonic, which means that if the 
solution is symmetric then it is the egalitarian one.

The 2-stage structure expresses the idea that first the players “set the stage,” and 
only then they “play the game.” Setting the stage is done non-cooperatively, but 
once the players start to play the game they have at their disposal various tools of 
cooperative game theory’s toolbox, such as the ability to communicate and sign con-
tracts. This structure has been studied in a variety of non-bargaining contexts, in 
which a first stage involves strategic behavior and a second stage involves coopera-
tion. For example, Brandenburger and Stuart (2007) studied a 2-stage model in the 
first stage of which the players make simultaneous strategic choices, s, which deter-
mine a transferable-utility (TU) game that they face in the second stage, V(s). In 
V(s), player i’s payoff is ui(s) = �iMi + (1 − �i)mi , where Mi and mi are i’s maximum 
and minimum core-payoffs in V(s) and �i ∈ [0, 1] is an exogenous parameter.4 The 
utilities {ui(s)} describe a normal-form game, which is analyzed non-cooperatively. 
Another example is provided by Kıbrıs and Kıbrıs (2013), who studied a model in 
the first stage of which investors make investments in a firm that may either succeed 
or go bankrupt, and in the latter case a bankruptcy rule is applied. Kıbrıs and Kıbrıs 
compared different rules in terms of the total investment and the welfare that they 
induce.

Costly investment that improves one’s disagreement position, and therefore ulti-
mately improves one’s payoff, has been studied in a variety of economic contexts. 
For example, de Meza and Lockwood (2010) studied a matching model in which 
agents invest is non-productive education to improve their outside option, which 
increases the bargained-payoff obtained upon a match. Another example is given by 
the hold-up problem (e.g., Rogerson 1992), in which strategic behavior precedes a 
cooperative phase.

4 The core is assumed to be non-empty.
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2  Preliminaries

2.1  Disagreement Points and Feasible Sets

A bargaining problem (problem, for short) is a pair (S, d), where S ⊂ ℝ
n is the fea-

sible set of utility allocations that can be achieved if all players cooperate, and d ∈ S

—the disagreement point—is the utility allocation that prevails if no cooperation is 
reached. In the models below, there is an initial disagreement point and an initial 
feasible set, and both can be affected by the players’ pre-bargaining investments.

The initial disagreement point is d = � ≡ (0,⋯ , 0) . Given the investments 
(a1, a2,⋯ , an) the resulting disagreement point is (a1 −

1

n

∑
ai,⋯ , an −

1

n

∑
ai).

The initial feasible set is S, and the investments shrink it; this shrinkage is dif-
ferent in the two models, and each shrinkage will be described when I turn to the 
respective model. The initial set S is closed, convex and comprehensive; the last 
requirement means x ∈ S ⇒ y ∈ S , for every y ≤ x.5 ,6 Additionally, � ∈ intS 
and S is non-leveled,7 where being non-leveled means that S’s strong and weak 
Pareto frontiers coincide: P(S) = WP(S) , where P(S) ≡ {s ∈ S ∶ x ≩ s ⇒ x ∉ S} 
and WP(S) ≡ {s ∈ S ∶ x > s ⇒ x ∉ S} . I denote the strong/weak frontier by �S . 
For n = 2 , the set �S ∩ℝ

2
+
 can conveniently be described by a boundary function 

� ∶ [0,m] → ℝ+ , where m > 0 is some number, and � is strictly decreasing and 
concave, and satisfies �(m) = 0 . I refer to such boundary functions in Sect.  5. In 
everything that follows except Theorem 5, it is assumed that S is symmetric, which 
means that x ∈ S implies �x ∈ S for every permutation � on {1, ,⋯ , n} , where 
�x ≡ (x�(1),⋯ , x�(n)).8

2.2  Bargaining Solutions

A bargaining solution (solution, for short), generically denoted by � , is a function 
that assigns a unique feasible point to every problem, �(S, d) ∈ S . I assume that all 
solutions under consideration satisfy the following four properties, in the statements 
of which (S, d) is an arbitrary problem. 

1.  Efficiency: �(S, d) ∈ �S.
2.  Anonymity: If S is symmetric then for every permutation � the following holds: 

�(S,�d) = ��(S, d).
3.  Homogeneity: �(cS, cd) = c�(S, d) for all c > 0 . Let ei denote the i-th unit vec-

tor ( ei
j
= 1 for j = i , ei

j
= 0 for j ≠ i).

