
Vol.:(0123456789)

Group Decision and Negotiation (2022) 31:747–768
https://doi.org/10.1007/s10726-022-09781-2

1 3

An Abortion Based Search Method for Optimal Coalition
Structure Generation

Changder Narayan1 · Aknine Samir2 · Dutta Animesh1

Accepted: 20 March 2022 / Published online: 15 April 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
The Coalition Structure Generation (CSG) problem is a partitioning of a set of
agents into exhaustive and disjoint subsets to maximize social welfare. This NP-
complete problem arises in many practical scenarios. Prominent examples are
included in the field of transportation, e-Commerce, distributed sensor networks,
and others. The fastest exact algorithm to solve the CSG problem is ODP-IP, which
is a hybrid version of two previously established algorithms, namely Improved
Dynamic Programming (IDP) and IP. In this paper, we show that the ODP-IP algo-
rithm performs many redundant operations. To improve ODP-IP, we propose a faster
abortion mechanism to speed up IP’s search. Our abortion mechanism decides at
runtime which of the IP’s operations are redundant to skip them. Then, we propose
a modified version of IDP (named MIDP) and an improved version of IP (named
IIP). Based on these two improved algorithms, we develop a hybrid version (MIDP-
IIP) to solve the CSG problem. After a detailed description of the new algorithm
MIDP-IIP, an experimental comparison is conducted against ODP-IP. Our analysis
shows that MIDP-IIP performs fewer operations than ODP-IP. In addition, MIDP-
IIP reduced significantly many problem instances running times (11–37%).

Keywords Coalition structure generation · Dynamic programming · Coalition
formation

 * Changder Narayan
 narayan.changder@gmail.com

 Dutta Animesh
 samir.aknine@univ-lyon1.fr

1 National Institute of Technology Durgapur, Durgapur, West Bengal, India
2 LIRIS Lab., Lyon 1 University, Lyon, France

http://orcid.org/0000-0003-2478-2150
http://crossmark.crossref.org/dialog/?doi=10.1007/s10726-022-09781-2&domain=pdf

748 C. Narayan et al.

1 3

1 Introduction

Agents form coalitions when they cannot achieve certain goals individually but are
achievable when they “team up" with other agents. The resulting teams are called
coalitions. In line with the long-standing literature in cooperative game theory, we
assume the existence of a characteristic function v that maps each coalition to a real-
valued utility measure. The Coalition Structure Generation (CSG) problem consists
of identifying the optimal partitioning of a set of agents, such that the sum of the
utilities obtained by applying the characteristic function to each partition is maxi-
mized. The CSG problem is intractable because of its combinatorial explosion of
the search space1. Coalition formation can be applied to many real-world problems.
Agents can form a coalition to satisfy particular market niches (Norman et al. 2004).
In distributed sensor networks, different sensors can form a coalition and work
together to track their target of interest (Dang et al. 2006). Delivery companies may
agree together and can build coalitions to make their profit by reducing transporta-
tion costs (Sandhlom and Lesser 1997). In electricity grids, agents create an intel-
ligent and robust power supply network which manages the use of energy resources
(Davidson et al. 2009; Dimeas and Hatziargyriou 2007; Kok et al. 2010; Vyte-
lingum et al. 2010a, b). In e-commerce, customers build coalitions to take advantage
of price discount through bulk purchasing (Li et al. 2010). In small cell networks,
small cells can mitigate the co-tier interference within a coalition and thus increase
the system capacity (Yang et al. 2016). Coalition formation can also be used for
information gathering, where several information servers form coalitions to answer
queries (Klusch and Shehory 1996).

This paper considers the CSG problem in Characteristic Function Games (CFGs).
In CFG, each coalition (C) is a non-empty subset of agents. Given n agents there are
2n − 1 coalitions. Hence, in the CSG problem, given a set of 2n − 1 coalitions, each
associated with a value (positive or negative), we have to find a maximal valued dis-
joint set of coalitions with the same union as the whole set. Since the inputs of the
CSG problem are the 2n − 1 coalitions, there is no hope to devise an exact algorithm
for the CSG problem in polynomial time. Indeed, any exact algorithm must inspect
all the 2n − 1 coalitions in order to find the optimal solution. The fastest exact algo-
rithm for the optimal CSG problem is ODP-IP (Michalak et al. 2016) algorithm with
worst-case time complexity O(3n).

In this work, we design a new algorithm called MIDP-IIP that builds upon the
earlier algorithm ODP-IP (Michalak et al. 2016). To date, the fastest algorithm to
solve the CSG problem is ODP-IP. ODP-IP considers strength of IDP and IP algo-
rithms, and makes a positive synergy between IDP and IP. IDP and IP run in paral-
lel, and as soon as any one of them returns the final result, ODP-IP stops. Practically,
an improvement of either one (IDP or IP) in turn may improve ODP-IP algorithm.
However, it is challenging to make IDP or IP algorithm more faster in practice
because the IDP and IP algorithms belong to NPC problems (Michalak et al. 2016).

1 For n agents, we have total Ω((n

ln n
)n) search spaces, that is, the nth Bell number (Berend and Tassa

2010)

749

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

This paper proposes a new method to solve the CSG problem and makes the follow-
ing contributions:

• We propose a new abortion mechanism to speed-up the IP’s search.
• We propose an improved version of ODP-IP, named MIDP-IIP. We prove that

MIDP-IIP performs less operations than ODP-IP.

The rest of the paper is organized as follows: Related works and the optimal CSG
problem formulation are given in Sects. 2 and 3 respectively. Section 4 delineates
the ODP-IP algorithm. Section 5 details the new MIDP-IIP algorithm, while Sects. 6
and 7 describe the experimental evaluation and propose some conclusions.

