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Abstract
The Coalition Structure Generation (CSG) problem is a partitioning of a set of 
agents into exhaustive and disjoint subsets to maximize social welfare. This NP-
complete problem arises in many practical scenarios. Prominent examples are 
included in the field of transportation, e-Commerce, distributed sensor networks, 
and others. The fastest exact algorithm to solve the CSG problem is ODP-IP, which 
is a hybrid version of two previously established algorithms, namely Improved 
Dynamic Programming (IDP) and IP. In this paper, we show that the ODP-IP algo-
rithm performs many redundant operations. To improve ODP-IP, we propose a faster 
abortion mechanism to speed up IP’s search. Our abortion mechanism decides at 
runtime which of the IP’s operations are redundant to skip them. Then, we propose 
a modified version of IDP (named MIDP) and an improved version of IP (named 
IIP). Based on these two improved algorithms, we develop a hybrid version (MIDP-
IIP) to solve the CSG problem. After a detailed description of the new algorithm 
MIDP-IIP, an experimental comparison is conducted against ODP-IP. Our analysis 
shows that MIDP-IIP performs fewer operations than ODP-IP. In addition, MIDP-
IIP reduced significantly many problem instances running times (11–37%).
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1  Introduction

Agents form coalitions when they cannot achieve certain goals individually but are 
achievable when they “team up" with other agents. The resulting teams are called 
coalitions. In line with the long-standing literature in cooperative game theory, we 
assume the existence of a characteristic function v that maps each coalition to a real-
valued utility measure. The Coalition Structure Generation (CSG) problem consists 
of identifying the optimal partitioning of a set of agents, such that the sum of the 
utilities obtained by applying the characteristic function to each partition is maxi-
mized. The CSG problem is intractable because of its combinatorial explosion of 
the search space1. Coalition formation can be applied to many real-world problems. 
Agents can form a coalition to satisfy particular market niches (Norman et al. 2004). 
In distributed sensor networks, different sensors can form a coalition and work 
together to track their target of interest (Dang et al. 2006). Delivery companies may 
agree together and can build coalitions to make their profit by reducing transporta-
tion costs (Sandhlom and Lesser 1997). In electricity grids, agents create an intel-
ligent and robust power supply network which manages the use of energy resources 
(Davidson et  al. 2009; Dimeas and Hatziargyriou 2007; Kok et  al. 2010; Vyte-
lingum et al. 2010a, b). In e-commerce, customers build coalitions to take advantage 
of price discount through bulk purchasing (Li et al. 2010). In small cell networks, 
small cells can mitigate the co-tier interference within a coalition and thus increase 
the system capacity (Yang et  al. 2016). Coalition formation can also be used for 
information gathering, where several information servers form coalitions to answer 
queries (Klusch and Shehory 1996).

This paper considers the CSG problem in Characteristic Function Games (CFGs). 
In CFG, each coalition (C) is a non-empty subset of agents. Given n agents there are 
2n − 1 coalitions. Hence, in the CSG problem, given a set of 2n − 1 coalitions, each 
associated with a value (positive or negative), we have to find a maximal valued dis-
joint set of coalitions with the same union as the whole set. Since the inputs of the 
CSG problem are the 2n − 1 coalitions, there is no hope to devise an exact algorithm 
for the CSG problem in polynomial time. Indeed, any exact algorithm must inspect 
all the 2n − 1 coalitions in order to find the optimal solution. The fastest exact algo-
rithm for the optimal CSG problem is ODP-IP (Michalak et al. 2016) algorithm with 
worst-case time complexity O(3n).

In this work, we design a new algorithm called MIDP-IIP that builds upon the 
earlier algorithm ODP-IP (Michalak et al. 2016). To date, the fastest algorithm to 
solve the CSG problem is ODP-IP. ODP-IP considers strength of IDP and IP algo-
rithms, and makes a positive synergy between IDP and IP. IDP and IP run in paral-
lel, and as soon as any one of them returns the final result, ODP-IP stops. Practically, 
an improvement of either one (IDP or IP) in turn may improve ODP-IP algorithm. 
However, it is challenging to make IDP or IP algorithm more faster in practice 
because the IDP and IP algorithms belong to NPC problems (Michalak et al. 2016). 

1  For n agents, we have total Ω(( n

ln n
)n) search spaces, that is, the nth Bell number (Berend and Tassa 

2010)
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This paper proposes a new method to solve the CSG problem and makes the follow-
ing contributions:

•	 We propose a new abortion mechanism to speed-up the IP’s search.
•	 We propose an improved version of ODP-IP, named MIDP-IIP. We prove that 

MIDP-IIP performs less operations than ODP-IP.

The rest of the paper is organized as follows: Related works and the optimal CSG 
problem formulation are given in Sects. 2 and 3 respectively. Section 4 delineates 
the ODP-IP algorithm. Section 5 details the new MIDP-IIP algorithm, while Sects. 6 
and 7 describe the experimental evaluation and propose some conclusions.

2 � Related Works

To date, approaches to solve the CSG problem range from mixed-integer program-
ming to branch and bound techniques (Rahwan et al. 2009) through dynamic pro-
gramming (DP) (Yun Yeh and A, 1986). The first complete systematic DP algorithm 
for optimal CSG was proposed by Yun Yeh (1986) for complete set partitioning 
problem. The algorithm proposed by Yun Yeh (1986), solves the optimization prob-
lem by breaking it into smaller subproblems. Each small subproblem is solved recur-
sively and finally the results of the subproblems are merged and thus generate the 
final solution. Given n agents, DP algorithm returns the optimal result with a reason-
able time complexity O(3n) but it requires to evaluate all the possible coalitions.