8 Because Theorem 5 is the only exception to the rule, in the other results I do not mention explicitly 
that symmetry is imposed.

5 Vector inequalities: uRv if and only if uiRvi for all i, for both R ∈ {>,≥} ; u ≩ v if and only if u ≥ v and 
u ≠ v.
6 Given a non-empty set X ⊂ ℝ

n , the smallest comprehensive set that contains it—its comprehensive 
hull—is denoted compX.
7 intS denotes the interior of S.
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4.  Disagreement monotonicity: For every r > 0 and every i: 

Efficiency and Anonymity are self-explanatory, and Homogeneity is a standard 
factoring condition. Disagreement monotonicity expresses the idea around which 
the present paper pretty much revolves.9

Throughout the paper, I refer to the following solutions, which are well-stud-
ied in the literature. The Kalai-Smorodinsky solution KS (Kalai and Smoro-
dinsky 1975) assigns to each (S,  d) the point �S ∩ conv{d, b(S, d)} , where 
bi(S, d) ≡ max{si ∶ s ∈ S, s ≥ d};10 the Nash solution N (Nash 1950) assigns to 
each (S,  d) the maximizer of Πi(xi − di) over x ∈ {s ∈ S ∶ s ≥ d} ; the egalitarian 
solution E (Kalai 1977) assigns to each (S,  d) the point �S ∩ {d + � ⋅ � ∶ � ≥ 0}

;11 the equal-loss solution EL (Chun 1988) assigns to each (S,  d) the point 
�S ∩ {b(S, d) − � ⋅ � ∶ � ≥ 0} . All these solutions satisfy properties 1-4.12

Let M denote the set of solutions that satisfy properties 1-4.

2.3  Disagreement Sensitivity

Disagreement monotonicity says that the solution should respond positively to dis-
agreement point changes, but it does not say what the degree of such a response 
is. The following definition addresses this degree, in the context of comparing two 
solutions. Say that � is more disagreement sensitive than � given S if for any disa-
greement point d ∈ intS with d1 = ⋯ = dn , the following holds for every r > 0 and 
every i:

In words, an increment in one’s disagreement payoff is more beneficial under � than 
it is under �.13

Given that S and � are fixed, let player 1’s solution payoff, as a function of the 
disagreement point, be defined as:

Let f S,�
i

≡
�f S,�

�di
 and let:

�i(S, d + rei) ≥ �i(S, d).

(1)�i(S, d + rei) ≥ �i(S, d + rei).

f S,�(d) ≡ �1(S, d).

9 It is assumed that r is sufficiently small, so that the problem on the LHS is well-defined.
10 b(S, d) is called the ideal point of (S, d).
11 As noted in the Introduction, I abuse notation a little and use the symbol E(S) to denote the egalitarian 
payoff in the problems whose feasible set is S and whose disagreement point is the origin; namely, I use 
E(S) to denote Ei(S, �).
12 That these solutions satisfy properties 1-3 is well-known (and easy to verify). Disagreement mono-
tonicity of most solutions is established in Thomson (1987). Some solutions have axiomatizations that 
are based on Disagreement monotonicity or closely related axioms. In particular, the egalitarian solution 
(Bossert 1994; Rachmilevitch 2011a) and the Kalai-Smorodinsky solution (Rachmilevitch 2011b).
13 By Efficiency and Anonymity, �(S, d) = �(S, d) , hence (1) can be written as 
�i(S, d + rei) − �i(S, d) ≥ �i(S, d + rei) − �i(S, d).
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By Disagreement monotonicity f S,�
1

≥ 0 , and the combination of Efficiency and 
Anonymity further implies that f S,�

i
≤ 0 for all i > 1 . Therefore Δ(S,�) ≥ 0 . This 

expression measures � ’s level of disagreement sensitivity, given the feasible set S.14 
It may be zero in some cases, but in most of what follows I focus on the following:

The solutions in �(S) are defined by a “local strictness” property: arbitrarily small 
increments in one player’s disagreement payoff have sufficient influence on the 
bargaining outcome. Such influence is required for an interior equilibrium: for 
players to make positive investments in equilibrium, the benefits of investments 
need to be sufficiently substantial. A given solution may be an element of �(S�) 
for some S′ , but not of �(S��) for another S′′ . For example, in the 2-person case 
N ∈ �(comp{(0, 0), (1, 0), (0, 1)}) but N ∉ �(comp{(0, 0), (1, 0), (0, 1), (

3

4
,
3

4
)}).