2 Related Works

To date, approaches to solve the CSG problem range from mixed-integer program-
ming to branch and bound techniques (Rahwan et al. 2009) through dynamic pro-
gramming (DP) (Yun Yeh and A, 1986). The first complete systematic DP algorithm
for optimal CSG was proposed by Yun Yeh (1986) for complete set partitioning
problem. The algorithm proposed by Yun Yeh (1986), solves the optimization prob-
lem by breaking it into smaller subproblems. Each small subproblem is solved recur-
sively and finally the results of the subproblems are merged and thus generate the
final solution. Given n agents, DP algorithm returns the optimal result with a reason-
able time complexity O(3n) but it requires to evaluate all the possible coalitions.

The Improved Dynamic Programming (IDP) algorithm (Rahwan and Jennings
2008) with time complexity O(3n) is an improved version of the DP algorithm. The
IDP algorithm efficiently manages to avoid a large number of redundant calculations
made by DP approach in Yun Yeh (1986), Rothkopf et al. (1998). Recently, Cruz
et al. (2017) described a novel technique to identify the most frequent operations in
DP and IDP search tree and proposed an optimized version by distributing the pro-
cessing into multiple threads using some multi-threading techniques. The authors in
Cruz et al. (2017) reported that a speed-up over ten times was obtained.

The DP algorithms is the lowest worst time complexity algorithm. The main
drawback of DP is that they could not produce a solution until the algorithms
complete the entire execution. On the other hand an anytime algorithm is one that
returns a solution even if the algorithm terminates prematurely. This anytime prop-
erty makes it more robust against failures than DP algorithms. The result quality
in anytime algorithms increases monotonically as the computation time increases.
The anytime algorithm based on integer partition called IP algorithm (Rahwan et al.
2012) has been shown superior to DP algorithms for many popular coalition value
distributions.

The Optimal Dynamic Programming (ODP) algorithm (Michalak et al. 2016)
achieves a further improvement over IDP by using a bound on the size of the coali-
tions to be explored. Michalak et al. (2016) also proposed a hybrid version of ODP
and IP (Rahwan et al. 2009) called ODP-IP and showed empirically that it is faster
than other algorithms. The Inclusion-Exclusion algorithm proposed by Björklund

750 C. Narayan et al.

1 3

et al. (2009) was tested in practice by Michalak et al. (2016) and the authors found
that the growth rate resembles O(6n) , not O(2n).

All the existing dynamic programming techniques solve the optimal CSG prob-
lem with a worst-case time complexity O(3n) for n number of agents. Hence, such
methods are not effective when the time required to produce the optimal solution
is larger than the time available to the agents. In multi-agent settings without hard
time limits, ODP-IP is efficient to solve many real-life problem instances. However,
in other circumstances for large number of agents with a strict deadline and a short
execution time, the problem would naturally become too hard to be tackled by opti-
mal algorithms. In these cases, we need other alternative approaches. Here heuris-
tics approximate algorithms come to the rescue.

Many meta-heuristic algorithms have been proposed to tackle the CSG problem.
In Shehory and Kraus (1995a, b, 1998), the authors proposed algorithms for coa-
lition formation for task allocation. Another heuristic algorithm based on genetic
algorithm was proposed in Sen and Dutta (2000). A few years later, Keinänen
proposed an algorithm (Keinänen 2009) for the CSG problem based on simulated
annealing. In Di Mauro et al. (2010), the authors addressed the CSG problem by
proposing a solution approach based on GRASP. In Hussin and Fatima (2016), the
authors showed that Tabu search generates better quality solutions than simulated
annealing for coalition games in characteristic function form and in partition func-
tion form. The problem with meta-heuristic algorithms is that they do not guarantee
if an optimal solution is ever found nor do they provide any guarantee on the quality
of the achieved solutions.

In all the algorithms discussed so far, the main focus was on maximizing the
social welfare, where agents consider every possible subset of agents as a poten-
tial coalition. However, this general assumption is not feasible in some realistic sce-
narios. To tackle this issue, a variation of CSG problems arises. To name a few,
(Skibski et al. 2016) presented different algorithms to solve non-utilitarian coalition
structure generation: A balanced CSG and an egalitarian CSG. In a balanced CSG,
the goal is to minimize the difference between the values of smallest and largest
agent utilities, whereas, in an egalitarian CSG, the goal is to find the coalition struc-
ture with the maximal value of smallest agent utility. In another scenario, certain
agents may be prohibited from being in the same coalition or the coalition structure
may be required to be composed of coalitions of the same size. To overcome these
situations, (Rahwan et al. 2011) proposed a Constrained Coalition Formation (CCF)
framework for multi-agent systems. Liu et al. (2016) developed stochastic search
algorithms for coalitional skill games (CSGs), where it is difficult to calculate the
value of a coalition.

3 CSG Problem Formulation

Let A be the set of agents A = {a1, a2,… , an} , n the number of agents in A . We
denote any coalition C = {a1, a2,… , al} as a coalition of agents a1 , a2,… , and al ,
where l ≤ n . Let v be a characteristic function, v assigns a real value v(C) to each
coalition C (i.e. v(C)). Formally, v ∶ 2A → ℝ.

751

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

A coalition structure (CS) over A is a partitioning of A into a set of disjoint coali-
tions {C1, C2,… , Ck} , where k = |CS| . In other words, {C1, C2,… , Ck} satisfies the
following constraints: 1) Ci, Cj ≠ � , i, j ∈ {1, 2,… , k} . 2) Ci ∩ Cj = � , for all i ≠ j .