The Improved Dynamic Programming (IDP) algorithm (Rahwan and Jennings 
2008) with time complexity O(3n) is an improved version of the DP algorithm. The 
IDP algorithm efficiently manages to avoid a large number of redundant calculations 
made by DP approach in Yun Yeh (1986), Rothkopf et  al. (1998). Recently, Cruz 
et al. (2017) described a novel technique to identify the most frequent operations in 
DP and IDP search tree and proposed an optimized version by distributing the pro-
cessing into multiple threads using some multi-threading techniques. The authors in 
Cruz et al. (2017) reported that a speed-up over ten times was obtained.

The DP algorithms is the lowest worst time complexity algorithm. The main 
drawback of DP is that they could not produce a solution until the algorithms 
complete the entire execution. On the other hand an anytime algorithm is one that 
returns a solution even if the algorithm terminates prematurely. This anytime prop-
erty makes it more robust against failures than DP algorithms. The result quality 
in anytime algorithms increases monotonically as the computation time increases. 
The anytime algorithm based on integer partition called IP algorithm (Rahwan et al. 
2012) has been shown superior to DP algorithms for many popular coalition value 
distributions.

The Optimal Dynamic Programming (ODP) algorithm (Michalak et  al. 2016) 
achieves a further improvement over IDP by using a bound on the size of the coali-
tions to be explored. Michalak et al. (2016) also proposed a hybrid version of ODP 
and IP (Rahwan et al. 2009) called ODP-IP and showed empirically that it is faster 
than other algorithms. The Inclusion-Exclusion algorithm proposed by Björklund 
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et al. (2009) was tested in practice by Michalak et al. (2016) and the authors found 
that the growth rate resembles O(6n) , not O(2n).

All the existing dynamic programming techniques solve the optimal CSG prob-
lem with a worst-case time complexity O(3n) for n number of agents. Hence, such 
methods are not effective when the time required to produce the optimal solution 
is larger than the time available to the agents. In multi-agent settings without hard 
time limits, ODP-IP is efficient to solve many real-life problem instances. However, 
in other circumstances for large number of agents with a strict deadline and a short 
execution time, the problem would naturally become too hard to be tackled by opti-
mal algorithms. In these cases, we need other alternative approaches. Here heuris-
tics approximate algorithms come to the rescue.

Many meta-heuristic algorithms have been proposed to tackle the CSG problem. 
In Shehory and Kraus (1995a, b, 1998), the authors proposed algorithms for coa-
lition formation for task allocation. Another heuristic algorithm based on genetic 
algorithm was proposed in Sen and Dutta (2000). A few years later, Keinänen 
proposed an algorithm (Keinänen 2009) for the CSG problem based on simulated 
annealing. In Di  Mauro et  al. (2010), the authors addressed the CSG problem by 
proposing a solution approach based on GRASP. In Hussin and Fatima (2016), the 
authors showed that Tabu search generates better quality solutions than simulated 
annealing for coalition games in characteristic function form and in partition func-
tion form. The problem with meta-heuristic algorithms is that they do not guarantee 
if an optimal solution is ever found nor do they provide any guarantee on the quality 
of the achieved solutions.

In all the algorithms discussed so far, the main focus was on maximizing the 
social welfare, where agents consider every possible subset of agents as a poten-
tial coalition. However, this general assumption is not feasible in some realistic sce-
narios. To tackle this issue, a variation of CSG problems arises. To name a few, 
(Skibski et al. 2016) presented different algorithms to solve non-utilitarian coalition 
structure generation: A balanced CSG and an egalitarian CSG. In a balanced CSG, 
the goal is to minimize the difference between the values of smallest and largest 
agent utilities, whereas, in an egalitarian CSG, the goal is to find the coalition struc-
ture with the maximal value of smallest agent utility. In another scenario, certain 
agents may be prohibited from being in the same coalition or the coalition structure 
may be required to be composed of coalitions of the same size. To overcome these 
situations, (Rahwan et al. 2011) proposed a Constrained Coalition Formation (CCF) 
framework for multi-agent systems. Liu et  al. (2016) developed stochastic search 
algorithms for coalitional skill games (CSGs), where it is difficult to calculate the 
value of a coalition.

3 � CSG Problem Formulation

Let A be the set of agents A = {a1, a2,… , an} , n the number of agents in A . We 
denote any coalition C = {a1, a2,… , al} as a coalition of agents a1 , a2,… , and al , 
where l ≤ n . Let v be a characteristic function, v assigns a real value v(C) to each 
coalition C (i.e. v(C) ). Formally, v ∶ 2A → ℝ.
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A coalition structure (CS) over A is a partitioning of A into a set of disjoint coali-
tions {C1, C2,… , Ck} , where k = |CS| . In other words, {C1, C2,… , Ck} satisfies the 
following constraints: 1) Ci, Cj ≠ � , i, j ∈ {1, 2,… , k} . 2) Ci ∩ Cj = � , for all i ≠ j . 

3) 
k⋃

i=1

Ci = A.