The solution � is locally more disagreement sensitive than � given S if (1) holds 
for all sufficiently small r’s. A sufficient condition for this ranking between � and 
� is that Δ(S,𝜇) > Δ(S, 𝜈) . This fact will be useful in Sect. 7, where the Nash and 
Kalai-Smorodinsky are locally ranked on a particular class of n-person problems.

3  The Basic Model

As described in the Introduction, the basic model is as follows: the players simulta-
neously choose investment levels, (a1,⋯ , an) , where ai ∈ [0, 1] , and these determine 
the payoffs. The payoffs are:

where � is a function that shrinks the initial feasible set, depending on pre-bargain-
ing investment. More specifically, � ∶ [0, 1]n → ℝ+ is symmetric, strictly decreas-
ing, differentiable, and satisfies �(0,⋯ , 0) = 1 and the following Inada conditions:

• (i) − 𝜕𝜆

𝜕ai
|(0,⋯,0) <

Δ(S,𝜇)

E(S)
;

• (ii) − 𝜕𝜆

𝜕ai
|(1,⋯,1) >

Δ(S,𝜇)

E(S)
.

Additionally, − ��

�ai
|(a,⋯,a) is increasing in a, which means that the investment-induced 

cost is convex: pre-bargaining investment becomes more and more harmful as 
investment increases. Finally, it is assumed that � ≡ (1,⋯ , 1) ∈ int�(�) ⋅ S . This, 
together with the fact that S is comprehensive, implies that 

Δ(S,�) ≡ f
S,�
1

|d=� −
1

n

n∑

i=1

f
S,�
i

|d=�.

𝜎(S) ≡ {𝜇 ∈ M ∶ Δ(S,𝜇) > 0}.

�(�(a1,⋯ , an) ⋅ S, (a1 −
1

n

∑
ai,⋯ , an −

1

n

∑
ai)),

14 Δ(S,�) is defined on the basis of f S,� , which speaks of player 1’s payoff. Clearly, because of Anonym-
ity this concept could equally be defined on the basis of the payoff of any other player.
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(a1 −
1

n

∑
ai,⋯ , an −

1

n

∑
ai) ∈ int�(a1,⋯ , an) ⋅ S for every possible investment 

profile (a1,⋯ , an) . That is, every investment profile induces a well-defined bargain-
ing problem.

Denote this game by Γ(S,�) . An equilibrium of Γ(S,�) means a symmetric and 
interior pure Nash equilibrium; namely, a profile of a common investment level 
(a∗,⋯ , a∗) , where 0 < a∗ < 1 , such that a∗ is optimal for each player given that any 
other player chooses a∗.

Theorem 1 Let � ∈ �(S) . Then Γ(S,�) has a unique equilibrium.

The proof, which appears in Appendix B, is entirely technical—a derivation of a 
FOC and verification that it has a unique solution. The intuition behind it is simple: 
the marginal benefit of pre-bargaining investment is decreasing, the marginal cost is 
increasing, and the intersection between them is unique. Given a feasible set S and a 
solution � ∈ �(S) , denote the equilibrium investment level by a∗(S,�).

Theorem  2 Let �, � ∈ �(S) be such that � is more disagreement sensitive than � 
given S. Then Γ(S,�) ’s equilibrium-investment is weakly larger than that of Γ(S, �) . 
That is, a∗(S,�) ≥ a∗(S, �).

Let � be the solution. Because in equilibrium the selected utility allocation is 
such that each player obtains E(�∗S) , where �∗ = �(a∗(S,�),⋯ , a∗(S,�)) , any pre-
bargaining investment is pure waste. Therefore, Theorem 2 implies a Pareto ranking 
of bargaining solutions.

4  The Modified Model

In the basic model, pre-bargaining investment shrinks the feasible set uniformly in 
all dimensions. I now turn to the case of private cost, where investment by player i 
shrinks only the i-th coordinate of the feasible set. More specifically, the investment 
profile (a1,⋯ , an) is mapped into the following bargaining problem:

where c ∶ [0, 1] → [0, 1] is an increasing and strictly convex function that satisfies 
c(0) = 0 , c�(0) = 0 and lima→1c

�(a) = ∞ . Additionally, (1 − c(1)) ⋅ � ∈ intS . Call 
this the modified model and denote it by Γ̃(S,𝜇) . As in the previous section, an equi-
librium means a symmetric, pure and interior Nash equilibrium.