3)
k⋃

i=1

Ci = A.

Definition 1 Given a characteristic function v which maps each coalition C to a util-
ity value, the value of any coalition structure CS = {C1, C2,… , Ck} is defined by
v(CS) =

∑
Ci∈CS

(v(Ci)).

The optimal solution of CSG is an optimal coalition structure CS∗ ∈ ΠA ,
where ΠA denotes the set of all coalition structures over A . Thus,
CS

∗ = arg maxCS∈ΠAv(CS) . The CSG problem is then the problem of finding such
CS∗ . Note that {a1, a2,… , an} and {1, 2,… , n} are used interchangeably throughout
this paper.

4 ODP‑IP Algorithm

The ODP-IP algorithm is a hybrid version of ODP and IP algorithms. ODP part of
ODP-IP is based on the IDP algorithm. IDP and DP algorithms follow the same
working principle, but IDP is an improved version of the DP algorithm. DP is an
exact algorithm for computing the optimal coalition structure. Let, Pt be the parti-
tion table, Pt(C) stores one optimal partition of each coalition C (cf. Fig. 1). There
can be more than one optimal partition of a coalition C , Pt(C) stores any one of them
(cf. Fig. 1). Let Vt be the optimal value table, Vt(C) stores the optimal value of the
coalition C . DP produces two tables Pt and Vt using the below recursion (cf. Eq. 1).

Let C≃≃ =
{
C
�|C≃ ⊂ C and 0 ≤ |C≃| ≤ |C|

2

}
 , table Vt for each coalition C is

constructed as follows:

To evaluate the coalitions, DP starts by evaluating all possible splits of every possi-
ble coalition of size 2, and then gradually increases in size by 1 unit till size becomes
n and completes tables Pt and Vt for each evaluated coalition C.

Having described how DP operates, now we detail IDP algorithm (Rahwan
and Jennings 2008). The main idea in IDP algorithm is to avoid the evalu-
ation of some splitting operations in the DP network, without losing the
guarantees of finding the optimal coalition structure. In Rahwan and Jen-
nings (2008), the authors proved that, given n agents, IDP algorithm does
not evaluate any of the possible ways of splitting a coalition of size s, where
s ∈ {⌊ 2n

3
⌋ + 1,… , n − 1} , without losing the guarantees of finding the optimal coa-

lition structure. In particular, they showed that it is necessary to evaluate the splits
of a coalition C of size c into two coalitions of sizes c′ and c′′ , where (c�, c��) is in:
dep(c) = {(c�, c��) ∈ ℕ

2 ∶ (c� ≥ c��) ∧ (c� + c�� = c) ∧ [(c� ≤ n − c� − c��) ∨ (c = n)]} .

(1)Vt(C) =

{
v(C) if |C| = 1

arg maxC�∈C�� {Vt(C
�) + Vt(C ⧵ C

�)} otherwise

752 C. Narayan et al.

1 3

As in Pawłowski et al. (2014), dep(c) indicates the dependencies between different
coalition sizes. Based on this formula, IDP only evaluates the partitionning of the
coalition C of size c into two coalitions of sizes c′ and c′′ , where (c�, c��) ∈ dep(c) .
In Rahwan and Jennings (2008), the authors proved that dep(c) = � for all
c ∈ {⌊ 2n

3
⌋ + 1,… , n − 1}.

Before further discussion on ODP-IP, we explain how the IP algorithm (Rahwan
et al. 2007) works. The IP algorithm uses a novel representation of the search space.
It divides the whole search space of the CSG problem into different subspaces based
on the size of the coalitions each subspace contains. The IP algorithm treats each

Fig. 1 Working principle of DP and IDP algorithms computing the tables Pt and Vt , given four agents
A = {1, 2, 3, 4} , and a characteristic function v. With arrowed line in column Pt , we highlight the path
leading to the optimal result. Locally optimal results are shaded in small rectangualr box. The dark shade
indicates splits that are considered by DP, but not IDP

753

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

node in the integer partition graph (cf. Fig. 3) as a subspace. For example, in the
case of 4 agents, the possible integer partitions are [4], [1, 3], [2, 2], [1, 1, 2] and
[1, 1, 1, 1], and each of these represents a subspace containing all the coalition struc-
tures within which the coalition sizes match the parts of the integer partition. For
example, the subspace [1, 1, 2] represents all the coalition structures within which
two disjoint coalitions are of size 1, and one disjoint coalition is of size 2. It is pos-
sible to compute an upper bound and a lower bound on the values of all the coali-
tion structures in each subspace. These bounds are then used to prune the subspaces
which do not have any potential of containing an optimal coalition structure. Out of
all the remaining potential subspaces, IP sorts all these subspaces according to the
upper bound values and starts searching them one by one2 until all the subspaces are
searched.

We now show how IDP is combined with the IP algorithm and make a hybrid
ODP-IP algorithm (Michalak et al. 2016). In the ODP-IP algorithm, IDP and IP
run in parallel and terminate as soon as any one of the IDP or IP returns the final
result. To detail the operation of ODP-IP, we introduce the following integer parti-
tion graph for ten agents (cf. Fig. 2).

Suppose IDP completes the evaluation of all the coalitions of size 2, 3, 4. Figure 2
shows that all the red colored subspaces in the integer partition graph have already
been explored by IDP. Hence, IP will consider only white colored subspaces.3

The preceding discussion implies that ODP-IP divides the search between IDP
and IP and makes ODP-IP algorithm faster in practice. In our work, we propose
a Modified Improved Dynamic Programming algorithm (MIDP) and an Improved
IP (IIP) algorithm in place of ODP and IP and thus making new hybrid algorithm
MIDP-IIP. The basic idea of MIDP-IIP is to maintain a partition table Pt for all the
coalitions. To solve any subspace, the IIP algorithm uses this partition table Pt to
speed-up the search process so that the overall runtime of MIDP-IIP is minimized.
We provide the details of the MIDP-IIP algorithm in the next section.