Definition 1  Given a characteristic function v which maps each coalition C to a util-
ity value, the value of any coalition structure CS = {C1, C2,… , Ck} is defined by 
v(CS) =

∑
Ci∈CS

(v(Ci)).

The optimal solution of CSG is an optimal coalition structure CS∗ ∈ ΠA , 
where ΠA denotes the set of all coalition structures over A . Thus, 
CS

∗ = arg maxCS∈ΠAv(CS) . The CSG problem is then the problem of finding such 
CS∗ . Note that {a1, a2,… , an} and {1, 2,… , n} are used interchangeably throughout 
this paper.

4 � ODP‑IP Algorithm

The ODP-IP algorithm is a hybrid version of ODP and IP algorithms. ODP part of 
ODP-IP is based on the IDP algorithm. IDP and DP algorithms follow the same 
working principle, but IDP is an improved version of the DP algorithm. DP is an 
exact algorithm for computing the optimal coalition structure. Let, Pt be the parti-
tion table, Pt(C) stores one optimal partition of each coalition C (cf. Fig. 1). There 
can be more than one optimal partition of a coalition C , Pt(C) stores any one of them 
(cf. Fig. 1). Let Vt be the optimal value table, Vt(C) stores the optimal value of the 
coalition C . DP produces two tables Pt and Vt using the below recursion (cf. Eq. 1).

Let C≃≃ =
{
C
�|C≃ ⊂ C and 0 ≤ |C≃| ≤ |C|

2

}
 , table Vt for each coalition C is 

constructed as follows:

To evaluate the coalitions, DP starts by evaluating all possible splits of every possi-
ble coalition of size 2, and then gradually increases in size by 1 unit till size becomes 
n and completes tables Pt and Vt for each evaluated coalition C.

Having described how DP operates, now we detail IDP algorithm (Rahwan 
and Jennings 2008). The main idea in IDP algorithm is to avoid the evalu-
ation of some splitting operations in the DP network, without losing the 
guarantees of finding the optimal coalition structure. In Rahwan and Jen-
nings (2008), the authors proved that, given n agents, IDP algorithm does 
not evaluate any of the possible ways of splitting a coalition of size s, where 
s ∈ {⌊ 2n

3
⌋ + 1,… , n − 1} , without losing the guarantees of finding the optimal coa-

lition structure. In particular, they showed that it is necessary to evaluate the splits 
of a coalition C of size c into two coalitions of sizes c′ and c′′ , where (c�, c��) is in: 
dep(c) = {(c�, c��) ∈ ℕ

2 ∶ (c� ≥ c��) ∧ (c� + c�� = c) ∧ [(c� ≤ n − c� − c��) ∨ (c = n)]} . 

(1)Vt(C) =

{
v(C) if |C| = 1

arg maxC�∈C�� {Vt(C
�) + Vt(C ⧵ C

�)} otherwise
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As in Pawłowski et al. (2014), dep(c) indicates the dependencies between different 
coalition sizes. Based on this formula, IDP only evaluates the partitionning of the 
coalition C of size c into two coalitions of sizes c′ and c′′ , where (c�, c��) ∈ dep(c) . 
In Rahwan and Jennings (2008), the authors proved that dep(c) = � for all 
c ∈ {⌊ 2n

3
⌋ + 1,… , n − 1}.

Before further discussion on ODP-IP, we explain how the IP algorithm (Rahwan 
et al. 2007) works. The IP algorithm uses a novel representation of the search space. 
It divides the whole search space of the CSG problem into different subspaces based 
on the size of the coalitions each subspace contains. The IP algorithm treats each 

Fig. 1   Working principle of DP and IDP algorithms computing the tables Pt and Vt , given four agents 
A = {1, 2, 3, 4} , and a characteristic function v. With arrowed line in column Pt , we highlight the path 
leading to the optimal result. Locally optimal results are shaded in small rectangualr box. The dark shade 
indicates splits that are considered by DP, but not IDP
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node in the integer partition graph (cf. Fig. 3) as a subspace. For example, in the 
case of 4 agents, the possible integer partitions are [4], [1, 3], [2, 2], [1, 1, 2] and 
[1, 1, 1, 1], and each of these represents a subspace containing all the coalition struc-
tures within which the coalition sizes match the parts of the integer partition. For 
example, the subspace [1, 1, 2] represents all the coalition structures within which 
two disjoint coalitions are of size 1, and one disjoint coalition is of size 2. It is pos-
sible to compute an upper bound and a lower bound on the values of all the coali-
tion structures in each subspace. These bounds are then used to prune the subspaces 
which do not have any potential of containing an optimal coalition structure. Out of 
all the remaining potential subspaces, IP sorts all these subspaces according to the 
upper bound values and starts searching them one by one2 until all the subspaces are 
searched.

We now show how IDP is combined with the IP algorithm and make a hybrid 
ODP-IP algorithm (Michalak et  al. 2016). In the ODP-IP algorithm, IDP and IP 
run in parallel and terminate as soon as any one of the IDP or IP returns the final 
result. To detail the operation of ODP-IP, we introduce the following integer parti-
tion graph for ten agents (cf. Fig. 2).