With this impact of pre-bargaining investment, both equilibrium existence and 
Pareto ranking of solutions can still be obtained, provided that attention is restricted 
to scale covariant solutions, i.e., those that satisfy the following property: 

5.  Scale Covariance: �(l◦S, l◦d) = l◦�(S, d) , for every vector of positive linear 
transformations l = (l1,⋯ , ln).

({((1 − c(a1))s1,⋯ , (1 − c(an))sn) ∶ s ∈ S}, (a1 −
1

n

∑
ai,⋯ , an −

1

n

∑
ai)),
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Let:

The following are the counterparts of Theorems 1 and 2.

Theorem 3 Let 𝜇 ∈ �̃�(S) . Then Γ̃(S,𝜇) has a unique equilibrium.

Theorem  4 Let 𝜇, 𝜈 ∈ �̃�(S) be such that � is more disagreement sensitive than � 
given S. Then Γ̃(S,𝜇) ’s equilibrium-investment is weakly larger than that of Γ̃(S, 𝜈) . 
That is, a∗(S,�) ≥ a∗(S, �).

5  An Economic Environment

The above analysis can be applied to economic models, where the physical reality is 
described explicitly. Here is an example of such an application.

Consider two individuals, each endowed with a physical resource of size 1.15 
They simultaneously choose investment levels ai ∈ [0, 1] , which can be understood 
in physical terms, as fractions of the resource. As in the previous sections, the 
investments give rise to a disagreement point and a feasible set. The disagreement 
point is as before, (

a1−a2

2
,
a2−a1

2
) , and the feasible set is 

S = {s ∈ ℝ
2 ∶ s1 + s2 ≤ F(1 − a1) + F(1 − a2)} , where F is a production function. 

Specifically, F is increasing, differentiable, has diminishing marginal product, and 
satisfies F(0) = 0 . This setting maps into the basic model, where the shrinkage func-
tion is given by �(a1, a2) ≡

F(1−a1)+F(1−a2)

2F(1)
 . If the marginal products at zero and one 

are sufficiently large and sufficiently small, then the Inada conditions (i) and (ii) 
hold, and the analysis in Sect. 3 applies. Note that the basic model is the relevant 
one here, because utility is transferable.

The above model is not one of economic fundamentals in the full sense of the 
word, because, as before, the disagreement point is taken to be the utility image of 
some un-specified zero-sum interaction. For a more physical/fundamental version of 
the model, one could take “disagreement” to be a contest, in which the players split 
a fraction � ∈ (0, 1) of the total available resource in the proportions ( a1

a1+a2
,

a2

a1+a2
).16 

Under this specification, however, the analysis in Sect. 3 no longer applies. An anal-
ysis of this alternative model is a task for future research.

�̃�(S) ≡ {𝜇 ∈ 𝜎(S) ∶ 𝜇 satisfies Scale Covariance}.

15 I consider two individuals merely for simplicity of exposition; the generalization to n individuals is 
straightforward.
16 � = 1 corresponds to a generate case of “no-bargaining,” where the disagreement point lies on the 
frontier of the feasible set.
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6  The Nash and Kalai‑Smorodinsky Solutions in 2‑Person Problems

The most interesting comparison is between the Nash and Kalai-Smorodinsky solu-
tions. According to Sects. 3 and 4, ordering them by disagreement sensitivity indi-
cates which one induces greater welfare.17 The following theorem describes circum-
stances in which such an ordering obtains in the 2-person case. In the theorem, the 
feasible set is not required to be symmetric.

Theorem 5 Let n = 2 . Suppose that S’s boundary function, � , is differentiable and 
strictly concave. Then the Nash solution is more disagreement sensitive than the 
Kalai-Smorodinsky solution given S.

In proving Theorem  5 I will refer to the 2-person relative utilitarian solution 
(RU), which is defined as follows: it assigns to each (S,  d) the maximizer of 

x1

b1(S,d)
+

x2

b2(S,d)
 over x ∈ {s ∈ S ∶ s ≥ d}.18

Proof of Theorem  5: Let S be a symmetric feasible set with a differentiable and 
strictly concave boundary function � ; w.l.o.g, suppose that b(S, �) = (1, 1) . Consider 
an increment of player 1’s disagreement-point-value from zero to r ∈ (0, 1) . After 
shifting the new disagreement point back to the origin and considering the individ-
ually-rational part of the resulting feasible set (the part that dominates the origin), 
the frontier is described by the function g ∶ [0, 1 − r] → ℝ+ , where g(x) ≡ �(x + r) . 
Call this new feasible set S′.