5 MIDP‑IIP Algorithm

In MIDP-IIP algorithm, MIDP and IIP run in parallel, and IIP uses the information
provided by MIDP algorithm to speed up the search process. In the next section, we
first provide a detailed description of the MIDP algorithm, then we explain the IIP
algorithm.

2 A detailed presentation of IP is proposed in Rahwan et al. (2007).
3 For the techniques used in IP algorithm in the hybrid ODP-IP algorithm, we recommend readers to
refer to the novel techniques to improve IP’s search process using the branch and bound techniques pro-
posed by Michalak et al. (2016).

754 C. Narayan et al.

1 3

5.1 MIDP Algorithm

The working principle of MIDP algorithm is shown in algorithm 1. MIDP algorithm
stores the optimal partition of each evaluated coalition in the partition table Pt . To
explain the difference between the IDP and MIDP, let’s take the example in Fig. 1.
IDP evaluates all the coalitions of size s ∈ {2, 3,… , ⌊ 2n

3
⌋} and then evaluates the

grand coalition. In Fig. 1, IDP evaluates all coalitions of size 2 and then evaluates

Fig. 2 Searched subspaces after evaluation of all the coalitions of size 4, given 10 agents. The red
colored subspaces are fully searched by IDP, whereas the white colored subspaces are not yet searched

755

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

the grand coalition A = {1, 2, 3, 4} . Recall that, IDP does not store the optimal par-
tition of the coalitions (Rahwan and Jennings 2008). Hence, there is no instance
or immediate access to any coalition’s optimal partition. IDP can get the optimal
solution without using any partition table in different ways. For example in Fig. 1,
IDP checks that the grand coalition A = {1, 2, 3, 4} is optimally partitioned into two
coalitions {1, 2} and {3,4}. Next IDP re-evaluates the coalitions {1, 2} , {3, 4} and
finds that the coalition {1, 2} is optimally partitioned into the coalitions {1} and {2} ,
whereas it is not beneficial to split the coalition {3, 4} . By doing so, IDP finds that
the optimal coalition structure is {{1}{2}{3, 4}} with the value 134.

On the other hand, MIDP stores the optimal partition of all the evaluated coali-
tions in the partition table Pt . By using the Pt table, MIDP finds the optimal partition
of the grand coalition A = {1, 2, 3, 4} in the same way as DP does (shown in Fig. 1).
Next, we show how IP’s search procedure can go faster using the information stored
in the Pt table.

Fig. 3 The integer partition graph for 4 agents. IDP does not need to evaluate any coalition of size three.
Each node represents a unique integer partition of 4

756 C. Narayan et al.

1 3

Theorem 1 Given n agents, MIDP runs in O(3n) time.

757

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

Proof MIDP algorithm performs atmost the same amount of operations as IDP does.
Recall that, IDP does not use the partition table Pt . Given n agents, IDP recomputes
at most 2n − 1 entries in the partition table for 2n − 1 coalitions on-the-fly. Given the
optimal values of a coalition C , IDP computes Pt(C) in time 2|C| . Thus, IDP requires
(2n − 1) × 2n additional operations. The time complexity of IDP algorithm is O(3n) .
The extra steps MIDP performs is to store the optimal partitions of 2n − 1 coali-
tions in the partition table Pt but MIDP does not perform (2n − 1) × 2n operations
to recompute the entries in the partition table Pt . Hence, the total operations per-
formed by MIDP is the operations performed by IDP plus the operations necessary
to store 2n − 1 entries in the partition table Pt . So, total time complexity of MIDP is
maximum(O(3n),O(2n)) = O(3n) . ◻

5.2 Improved IP (IIP) Algorithm

In this section, first we recall the IP algorithm (Rahwan et al. 2007), and then we
show how the partition table Pt produced by MIDP speeds up IP’s search process.
The IP algorithm is built on the integer partition-based representation (Rahwan et al.
2007) of the space of all possible coalition structures. Each integer partition rep-
resents one subspace. We can compute the maximum and the minimum possible
valued coalition structures inside any subspace. Let, Maxi and Avgi be the maximum
and average values over all the coalitions of size i ∈ {1, 2,… , n} . In Rahwan et al.
(2009), the authors proved that by computing Avgi for all i ∈ {1, 2,… , n} , it is pos-
sible to compute the average value of the coalition structures in each subspace as
follows:

Theorem 2 (Rahwan et al. Rahwan et al. (2009)). Given n agents, for every integer
partition I of n, let I(i) be the multiplicity of i in I. Then

Fig. 4 Given 9 agents, illustration of IP’s branch and bound technique when searching the subspace
[2, 3, 4] using the inequality 2. Here, the algorithm proceeds according to the tree depth starting from
depth d = 1 . First in depth d = 1 , the IP algorithm recognises that the coalition structure containing the
coalition Cx cannot be optimal. Next, in depth d = 2 , the IP algorithm finds that the coalition structures
containing the coalitions Cy , and Ci cannot be optimal. So, in both cases, IP does not dive deep into any of
these branches of the search tree

758 C. Narayan et al.

1 3

In Rahwan et al. (2009), the authors proved that it is possible to compute the upper
and the lower bounds of the coalition structures in any subspace by using Maxi and
Avgi . More formally the upper and lower bounds of the subspaces corresponding
to the integer partition I can be computed as follows: UBI =