Suppose IDP completes the evaluation of all the coalitions of size 2, 3, 4. Figure 2 
shows that all the red colored subspaces in the integer partition graph have already 
been explored by IDP. Hence, IP will consider only white colored subspaces.3

The preceding discussion implies that ODP-IP divides the search between IDP 
and IP and makes ODP-IP algorithm faster in practice. In our work, we propose 
a Modified Improved Dynamic Programming algorithm (MIDP) and an Improved 
IP (IIP) algorithm in place of ODP and IP and thus making new hybrid algorithm 
MIDP-IIP. The basic idea of MIDP-IIP is to maintain a partition table Pt for all the 
coalitions. To solve any subspace, the IIP algorithm uses this partition table Pt to 
speed-up the search process so that the overall runtime of MIDP-IIP is minimized. 
We provide the details of the MIDP-IIP algorithm in the next section.

5 � MIDP‑IIP Algorithm

In MIDP-IIP algorithm, MIDP and IIP run in parallel, and IIP uses the information 
provided by MIDP algorithm to speed up the search process. In the next section, we 
first provide a detailed description of the MIDP algorithm, then we explain the IIP 
algorithm.

2  A detailed presentation of IP is proposed in Rahwan et al. (2007).
3  For the techniques used in IP algorithm in the hybrid ODP-IP algorithm, we recommend readers to 
refer to the novel techniques to improve IP’s search process using the branch and bound techniques pro-
posed by Michalak et al. (2016).
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5.1 � MIDP Algorithm

The working principle of MIDP algorithm is shown in algorithm 1. MIDP algorithm 
stores the optimal partition of each evaluated coalition in the partition table Pt . To 
explain the difference between the IDP and MIDP, let’s take the example in Fig. 1. 
IDP evaluates all the coalitions of size s ∈ {2, 3,… , ⌊ 2n

3
⌋} and then evaluates the 

grand coalition. In Fig. 1, IDP evaluates all coalitions of size 2 and then evaluates 

Fig. 2   Searched subspaces after evaluation of all the coalitions of size 4, given 10 agents. The red 
colored subspaces are fully searched by IDP, whereas the white colored subspaces are not yet searched
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the grand coalition A = {1, 2, 3, 4} . Recall that, IDP does not store the optimal par-
tition of the coalitions (Rahwan and Jennings 2008). Hence, there is no instance 
or immediate access to any coalition’s optimal partition. IDP can get the optimal 
solution without using any partition table in different ways. For example in Fig. 1, 
IDP checks that the grand coalition A = {1, 2, 3, 4} is optimally partitioned into two 
coalitions {1, 2} and {3,4}. Next IDP re-evaluates the coalitions {1, 2} , {3, 4} and 
finds that the coalition {1, 2} is optimally partitioned into the coalitions {1} and {2} , 
whereas it is not beneficial to split the coalition {3, 4} . By doing so, IDP finds that 
the optimal coalition structure is {{1}{2}{3, 4}} with the value 134.

On the other hand, MIDP stores the optimal partition of all the evaluated coali-
tions in the partition table Pt . By using the Pt table, MIDP finds the optimal partition 
of the grand coalition A = {1, 2, 3, 4} in the same way as DP does (shown in Fig. 1). 
Next, we show how IP’s search procedure can go faster using the information stored 
in the Pt table. 

Fig. 3   The integer partition graph for 4 agents. IDP does not need to evaluate any coalition of size three. 
Each node represents a unique integer partition of 4
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Theorem 1  Given n agents, MIDP runs in O(3n) time.
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Proof  MIDP algorithm performs atmost the same amount of operations as IDP does. 
Recall that, IDP does not use the partition table Pt . Given n agents, IDP recomputes 
at most 2n − 1 entries in the partition table for 2n − 1 coalitions on-the-fly. Given the 
optimal values of a coalition C , IDP computes Pt(C) in time 2|C| . Thus, IDP requires 
(2n − 1) × 2n additional operations. The time complexity of IDP algorithm is O(3n) . 
The extra steps MIDP performs is to store the optimal partitions of 2n − 1 coali-
tions in the partition table Pt but MIDP does not perform (2n − 1) × 2n operations 
to recompute the entries in the partition table Pt . Hence, the total operations per-
formed by MIDP is the operations performed by IDP plus the operations necessary 
to store 2n − 1 entries in the partition table Pt . So, total time complexity of MIDP is 
maximum(O(3n),O(2n)) = O(3n) . 	�  ◻

5.2 � Improved IP (IIP) Algorithm

In this section, first we recall the IP algorithm (Rahwan et al. 2007), and then we 
show how the partition table Pt produced by MIDP speeds up IP’s search process. 
The IP algorithm is built on the integer partition-based representation (Rahwan et al. 
2007) of the space of all possible coalition structures. Each integer partition rep-
resents one subspace. We can compute the maximum and the minimum possible 
valued coalition structures inside any subspace. Let, Maxi and Avgi be the maximum 
and average values over all the coalitions of size i ∈ {1, 2,… , n} . In Rahwan et al. 
(2009), the authors proved that by computing Avgi for all i ∈ {1, 2,… , n} , it is pos-
sible to compute the average value of the coalition structures in each subspace as 
follows:

Theorem 2  (Rahwan et al. Rahwan et al. (2009)). Given n agents, for every integer 
partition I of n, let I(i) be the multiplicity of i in I. Then