KS implies a payoff-ratio of KS2(S
�,�)

KS1(S
�,�)

=
�(r)

1−r
 . Since N is always “sandwiched” in 

between KS and RU,19 it is enough to show that RU(S�, �) is to the right of KS(S�, �) . 
Therefore, with t ≡ RU1(S

�, �) , what needs to be established is:

The FOC defining RU(S�, �) is �(r)
1−r

= −��(t + r) , hence it is enough to show that 
𝜙(t+r)

t
< −𝜙�(t + r) , or:

where t = t(r) . Note that (2) holds as equality when r = 0 since in this case 
t(r) = t(0) = N1(S, �) and then the equality-version of (2) is the FOC associated with 
the Nash solution. Therefore, it is enough to show that the derivative of (2)’s RHS 
w.r.t r exceeds that of the LHS. Namely, that:

𝜙(t + r)

t
<

𝜙(r)

1 − r
.

(2)𝜙(t + r) < −t𝜙�(t + r),

𝜙�(t + r)(t� + 1) < −[t�𝜙�(t + r) + t𝜙��(t + r)(t� + 1)],

17 Both N and KS are scale covariant.
18 This is a well-defined solution on problems of the type described in Theorem 5, but not on all prob-
lems (e.g., it is not well-defined if the feasible set is the comprehensive hull of the unit simplex).
19 See Cao (1982); Rachmilevitch (2016).
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or:

By Disagreement Monotonicity, t′ ≥ 0.20 Therefore, since � is differentiable and 
strictly concave, the LHS is negative, and the RHS is positive.   ◻

Anbarcı (2008) proved that the 2-person N is more disagreement sensitive than 
the 2-person KS in constant elasticity problems (CES), where the boundary func-
tion has the form �(x) = (1 − x� )1∕� for some � ∈ (1,∞) . Theorem 5 generalizes his 
result. For instance, Theorem 5 is not confined to symmetric sets, and CES sets are 
symmetric.

The downside of Theorem 5 is that it is a technical result, which does not reflect 
an obvious economic intuition. In some sense, this is not surprising, because if there 
was an obvious economic reason for the higher disagreement sensitivity of the Nash 
solution then it would appear in other problems as well, without the smooth-frontier 
qualification. This, however, is not the case. For example, if S is a 2-person set that 
is the comprehensive hull of conv{(0, 0), (1, 0), (0, 1), (t, t)} , for some t ∈ (

1

2
, 1) , then 

the order reverses: KS is more disagreement sensitive than N given this S.21

In the 2-person case, the Nash and the Kalai-Smorodinsky solutions can also be 
easily ranked relative to the egalitarian solution.

Proposition 1 Let n = 2 and let S be a feasible set. Then the egalitarian solution is 
more disagreement sensitive than the Nash solution given S.

Proof Make the above assumptions and consider, w.l.o.g, an increment of player 1’s 
disagreement payoff from zero to some r > 0 . This change has no influence on the 
utilitarian point—it remains E(S, �)—but the egalitarian point moves to the right; 
since the Nash solution point is “sandwiched” in the utilitarian and egalitarian points 
(Rachmilevitch 2015), it follows that E is more disagreement sensitive than N.   ◻

Proposition 2 Let n = 2 and let S be a feasible set. Then the egalitarian solution is 
more disagreement sensitive than the Kalai-Smorodinsky solution given S.

Sketch of proof: The arguments are analogous to the ones from Proposition 1’s 
proof, the only exception being that the role of utilitarian point is replaced by that of 
the equal-loss solution EL: geometric considerations imply that E is more disagree-
ment sensitive than KS, because KS is “sandwiched” between E and EL.   ◻

(t� + 1){𝜙�(t + r) + t𝜙��(t + r)} < −t�𝜙�(t + r).