∑
i∈I I(i) ×Maxi and

LBI =
∑

i∈I I(i) × Avgi . In the search process, IP algorithm prunes all the subspaces
whose upper bound is less than the maximum lower bound over all the subspaces. Next,
IP starts searching the subspaces based on the upper bound of the subspaces, i.e. the
subspace with highest upper bound is searched first. Now we explain how IP searches
any subspace in an efficient way. IP algorithm searches any subspace in a depth-first
manner. Let’s say IP is now searching a subspace [i1, i2,… , ik] . IP algorithm first iter-
ates over all the coalitions Ci1 of size i1 . Next for each coalition Cx1 ∈ C

i1 , IP iterates over
all the coalitions Cx2 ∈ C

i2 of size i2 that do not overlap with Cx1 . Similarly, IP iterates
over all the coalitions Cx3 ∈ C

i3 of size i3 that do not overlap with the coalition Cx1 ∪ Cx2
 ,

and so on. This process is repeated until the last coalition of size ik is picked. Using this
process all the coalition structures in the subspace [i1, i2,… , ik] are searched. However,
a straightforward approach generates repeated coalition structures if the multiplicity of
any integer in the subspace is greater than one. Rahwan et al. (2009) detail how IP
avoids such redundant operations. To speed up the search process, IP applies a branch-
and-bound technique at every depth d in the search tree. Specifically, after generating d
coalitions Cx1 ∈ C

i1 ,… , Cxd ∈ C
id , and before iterating over the next feasible coalitions

of size d + 1,… , k , IP checks the inequality 2.

Let V(CS∗∗) denotes the best coalition structure found by the IP algorithm at any
point in time. If the inequality 2 holds, then all the coalition structures composed of
the coalitions C1, C2,… , Cd can be skipped because the coalition structures contain-
ing the coalitions C1, C2,… , Cd in the subspace [i1, i2,… , ik] will always generate a
coalition structure value less than V(CS∗∗) and cannot be part of the optimal coa-
lition structure. Hence, IP can skip all such coalition structures during its search.
To clarify this process, let us now consider the following example. Given 9 agents,
Fig. 4 gives the graphical representation of how IP searches the subspaces [2, 3, 4].

Furthermore, the authors in Michalak et al. (2016) have shown with the help of IDP
algorithm that some coalition structures can still be pruned even if they are promising.
IDP evaluates all the coalitions sequentially and stores the optimal value of the coali-
tions in a table w. Then, every time IP reaches a certain depth d, it performs the follow-
ing operation:

∑
CS∈ΠA V(CS)

�ΠA

I
�

=
�

i∈I

I(i) × Avgi

(2)
d∑

i=1

v(Ci) +

k∑

i=d+1

Maxi < V(CS∗∗)

759

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

If the inequality 3 holds then any coalition structure containing the coalition
{C1,… , Cd} cannot be the optimal coalition structure in the subspace [i1, i2,… , ik]
and all such coalition structures can be skipped. Similarly, if the inequality 4 holds
then the coalition {Cd} is not part of any optimal coalition structure in the subspace
[i1, i2,… , ik] . Hence, every coalition structure containing the coalition {C1,… , Cd}
can be skipped during IP’s search. To use the strength of IDP in IP’s search, the
authors in Michalak et al. (2016) used the same table w4 used by IP and IDP pro-
posed in Michalak et al. (2016).

Michalak et al. (2016) proved that, given n agents, the IP algorithm’s worst-case
runtime is O(nn) . In the worst scenario, IP can end up by searching all the coali-
tion structures in each subspace. Next, we describe an alternate way to improve
IP’s branch and bound technique using the partition table Pt produced by MIDP
algorithm.

5.3 Abortion Mechanism

In this section, we describe the abortion mechanism to speed up IP’s search.
Consider the example in Fig. 1. Suppose at any point in time, IP algorithm
starts searching all the coalition structures in the subspace [2, 1, 1]. Let’s say
that the value of the best coalition structure found by the algorithm so far is

(3)
d∑

i=1

w(Ci) >

d∑

j=1

v(Cj)

(4)w(Cd) > v(Cd)

Fig. 5 Given 9 agents, illustration of IIP’s branch and bound technique when searching the subspace
[2, 3, 4] using the inequality 5. Here, the algorithm proceeds according to the tree depth starting from
depth d = 1 . First in depth d = 1 , the IIP algorithm recognises that the coalition structure containing the
coalition Cx cannot be optimal. Next, in depth d = 2 , the IIP algorithm finds that the coalition structures
containing the coalition Ci cannot be optimal. So, in both cases IIP does not dive deep into any of these
branches of the search tree

4 More details are provided in Michalak et al. (2016).

760 C. Narayan et al.

1 3

V(CS∗∗) = v({1}) + v({2}) + v({3}) + v({4}) = 24 + 35 + 20 + 41 = 120 . When
searching the subspace [2, 1, 1] by IP algorithm, IP checks that the value of the
coalition {1, 2} of size 2 is 59. Next, IP adds two maximum values of the coalitions
of size 1, which are 35 and 41 with 59. Hence, the value in the left side of inequal-
ity 2 is 59+41+35=135 which is greater than the value of the best coalition struc-
ture V(CS∗∗) = 120 found by the algorithm so far. Hence, IP will proceed to search
the next feasible coalitions of size 1 and so on. In this case, the inequality 2 does
not help IP to skip any coalition structure. Similarly, for d = 1 , inequalities 3 and 4
do not help IP because in this case the value of the coalition {1, 2} is same (i.e. 59)
before and after evaluation of the coalition {1, 2}.