Fig. 4   Given 9 agents, illustration of IP’s branch and bound technique when searching the subspace 
[2, 3, 4] using the inequality 2. Here, the algorithm proceeds according to the tree depth starting from 
depth d = 1 . First in depth d = 1 , the IP algorithm recognises that the coalition structure containing the 
coalition Cx cannot be optimal. Next, in depth d = 2 , the IP algorithm finds that the coalition structures 
containing the coalitions Cy , and Ci cannot be optimal. So, in both cases, IP does not dive deep into any of 
these branches of the search tree
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In Rahwan et al. (2009), the authors proved that it is possible to compute the upper 
and the lower bounds of the coalition structures in any subspace by using Maxi and 
Avgi . More formally the upper and lower bounds of the subspaces corresponding 
to the integer partition I can be computed as follows: UBI =

∑
i∈I I(i) ×Maxi and 

LBI =
∑

i∈I I(i) × Avgi . In the search process, IP algorithm prunes all the subspaces 
whose upper bound is less than the maximum lower bound over all the subspaces. Next, 
IP starts searching the subspaces based on the upper bound of the subspaces, i.e. the 
subspace with highest upper bound is searched first. Now we explain how IP searches 
any subspace in an efficient way. IP algorithm searches any subspace in a depth-first 
manner. Let’s say IP is now searching a subspace [i1, i2,… , ik] . IP algorithm first iter-
ates over all the coalitions Ci1 of size i1 . Next for each coalition Cx1 ∈ C

i1 , IP iterates over 
all the coalitions Cx2 ∈ C

i2 of size i2 that do not overlap with Cx1 . Similarly, IP iterates 
over all the coalitions Cx3 ∈ C

i3 of size i3 that do not overlap with the coalition Cx1 ∪ Cx2
 , 

and so on. This process is repeated until the last coalition of size ik is picked. Using this 
process all the coalition structures in the subspace [i1, i2,… , ik] are searched. However, 
a straightforward approach generates repeated coalition structures if the multiplicity of 
any integer in the subspace is greater than one. Rahwan et  al. (2009) detail how IP 
avoids such redundant operations. To speed up the search process, IP applies a branch-
and-bound technique at every depth d in the search tree. Specifically, after generating d 
coalitions Cx1 ∈ C

i1 ,… , Cxd ∈ C
id , and before iterating over the next feasible coalitions 

of size d + 1,… , k , IP checks the inequality 2.

Let V(CS∗∗) denotes the best coalition structure found by the IP algorithm at any 
point in time. If the inequality 2 holds, then all the coalition structures composed of 
the coalitions C1, C2,… , Cd can be skipped because the coalition structures contain-
ing the coalitions C1, C2,… , Cd in the subspace [i1, i2,… , ik] will always generate a 
coalition structure value less than V(CS∗∗) and cannot be part of the optimal coa-
lition structure. Hence, IP can skip all such coalition structures during its search. 
To clarify this process, let us now consider the following example. Given 9 agents, 
Fig. 4 gives the graphical representation of how IP searches the subspaces [2, 3, 4].

Furthermore, the authors in Michalak et al. (2016) have shown with the help of IDP 
algorithm that some coalition structures can still be pruned even if they are promising. 
IDP evaluates all the coalitions sequentially and stores the optimal value of the coali-
tions in a table w. Then, every time IP reaches a certain depth d, it performs the follow-
ing operation:

∑
CS∈ΠA V(CS)

�ΠA

I
�

=
�

i∈I

I(i) × Avgi

(2)
d∑

i=1

v(Ci) +

k∑

i=d+1

Maxi < V(CS∗∗)
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If the inequality  3 holds then any coalition structure containing the coalition 
{C1,… , Cd} cannot be the optimal coalition structure in the subspace [i1, i2,… , ik] 
and all such coalition structures can be skipped. Similarly, if the inequality 4 holds 
then the coalition {Cd} is not part of any optimal coalition structure in the subspace 
[i1, i2,… , ik] . Hence, every coalition structure containing the coalition {C1,… , Cd} 
can be skipped during IP’s search. To use the strength of IDP in IP’s search, the 
authors in Michalak et al. (2016) used the same table w4 used by IP and IDP pro-
posed in Michalak et al. (2016).

Michalak et al. (2016) proved that, given n agents, the IP algorithm’s worst-case 
runtime is O(nn) . In the worst scenario, IP can end up by searching all the coali-
tion structures in each subspace. Next, we describe an alternate way to improve 
IP’s branch and bound technique using the partition table Pt produced by MIDP 
algorithm.

5.3 � Abortion Mechanism

In this section, we describe the abortion mechanism to speed up IP’s search. 
Consider the example in Fig.  1. Suppose at any point in time, IP algorithm 
starts searching all the coalition structures in the subspace [2,  1,  1]. Let’s say 
that the value of the best coalition structure found by the algorithm so far is 

(3)
d∑

i=1

w(Ci) >

d∑

j=1

v(Cj)

(4)w(Cd) > v(Cd)

Fig. 5   Given 9 agents, illustration of IIP’s branch and bound technique when searching the subspace 
[2, 3, 4] using the inequality 5. Here, the algorithm proceeds according to the tree depth starting from 
depth d = 1 . First in depth d = 1 , the IIP algorithm recognises that the coalition structure containing the 
coalition Cx cannot be optimal. Next, in depth d = 2 , the IIP algorithm finds that the coalition structures 
containing the coalition Ci cannot be optimal. So, in both cases IIP does not dive deep into any of these 
branches of the search tree