20 To see this, consider a feasible set with the boundary function � , S, and disagreement point (0, 0). 
Suppose that b(S, (0, 0)) = (1, �) . The point selected by RU is the egalitarian one, and the hyperplane 
tangent to the feasible set at this point has slope � (in absolute value). As player 1’s disagreement point 
increases to r > 0 , the segment conv{(r,�(r)), (1, 0)} has slope steeper than 1; therefore, the point 
selected by RU is to the right of the originally-selected point.
21 The proof of this fact is a basic (if a bit lengthy) exercise, hence it is omitted.
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7  A Class of n‑Person Problems on Which the Kalai‑Smorodinsky 
Solution is “locally best”

Let Sn be the class of n-person feasible sets S of the following form:

where c > 0 and g is a twice differentiable, strictly convex and strictly increasing 
function that satisfies g(0) = g�(0) = 0 . W.l.o.g, I set c = 1 . I also assume that g′ ⋅ h′ 
is an increasing function, where h ≡ g−1 . An example of an element of Sn is the 
positive part of the n-sphere, S = {x ∈ ℝ

n
+
∶
∑n

i=1
x2
i
≤ 1}.

Note that S2 is a subclass of the 2-person sets considered in Theorem 5.
The following result says that on Sn , the disagreement sensitivity of the Kalai-

Smorodinsky solution is locally zero.

Theorem 6 ∀S ∈ Sn : Δ(S,KS) = 0 .

Proof Let S ∈ Sn and let g be the function from the definition of S (i.e., from (6)). 
Consider increasing player 1’s disagreement payoff from zero to r > 0 . It is not hard 
to check that in the resulting problem the Kalai-Smorodinsky solution assigns the 
following payoffs:

for some x = x(r).22 Since x ⋅ h(1−g(r))

h(1)
 is weakly decreasing in r, it follows that:

Clearly x′ ≥ 0 . And, at r = 0 the second term is zero, hence x�(0) = 0 . To use the 
notation of Sect. 2.3, x� = f

S,KS

1
 , and the desired formula follows.   ◻

The following is an obvious consequence of Theorem 6.

Corollary 1 Let S ∈ Sn and 𝜇 ∈ 𝜎(S) = {𝜇 ∈ M ∶ Δ(S,𝜇) > 0} . Then � is locally 
more disagreement sensitive than the Kalai-Smorodinsky solution given S.

To complete the picture, it remains to find out whether the Nash solution can play 
the role of � from Corollary 1. The following result provides the affirmative answer.

(3)S = {x ∈ ℝ
n
+
∶

n∑

i=1

g(xi) ≤ c},

KS(S, (r, 0,⋯ , 0)) = (x, x ⋅
h(1 − g(r))

h(1)
,⋯ , x ⋅

h(1 − g(r))

h(1)
)

�[x ⋅ h(1−g(r))

h(1)
]

�r
= x� ⋅

h(1 − g(r))

h(1)
−

x

h(1)
⋅ h�(1 − g(r))g�(r) ≤ 0.

22 Computing the exact value of x is easy, but is not necessary for the arguments to be invoked momen-
tarily.
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Theorem 7 ∀S ∈ Sn : Δ(S,N) > 0.

Proof Let S ∈ Sn and let g be the function from the definition of S (i.e., from (6)). 
Consider increasing player 1’s disagreement payoff from zero to r > 0 . The FOC 
associated with the Nash solution is:

where x = x(r) is player 1’s payoff. Deriving both sides with respect to r gives:

Assume by contradiction that x�(0) = 0 . Then at r = 0 the (7)’s LHS becomes zero, 
therefore:

The LHS is positive and the RHS is non-positive—a contradiction.   ◻

The relation between the Nash and Kalai-Smorodinsky solutions on Sn is summa-
rized in the following corollary.

Corollary 2 On Sn , the Nash solution is locally more disagreement sensitive than the 
Kalai-Smorodinsky solution.

8  Conclusion

I introduced the concept of disagreement sensitivity, which can be used for rank-
ing any two bargaining solutions, provided that they satisfy certain basic proper-
ties: Efficiency, Anonymity, Homogeneity, and Disagreement monotonicity. Rank-
ing solutions based on disagreement sensitivity implies a Pareto ranking. Given a 
2-person problem with strictly convex frontier, the Kalai-Smorodinsky solution is 
less disagreement sensitive than the Nash solution, and is therefore better. The rank-
ing of these solutions also extends, in a local sense, to a class of smooth n-person 
problems.