In IIP, we impose a new rule in the branch and bound search technique of IP and
call the new IP algorithm as Improved IP (IIP) algorithm. Specifically, after gener-
ating d coalitions C1 ∈ C

i1 ,… , Cd ∈ C
id , and before iterating over the next feasible

coalitions of the size d + 1,… , k , IIP checks the inequality 5.

Now, if inequality 5 holds, then all the coalition structures composed of coalitions
C1, C2,… , Cd can be skipped during IIP’s search, because the coalition Cd cannot be
part of the optimal coalition structure as the coalition Cd is stored in the optimal par-
tition table Pt in two disjoint coalitions.

In IIP’s search technique, first the inequality 5 is applied. If it holds, then there
is no need to check the inequalities 2, 3 and 4 .

To clarify this process, suppose IIP is searching a subspace [i1, i2,… , ik] . If
any coalition structure in the subspace [i1, i2,… , ik] has the potential to become
the optimal coalition structure, then the resulting coalition structure “must
be in” {C1, C2,… , Ck} , where |Cx| = ix . Suppose, MIDP finished evaluating all
the coalitions of size i2 and in this situation any coalition structure in the sub-
space [i1, i2,… , ik] will contain the coalition C2 of size i2 if Pt({C2}) = {C2} . If
Pt({C2}) ≠ {C2} , then the coalition C2 is not part of the optimal coalition struc-
ture. To better understand the process, let us now consider the following example.
Given 9 agents, Fig. 5 illustrates how IIP searches the subspace [2, 3, 4].

Inside the subspace [2, 3, 4], any coalition structure will have only three coali-
tions, where the first, the second, and the third coalitions are of size 2, 3, and 4
respectively. Figure 5 shows that Pt({Cx}) ≠ {Cx} . That means, MIDP evaluated
the coalition Cx and optimally stores the coalition Cx in two disjoint coalitions.
Hence, the size of the coalition Cx is no more 2. So, all the coalition structures
containing the coalition Cx inside the subspace [2, 3, 4] can be skipped.

Our approach to speed-up IIP’s search process involves modifying only the
back end of the IIP’s branch and bound technique using the partition table Pt pro-
duced by MIDP. If the inequality 5 does not hold, then all the existing IP’s branch
and bound techniques are used in IIP’s search. In our technique, to speed up IIP’s
search we proceed as follows:

• For each coalition {Cd} , IIP checks the inequality 5. If the inequality 5 holds,
then the coalition {Cd} is not part of the optimal coalition structure. In this

(5)Pt({Cd}) ≠ {Cd}

761

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

case, the abortion mechanism is used to suspend IIP’s search process in this
branch of the search tree.

• If IIP finds that the inequality 5 does not hold, then IIP uses all the IP’s branch
and bound techniques we discussed earlier.

The improvement in IIP’s branch and bound technique exploits the optimal partition
of the coalitions stored in the partition table Pt . To better understand the abortion
mechanism used in IIP’s search process, let’s take a numerical example.

Fig. 6 IIP searching multiple subspaces simultaneously after MIDP has evaluated all the coalitions of
size s ∈ (2, 3, 4) . Several subspaces are searched simultaneously by splitting exactly one coalition as
shown in red edges. IIP can search more subspaces simultaneously by splitting multiple coalitions as
shown in both red and blue edges

762 C. Narayan et al.

1 3

Example 1 Consider the example shown in Fig. 1. Suppose IIP is searching the sub-
space [2, 1, 1]. Let’s assume that MIDP already finished evaluating all the coalitions
of size 2. MIDP stores the best partition of every coalition in the partition table Pt .
When IIP is searching the coalition structures in the subspace [2, 1, 1], IIP checks
how the coalition is stored in the table Pt . For example, when IIP encounters the
coalition {1, 2} of size 2 and checks that this coalition is stored in two disjoint coali-
tions, IIP can skip all the coalition structures containing the coalition {1, 2} because
IIP knows that it is searching the subspace [2, 1, 1]. But the coalition {1, 2} is stored
into two disjoint coalitions, so the coalition structure containing the coalition {1, 2}
cannot be the optimal coalition structure in the subspace [2, 1, 1].

Theorem 3 Given n agents, MIDP-IIP runs in O(3n) time.

Proof In MIDP-IIP, MIDP and IIP run in parallel and return the optimal solution
as soon as one of MIDP or IIP returns the optimal result. Worst case running times
of MIDP and IIP algorithms are O(3n) and O(nn) . Hence, the time complexity of
MIDP-IIP is minimum (O(3n),O(nn)) = O(3n) . ◻

Theorem 4 Given n agents, MIDP-IIP always finds the optimal solution.

Proof Each node in the integer partition graph corresponds to a subspace consisting
of all coalition structures in which the sizes of the coalitions match the parts of the
integer partition.

Let us fix any particular node P in the integer partition graph, which contains the
optimal coalition structure CS∗ . The MIDP-IIP is a hybrid version of MIDP and IIP.
We prove the correctness of MIDP-IIP by using our established algorithms MIDP
and IIP.