4  More details are provided in Michalak et al. (2016).
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V(CS∗∗) = v({1}) + v({2}) + v({3}) + v({4}) = 24 + 35 + 20 + 41 = 120 . When 
searching the subspace [2,  1,  1] by IP algorithm, IP checks that the value of the 
coalition {1, 2} of size 2 is 59. Next, IP adds two maximum values of the coalitions 
of size 1, which are 35 and 41 with 59. Hence, the value in the left side of inequal-
ity 2 is 59+41+35=135 which is greater than the value of the best coalition struc-
ture V(CS∗∗) = 120 found by the algorithm so far. Hence, IP will proceed to search 
the next feasible coalitions of size 1 and so on. In this case, the inequality 2 does 
not help IP to skip any coalition structure. Similarly, for d = 1 , inequalities 3 and 4 
do not help IP because in this case the value of the coalition {1, 2} is same (i.e. 59) 
before and after evaluation of the coalition {1, 2}.

In IIP, we impose a new rule in the branch and bound search technique of IP and 
call the new IP algorithm as Improved IP (IIP) algorithm. Specifically, after gener-
ating d coalitions C1 ∈ C

i1 ,… , Cd ∈ C
id , and before iterating over the next feasible 

coalitions of the size d + 1,… , k , IIP checks the inequality 5.

Now, if inequality 5 holds, then all the coalition structures composed of coalitions 
C1, C2,… , Cd can be skipped during IIP’s search, because the coalition Cd cannot be 
part of the optimal coalition structure as the coalition Cd is stored in the optimal par-
tition table Pt in two disjoint coalitions.

In IIP’s search technique, first the inequality 5 is applied. If it holds, then there 
is no need to check the inequalities 2, 3 and 4 .

To clarify this process, suppose IIP is searching a subspace [i1, i2,… , ik] . If 
any coalition structure in the subspace [i1, i2,… , ik] has the potential to become 
the optimal coalition structure, then the resulting coalition structure “must 
be in” {C1, C2,… , Ck} , where |Cx| = ix . Suppose, MIDP finished evaluating all 
the coalitions of size i2 and in this situation any coalition structure in the sub-
space [i1, i2,… , ik] will contain the coalition C2 of size i2 if Pt({C2}) = {C2} . If 
Pt({C2}) ≠ {C2} , then the coalition C2 is not part of the optimal coalition struc-
ture. To better understand the process, let us now consider the following example. 
Given 9 agents, Fig. 5 illustrates how IIP searches the subspace [2, 3, 4].

Inside the subspace [2, 3, 4], any coalition structure will have only three coali-
tions, where the first, the second, and the third coalitions are of size 2, 3, and 4 
respectively. Figure 5 shows that Pt({Cx}) ≠ {Cx} . That means, MIDP evaluated 
the coalition Cx and optimally stores the coalition Cx in two disjoint coalitions. 
Hence, the size of the coalition Cx is no more 2. So, all the coalition structures 
containing the coalition Cx inside the subspace [2, 3, 4] can be skipped.

Our approach to speed-up IIP’s search process involves modifying only the 
back end of the IIP’s branch and bound technique using the partition table Pt pro-
duced by MIDP. If the inequality 5 does not hold, then all the existing IP’s branch 
and bound techniques are used in IIP’s search. In our technique, to speed up IIP’s 
search we proceed as follows:

•	 For each coalition {Cd} , IIP checks the inequality 5. If the inequality 5 holds, 
then the coalition {Cd} is not part of the optimal coalition structure. In this 

(5)Pt({Cd}) ≠ {Cd}
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case, the abortion mechanism is used to suspend IIP’s search process in this 
branch of the search tree.

•	 If IIP finds that the inequality 5 does not hold, then IIP uses all the IP’s branch 
and bound techniques we discussed earlier.

The improvement in IIP’s branch and bound technique exploits the optimal partition 
of the coalitions stored in the partition table Pt . To better understand the abortion 
mechanism used in IIP’s search process, let’s take a numerical example.

Fig. 6   IIP searching multiple subspaces simultaneously after MIDP has evaluated all the coalitions of 
size s ∈ (2, 3, 4) . Several subspaces are searched simultaneously by splitting exactly one coalition as 
shown in red edges. IIP can search more subspaces simultaneously by splitting multiple coalitions as 
shown in both red and blue edges
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Example 1  Consider the example shown in Fig. 1. Suppose IIP is searching the sub-
space [2, 1, 1]. Let’s assume that MIDP already finished evaluating all the coalitions 
of size 2. MIDP stores the best partition of every coalition in the partition table Pt . 
When IIP is searching the coalition structures in the subspace [2, 1, 1], IIP checks 
how the coalition is stored in the table Pt . For example, when IIP encounters the 
coalition {1, 2} of size 2 and checks that this coalition is stored in two disjoint coali-
tions, IIP can skip all the coalition structures containing the coalition {1, 2} because 
IIP knows that it is searching the subspace [2, 1, 1]. But the coalition {1, 2} is stored 
into two disjoint coalitions, so the coalition structure containing the coalition {1, 2} 
cannot be the optimal coalition structure in the subspace [2, 1, 1].

Theorem 3  Given n agents, MIDP-IIP runs in O(3n) time.