The comparison of solutions is non-trivial because it is carried out, to a large 
extent, under the umbrella of the cooperative approach to bargaining. The typical 
line of work in cooperative bargaining is to postulate axioms, which, by nature, 
are binary criteria: a solution either satisfies a certain axiom, or it does not. In the 

h

(
1 − g(x)

n − 1

)
= (x − r) ⋅ h�

(
1 − g(x)

n − 1

)
⋅ g�

(
1 − g(x)

n − 1

)
,

(4)

−
h�
(

1−g(x)

n−1

)
⋅ g�

(
1−g(x)

n−1

)
⋅ x�

n − 1

=
(
x� − 1

)
⋅ h�

(
1 − g(x)

n − 1

)
⋅ g�

(
1 − g(x)

n − 1

)
+ (x − r) ⋅

[
h�
(
1 − g(x)

n − 1

)
⋅ g�

(
1 − g(x)

n − 1

)]�

h�
(
1 − g(x)

n − 1

)
⋅ g�

(
1 − g(x)

n − 1

)
= −x ⋅

g�(x)x�

n − 1
⋅

d

dz
[g� ⋅ h�]|

z=
1−g(x)

n−1

.
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present paper, by contrast, the key property is disagreement sensitivity, which, 
despite its “axiomatic roots,”23 is not a yes-or-no property, but describes a contin-
uum along which different solutions can be placed.

The paper also highlights the fruitfulness of a 2-stage framework that embeds a 
well-known piece of theory at the second-stage, and then asks what can be learned 
about this theory if more considerations are brought into the picture through the first 
stage.

A shortcoming of the present paper is that the entire influence of the economic 
activity is summarized strictly based on two features of the bargaining problem: the 
feasible set and the disagreement point. On one hand, this may not seem like a seri-
ous shortcoming, because these are the only ingredients of a Nash bargaining prob-
lem. On the other hand, one may think about further aspects of the problem that 
could be dealt with more explicitly, in particular the ideal point. Sertel (1992) stud-
ied 2-stage 2-person bargaining model in which the ideal point plays a surprisingly 
important role. In the pre-bargaining stage of his model, each player can change the 
feasible set by committing to donate a portion of her would-be payoff to the oppo-
nent. In equilibrium, and under the assumption that the Nash solution is employed, 
only the player with the maximum ideal payoff makes a donation.

One could consider also a model in which a player’s bargaining-problem-payoff 
is just one component in her overall payoff, into which the investment cost enters 
in a separable way. That is, with ui denoting player i’s utility, the following formula 
applies:

where ci is the investment-cost function. The FOC obtained from this utility speci-
fication is qualitatively different from those of the models that were studied in the 
current paper; consequently, it may be that the definition of disagreement sensitiv-
ity needs to be amended to be applicable to this alternative specification. A com-
prehensive exploration this alternative model is a direction for future research. 
Another direction for future research is the analysis of the economic model that was 
described at the end of Sect. 5.

Appendix A: The Disagreement Point

Suppose that given the profile of investments a, the resulting disagreement point is 
h(a), for some function h. Denote by h∗ the specific function I have assumed above, 
namely h∗(a) ≡ (a1 −

1

n

∑
ai,⋯ , an −

1

n

∑
ai) . I will now show that h∗ is the only 

function (from [0, 1]n to ℝn ) that satisfies the following properties. 

1. Zero-sum: 
∑n

i=1
hi(a) = 0 for all a.

ui(S, a) = �i(S, a) − ci(ai),

23 By “axiomatic roots” it is meant that disagreement sensitivity is an extension (and, in a way, a refine-
ment) of disagreement monotonicity.
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2. Anonymity: If �ij is the permutation that swaps i and j, then hi(�ij
◦a) = hj(a).

3. Mixture: For every two investment profiles a and a′ that satisfy ai = a�
i
 and every 

� ∈ [0, 1] : �hi(a) + (1 − �)hi(a
�) = hi(�a + (1 − �)a�).

4. Normalization: 

Properties 1-2 is obvious. Property 3 can be justified on the following game-the-
oretic grounds: suppose that the players could choose their investment at random. 
Then, from the standpoint of every individual player, any (pure) investment level 
is associated with a lottery, the uncertainty being due to the randomization of 
others. Knowledge of preference over such lotteries is necessary for the analysis 
of such a game, and the Mixture property says that these preferences are of the 
expected utility variety. Note that this applies to the modified model (but not to 
the basic one). Finally, property 4, as its name suggests, is nothing but a normali-
zation; there is no loss of generality is assuming this specific normalization if the 
function is homogeneous of degree one.

Proposition 3 An h-function is Zero-sum and satisfies Anonymity, Mixture and Nor-
malization if and only if h = h∗.