The optimal coalition structure CS∗ is found if MIDP reaches the node P from the
bottom node in the integer partition graph, or if IIP finishes searching all the feasible
coalition structures associated with the node P. MIDP-IIP stops if all the subspaces
are searched by MIDP or IIP. It follows that the node P containing the optimal coali-
tion structure is always found by MIDP or IIP or by both of them. ◻

5.4 Searching Multiple Subspaces Simultaneously

In this section, first we show how IIP searches multiple subspaces simultane-
ously and avoids repeating certain operations. Then, we detail how IIP combines
this technique with MIDP algorithm using the partition table Pt . Recall that IIP
searches each subspace in a depth-first manner. IIP picks the next subspace based
on the upper bound of the subspaces. Assume that IIP is now searching the sub-
space I = [i1, i2,… , ik] and at the same time MIDP already finished the evaluation
of all the coalitions of size s ∈ {2, 3,… s∗} (s∗ is the maximum coalition size eval-
uated by MIDP. s∗ is decided at runtime). Now, IIP performs the following steps:

763

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

22 23 24 25 26 27

101

102

103

Number of agents

T
im

e
(i
n
se
co
nd

s)
Agent-based Uniform

ODP-IP
MIDP-IIP

(a)

22 23 24 25 26 27

101

102

103

Number of agents

T
im

e
(i
n
se
co
nd

s)

Agent-based normal

ODP-IP
MIDP-IIP

(b)

22 23 24 25 26 27

101

102

103

Number of agents

T
im

e
(i
n
se
co
nd

s)

Chi-square

ODP-IP
MIDP-IIP

(c)

22 23 24 25 26 27

101

102

Number of agents

T
im

e
(i
n
se
co
nd

s)
Gamma

ODP-IP
MIDP-IIP

(d)

22 23 24 25 26 27

101

102

Number of agents

T
im

e
(i
n
se
co
nd

s)

Exponential

ODP-IP
MIDP-IIP

(e)

22 23 24 25 26 27

101

102

Number of agents

T
im

e
(i
n
se
co
nd

s)

NDCS

ODP-IP
MIDP-IIP

(f)

Fig. 7 Time performance of ODP-IP vs. MIDP-IIP in the interval 22–27 agents. Here, time is measured
in seconds and plotted on a log scale. The time difference is more visible in the range of 22–27 agents

764 C. Narayan et al.

1 3

(a) Finding reachable subspaces X∗ : IIP finds the set of all reachable subspaces
from the subspace I using the paths already evaluated by MIDP in the integer
partition graph (cf. Fig. 6). For instance, given I = [2, 4, 4] , the set of all reach-
able subspaces X∗ from I is shown in red and blue edges in Fig. 6. Here multiple
subspaces can be searched simultaneously by partitioning the integers 2 and 4.

 However, in Michalak et al. (2016), the authors proved that practically it is faster
to partition only one integer because the difficulty with splitting multiple integers is
that it may interfere with the branch-and-bound technique. Hence, to explore these
multiple subspaces, IIP will always split a single integer. In this example, if we split
a single integer (i.e. 4) then all the reachable subspaces from I consist of all integer
partitions that are reachable only through the red edges shown in the Fig. 6.

(b) Identifying integers to split: In MIDP-IIP algorithm, IIP always splits a single
integer to explore more subspaces. To identify the single integer in the subspace
I, IIP picks an integer x ∈ I so that splitting x allows for reaching the largest
number of integer partitions in X∗ . For instance, given I = [2, 4, 4] , if exactly
one integer is split, all the subspaces reachable from the subspace [2, 4, 4] are
shown through the red edges in Fig. 6. That means, by searching the subspace
[2, 4, 4], IIP simulteneously searches extra subspaces [1, 2, 3, 4], [2, 2, 2, 4],
[1, 1, 2, 2, 4], and [1, 1, 1, 1, 2, 4].

(c) Changing the order of integers in I: IIP rearranges the integers in I by placing
the integer x in the first position followed by the other integers. For example,
suppose IIP is searching the subspace [i1, i2,… , ik] and the integer to split in this
subspace is ik . After rearranging the integers, I becomes [ik, i1,… , ik−1].

(d) Searching the subspace [i1, i2,… , ik] : When searching the subspace [i1, i2,… , ik] ,
IIP algorithm applies the following steps for every coalition C ∈ {C1, C2,… , Ck} :

 During IIP’s search at every depth d in a branch of the search tree, IIP checks
the inequality Pt({Cd}) ≠ {Cd} . If this inequality holds, then all the coali-
tion structures containing the coalition Cd in the subspace [i1, i2,… , ik] can be
skipped safely and IIP stops searching further in that branch of the search tree.
However, if this inequality is not true, then IIP checks the inequalities 2, 3, and
4 .

5.4.1 Comparison Between IP and IIP

Both IP and IIP are able to enumerate all the feasible coalition structures. But, in prac-
tice they work in different ways to search a branch of a search tree. Suppose the sub-
space [i1, i2,… , ik] is being searched by IP and IIP, then in the case of IIP, the coali-
tions of size i1 are enumerated. If any coalition Ci1 of size i1 is stored in the partition
table in two disjoint coalitions then the coalition Ci1 cannot be part of the optimal coali-
tion structure. In this case, IIP needs only a single operation to check the partition table.
On the other hand, IP checks the inequalities 2, 3, and 4 . In Sect. 5.3, we have shown
when IP fails to stop the search process in a branch of the search tree and how IIP can
stop this search process.