Proof  In MIDP-IIP, MIDP and IIP run in parallel and return the optimal solution 
as soon as one of MIDP or IIP returns the optimal result. Worst case running times 
of MIDP and IIP algorithms are O(3n) and O(nn) . Hence, the time complexity of 
MIDP-IIP is minimum (O(3n),O(nn)) = O(3n) . 	�  ◻

Theorem 4  Given n agents, MIDP-IIP always finds the optimal solution.

Proof  Each node in the integer partition graph corresponds to a subspace consisting 
of all coalition structures in which the sizes of the coalitions match the parts of the 
integer partition.

Let us fix any particular node P in the integer partition graph, which contains the 
optimal coalition structure CS∗ . The MIDP-IIP is a hybrid version of MIDP and IIP. 
We prove the correctness of MIDP-IIP by using our established algorithms MIDP 
and IIP.

The optimal coalition structure CS∗ is found if MIDP reaches the node P from the 
bottom node in the integer partition graph, or if IIP finishes searching all the feasible 
coalition structures associated with the node P. MIDP-IIP stops if all the subspaces 
are searched by MIDP or IIP. It follows that the node P containing the optimal coali-
tion structure is always found by MIDP or IIP or by both of them. 	�  ◻

5.4 � Searching Multiple Subspaces Simultaneously

In this section, first we show how IIP searches multiple subspaces simultane-
ously and avoids repeating certain operations. Then, we detail how IIP combines 
this technique with MIDP algorithm using the partition table Pt . Recall that IIP 
searches each subspace in a depth-first manner. IIP picks the next subspace based 
on the upper bound of the subspaces. Assume that IIP is now searching the sub-
space I = [i1, i2,… , ik] and at the same time MIDP already finished the evaluation 
of all the coalitions of size s ∈ {2, 3,… s∗} ( s∗ is the maximum coalition size eval-
uated by MIDP. s∗ is decided at runtime). Now, IIP performs the following steps: 
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Fig. 7   Time performance of ODP-IP vs. MIDP-IIP in the interval 22–27 agents. Here, time is measured 
in seconds and plotted on a log scale. The time difference is more visible in the range of 22–27 agents
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(a)	 Finding reachable subspaces X∗ : IIP finds the set of all reachable subspaces 
from the subspace I using the paths already evaluated by MIDP in the integer 
partition graph (cf. Fig. 6). For instance, given I = [2, 4, 4] , the set of all reach-
able subspaces X∗ from I is shown in red and blue edges in Fig. 6. Here multiple 
subspaces can be searched simultaneously by partitioning the integers 2 and 4.

	   However, in Michalak et al. (2016), the authors proved that practically it is faster 
to partition only one integer because the difficulty with splitting multiple integers is 
that it may interfere with the branch-and-bound technique. Hence, to explore these 
multiple subspaces, IIP will always split a single integer. In this example, if we split 
a single integer (i.e. 4) then all the reachable subspaces from I consist of all integer 
partitions that are reachable only through the red edges shown in the Fig. 6.

(b)	 Identifying integers to split: In MIDP-IIP algorithm, IIP always splits a single 
integer to explore more subspaces. To identify the single integer in the subspace 
I, IIP picks an integer x ∈ I so that splitting x allows for reaching the largest 
number of integer partitions in X∗ . For instance, given I = [2, 4, 4] , if exactly 
one integer is split, all the subspaces reachable from the subspace [2, 4, 4] are 
shown through the red edges in Fig. 6. That means, by searching the subspace 
[2, 4, 4], IIP simulteneously searches extra subspaces [1, 2, 3, 4], [2, 2, 2, 4], 
[1, 1, 2, 2, 4], and [1, 1, 1, 1, 2, 4].

(c)	 Changing the order of integers in I: IIP rearranges the integers in I by placing 
the integer x in the first position followed by the other integers. For example, 
suppose IIP is searching the subspace [i1, i2,… , ik] and the integer to split in this 
subspace is ik . After rearranging the integers, I becomes [ik, i1,… , ik−1].

(d)	 Searching the subspace [i1, i2,… , ik] : When searching the subspace [i1, i2,… , ik] , 
IIP algorithm applies the following steps for every coalition C ∈ {C1, C2,… , Ck} : 

 During IIP’s search at every depth d in a branch of the search tree, IIP checks 
the inequality Pt({Cd}) ≠ {Cd} . If this inequality holds, then all the coali-
tion structures containing the coalition Cd in the subspace [i1, i2,… , ik] can be 
skipped safely and IIP stops searching further in that branch of the search tree. 
However, if this inequality is not true, then IIP checks the inequalities  2, 3, and 
4 .

5.4.1 � Comparison Between IP and IIP

Both IP and IIP are able to enumerate all the feasible coalition structures. But, in prac-
tice they work in different ways to search a branch of a search tree. Suppose the sub-
space [i1, i2,… , ik] is being searched by IP and IIP, then in the case of IIP, the coali-
tions of size i1 are enumerated. If any coalition Ci1 of size i1 is stored in the partition 
table in two disjoint coalitions then the coalition Ci1 cannot be part of the optimal coali-
tion structure. In this case, IIP needs only a single operation to check the partition table. 
On the other hand, IP checks the inequalities 2, 3, and 4 . In Sect. 5.3, we have shown 
when IP fails to stop the search process in a branch of the search tree and how IIP can 
stop this search process.