Proof It is clear that h∗ satisfies these properties, hence I will only 
prove uniqueness. Let h be a function that satisfies the properties. I will 
prove, w.l.o.g, that h1(a) = a1 −

1

n

∑
i ai . By Anonymity and Mixture, 

h1(a) = h1(a1, c,⋯ , c) , where c ≡
∑n

i=2
ai

n−1
 . By Zero-sum and Anonymity, 

h1(a) = h1(a1, c,⋯ , c) = h∗
1
(a) = h∗

1
(a1, c,⋯ , c) = 0 if c = a1 , so suppose that 

c ≠ a1 ; w.l.o.g, a1 > c . Note that:

The first equality is due to Mixture, the second follows from the combination of 
Zero-Sum, Anonymity and Mixture, and the third is by Normalization. Taking 
� = 1 −

c

a1
 delivers the desired result.   ◻

Appendix B: Proofs

Proof of Theorem 1: Make the theorem’s assumptions. W.l.o.g, consider player 1. His 
goal is to chose a1 in order to maximize the following expression:

hi(e
j) =

{
1 −

1

n
if j = i

−
1

n
otherwise

h1(a1, c,⋯ , c) = �h1(a1, 0,⋯ , 0) + (1 − �)h1(a1,
c

1 − �
,⋯ ,

c

1 − �
)

= a1�h1(1, 0,⋯ , 0) + (1 − �)h1(a1,
c

1 − �
,⋯ ,

c

1 − �
)

= a1�(1 −
1

n
) + (1 − �)h1(a1,

c

1 − �
,⋯ ,

c

1 − �
).
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which, by Homogeneity of � , is equal to:

The FOC is:

Equilibrium existence is equivalent to the existence of a solution to the above equa-
tion that satisfies a1 = a2 = ⋯ = an ≡ a . At such equal-investment point the FOC 
boils down to:

or

By the boundary conditions on � , (5) has a unique solution.   ◻

Lemma 1 Let � and � be such that � is more disagreement sensitive than � given 
S. Then f

S,�
1

|d=� ≥ f
S,�
1

|d=� and f
S,�
i

|d=� ≤ f
S,�
i

|d=� for all i > 1 . In particular, 
Δ(S,�) ≥ Δ(S, �).

Proof Since � is more disagreement sensitive than � given S,

hence

Taking r ↓ 0 gives ��1

�d1
|
�
≥

��1
�d1

|
�
 , or:

Due to Efficiency and Anonymity, (6) implies that the following holds for all i > 1:

By analogous arguments to the one mentioned above,

�1(�(a1,⋯ , an)S, (a1 −
1

n

∑
ai,⋯ , an −

1

n

∑
ai)),

�(a1,⋯ , an)f
S,�(

a1 −
1

n

∑
ai

�(a1,⋯ , an)
,⋯ ,

an −
1

n

∑
ai

�(a1,⋯ , an)
).

��

�a1
f S,� + �

{
1

�
f1 −

1

n�

n∑

i=1

f
S,�
i

−
��

�2

∑

i

f
S,�
i

⋅

[
ai −

1

n

∑

k

ak

]}
= 0,

��

�a1
(a,⋯ , a)E(S) + f

S,�
1

(
1 −

1

n

)
−

1

n

n∑

i=2

f
S,�
i

= 0

(5)
Δ(S,�)

E(S)
= −

��

�a1
(a,⋯ , a).

(6)�1(S, re
1) ≥ �1(S, re

1),

�1(S, re
1) − E(S)

r
≥

�1(S, re
1) − E(S)

r
.

(7)f
S,�
1

≥ f
S,�
1

.

�i(S, re
1) ≤ �i(S, re

1),



786 S. Rachmilevitch 

1 3

The combination of (7), (8), and the fact that f
S,�
1

, f
S,�
1

≥ 0 implies 
Δ(S,�) ≥ Δ(S, �) .   ◻

Proof of Theorem  2: Consider (5). By Lemma 1, an increase in disagreement sen-
sitivity increases (5)’s LHS (weakly), hence the convexity of −� implies that the 
investment-level cannot decrease.   ◻

Proof of Theorem 3: Make the theorem’s assumptions. W.l.o.g, consider player 1. His 
goal is to chose a1 in order to maximize the following expression:

By Scale Covariance of � , this expression is equal to:

The FOC at a1 = a2 = ⋯ = an ≡ a is:

By the conditions imposed on c, (9) has a unique solution.   ◻

Proof of Theorem 4: By Lemma 1, (9)’s LHS is higher under the more disagreement 
sensitive solution.   ◻
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