(6)Pt({C}) ≠ {C}, where |C| ≠ ik
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6 � Performance Evaluation

Having described our algorithm, we now detail its evaluation and show its effec-
tiveness by comparing it against ODP-IP. For ODP-IP, we used the code provided 
by the authors of ODP-IP (Michalak et  al. 2016). Both algorithms were imple-
mented in Java, and the experiments were run on an Intel (R) Xeon (R) CPU 
E7-4830 v3, running at 2.10 GHz with 160 GB of RAM. We took an average of 
50 tests for each point on the Fig. 7 to ensure the error becomes very small. With 
this in mind, we considered the following distributions: agent-based uniform 
(Rahwan et al. 2012), agent-based normal (Michalak et al. 2016), beta, exponen-
tial, gamma, modified normal (Rahwan et  al. 2012), modified uniform (Service 
and Adams 2010), Normally Distributed Coalition Structures (NDCS) (Rahwan 
et  al. 2007), and uniform (Larson and Sandholm 2000) distributions. One new 
distribution we considered is the Chi-square distribution. In this distribution, the 
value of each coalition C is drawn from v(C) ∼ �2(�) , where � = |C| is the degree 
of freedom. The rationale behind introducing the Chi-square distribution is by 

Table 1   Effectiveness of 
ODP-IP and MIDP-IIP. The 
table shows runtime (in 
seconds) for 27 agents, taken for 
each coalition value distribution 
as an average over 50 runs

Distribution Time in seconds

ODP-IP MIDP-IIP Difference

time ( t1) time ( t2) t1 − t2

Agent-based uniform 4126 3677 449
Agent-based normal 3269 2904 365
Chi-square 1030 632 398
NDCS 470 300 170
Exponential 409 300 109
Gamma 401 313 88
Sum over
all distributions 9705 8126 1579

Fig. 8   Time difference in 
seconds of ODP-IP and MIDP-
IIP. For each distribution we 
have considered 1125 problem 
instances in the range of 5 to 27 
agents
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changing the degree of freedom � = |C| for different coalition sizes makes it pos-
sible that a coalition structure of any size can be optimal. If the degree of free-
dom � is constant and 𝜈 > 90 it approximates the normal distribution.

For each of the above distributions, we plotted the execution times of ODP-IP 
and MIDP-IIP given different numbers of agents (see Fig. 7). Here, time is meas-
ured in seconds. For each distribution and each number of agents, we took an 
average over multiple runs. As can be seen, running time is reduced significantly 
(11–37%) when compared MIDP-IIP with ODP-IP.

The experimental results show that MIDP-IIP algorithm performs well for 
many problem instances. In particular, we observe the following:

•	 Given 27 agents, with agent-based uniform, agent-based normal, gamma, 
exponential, NDCS, and Chi-square distributions, running time is reduced sig-
nificantly by 10.88, 11.17, 21.95, 26.65, 36.17 and 36.64% respectively when 
compared with ODP-IP algorithm. In this class of problems, the inequality 5 
works well and IIP algorithm does not use IP’s branch and bound technique 
frequently.

•	 With beta, modified-uniform, normal, uniform, and modified-normal distribu-
tions MIDP-IIP and ODP-IP performance are almost the same. When com-
pared MIDP-IIP with ODP-IP we found that in this class of problems, some-
times the inequality 5 works and sometimes IP’s branch and bound technique 
works. When the inequality 5 works, IP’s branch and bound technique is not 
used and when the inequality 5 does not work, IP’s branch and bound tech-
nique is used by IIP algorithm.

The results in Table 1 show that there are data distributions in which MIDP-IIP 
gives more positive synergies. To better understand the positive side of new abor-
tion mechanism, we have plotted the total time difference of MIDP-IIP and ODP-
IP in Fig. 8. Here, the time is measured in seconds. For each distribution, we have 
taken 1125 problem instances in the range of 5 to 27 agents. Each point in this 
figure represents the difference of total time to solve 1125 problem instances by 
ODP-IP and MIDP-IIP. From the Fig. 8 it is clear that MIDP-IIP performance is 
better.

7 � Conclusion

Coalition structure generation in multiagent systems is a well known hard prob-
lem. Precisely identifying the optimal coalition structure is a hard task. Different 
solution techniques to cope with this significant problem have been proposed. The 
current best known exact algorithm for CSG problem is ODP-IP (Michalak et  al. 
2016). In this paper, we have presented a new hybrid algorithm MIDP-IIP which 
extends IDP and IP algorithms. We tested both ODP-IP and MIDP-IIP algorithms 
over 11 different value distributions. The experimental results confirmed that MIDP-
IIP outperforms ODP-IP for several distributions. Out of 11 distributions, MIDP-IIP 
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outperforms ODP-IP significatly on 6 distributions. Given, 27 agents, in the case 
of agent-based uniform distribution, MIDP-IIP took 449 seconds less time as com-
pared to ODP-IP. Our measurements show that improving IDP and IP algorithms 
improves the performance of optimal CSG algorithms upto great extent. When com-
pared with ODP-IP, with agent-based uniform, agent-based normal, gamma, expo-
nential, NDCS, and Chi-square distributions, running time is reduced significantly 
by 10.88, 11.17, 21.95, 26.65, 36.17 and 36.64% respectively.
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