(6)Pt({C}) ≠ {C}, where |C| ≠ ik

765

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

6 Performance Evaluation

Having described our algorithm, we now detail its evaluation and show its effec-
tiveness by comparing it against ODP-IP. For ODP-IP, we used the code provided
by the authors of ODP-IP (Michalak et al. 2016). Both algorithms were imple-
mented in Java, and the experiments were run on an Intel (R) Xeon (R) CPU
E7-4830 v3, running at 2.10 GHz with 160 GB of RAM. We took an average of
50 tests for each point on the Fig. 7 to ensure the error becomes very small. With
this in mind, we considered the following distributions: agent-based uniform
(Rahwan et al. 2012), agent-based normal (Michalak et al. 2016), beta, exponen-
tial, gamma, modified normal (Rahwan et al. 2012), modified uniform (Service
and Adams 2010), Normally Distributed Coalition Structures (NDCS) (Rahwan
et al. 2007), and uniform (Larson and Sandholm 2000) distributions. One new
distribution we considered is the Chi-square distribution. In this distribution, the
value of each coalition C is drawn from v(C) ∼ �2(�) , where � = |C| is the degree
of freedom. The rationale behind introducing the Chi-square distribution is by

Table 1 Effectiveness of
ODP-IP and MIDP-IIP. The
table shows runtime (in
seconds) for 27 agents, taken for
each coalition value distribution
as an average over 50 runs

Distribution Time in seconds

ODP-IP MIDP-IIP Difference

time (t1) time (t2) t1 − t2

Agent-based uniform 4126 3677 449
Agent-based normal 3269 2904 365
Chi-square 1030 632 398
NDCS 470 300 170
Exponential 409 300 109
Gamma 401 313 88
Sum over
all distributions 9705 8126 1579

Fig. 8 Time difference in
seconds of ODP-IP and MIDP-
IIP. For each distribution we
have considered 1125 problem
instances in the range of 5 to 27
agents

γ EXP NDCS χ2 ABN ABU

0

1

2

3

·104

Data distributions

T
im

e
di
ffe

re
nc

e
(i
n
se
co
nd

s)

(ODP-IP)-(MIDP-IIP)

766 C. Narayan et al.

1 3

changing the degree of freedom � = |C| for different coalition sizes makes it pos-
sible that a coalition structure of any size can be optimal. If the degree of free-
dom � is constant and 𝜈 > 90 it approximates the normal distribution.

For each of the above distributions, we plotted the execution times of ODP-IP
and MIDP-IIP given different numbers of agents (see Fig. 7). Here, time is meas-
ured in seconds. For each distribution and each number of agents, we took an
average over multiple runs. As can be seen, running time is reduced significantly
(11–37%) when compared MIDP-IIP with ODP-IP.

The experimental results show that MIDP-IIP algorithm performs well for
many problem instances. In particular, we observe the following:

• Given 27 agents, with agent-based uniform, agent-based normal, gamma,
exponential, NDCS, and Chi-square distributions, running time is reduced sig-
nificantly by 10.88, 11.17, 21.95, 26.65, 36.17 and 36.64% respectively when
compared with ODP-IP algorithm. In this class of problems, the inequality 5
works well and IIP algorithm does not use IP’s branch and bound technique
frequently.

• With beta, modified-uniform, normal, uniform, and modified-normal distribu-
tions MIDP-IIP and ODP-IP performance are almost the same. When com-
pared MIDP-IIP with ODP-IP we found that in this class of problems, some-
times the inequality 5 works and sometimes IP’s branch and bound technique
works. When the inequality 5 works, IP’s branch and bound technique is not
used and when the inequality 5 does not work, IP’s branch and bound tech-
nique is used by IIP algorithm.

The results in Table 1 show that there are data distributions in which MIDP-IIP
gives more positive synergies. To better understand the positive side of new abor-
tion mechanism, we have plotted the total time difference of MIDP-IIP and ODP-
IP in Fig. 8. Here, the time is measured in seconds. For each distribution, we have
taken 1125 problem instances in the range of 5 to 27 agents. Each point in this
figure represents the difference of total time to solve 1125 problem instances by
ODP-IP and MIDP-IIP. From the Fig. 8 it is clear that MIDP-IIP performance is
better.

7 Conclusion

Coalition structure generation in multiagent systems is a well known hard prob-
lem. Precisely identifying the optimal coalition structure is a hard task. Different
solution techniques to cope with this significant problem have been proposed. The
current best known exact algorithm for CSG problem is ODP-IP (Michalak et al.
2016). In this paper, we have presented a new hybrid algorithm MIDP-IIP which
extends IDP and IP algorithms. We tested both ODP-IP and MIDP-IIP algorithms
over 11 different value distributions. The experimental results confirmed that MIDP-
IIP outperforms ODP-IP for several distributions. Out of 11 distributions, MIDP-IIP

767

1 3

An Abortion Based Search Method for Optimal Coalition Structure…

outperforms ODP-IP significatly on 6 distributions. Given, 27 agents, in the case
of agent-based uniform distribution, MIDP-IIP took 449 seconds less time as com-
pared to ODP-IP. Our measurements show that improving IDP and IP algorithms
improves the performance of optimal CSG algorithms upto great extent. When com-
pared with ODP-IP, with agent-based uniform, agent-based normal, gamma, expo-
nential, NDCS, and Chi-square distributions, running time is reduced significantly
by 10.88, 11.17, 21.95, 26.65, 36.17 and 36.64% respectively.

Acknowledgements The research presented in this article is funded by “Visvesvaraya Ph.D. Scheme for
Electronics & IT”, Grant No: PhD-MLA/4(29)/2015-16.

References

Berend D, Tassa T (2010) Improved bounds on bell numbers and on moments of sums of random vari-
ables. Probab Math Stat 30(2):185–205

Björklund A, Husfeldt T, Koivisto M (2009) Set partitioning via inclusion-exclusion. SIAM J Comput
39(2):546–563

Cruz F, Espinosa A, Moure JC, Cerquides J, Rodriguez-Aguilar JA, Svensson K, Ramchurn SD (2017)
Coalition structure generation problems: optimization and parallelization of the idp algorithm in
multicore systems. Concurr Comput Pract Exp 29(5):e3969

Dang VD, Dash RK, Rogers A, Jennings NR (2006) Overlapping coalition formation for efficient data
fusion in multi-sensor networks. AAAI Conf Artif Intell 6:635–640

Davidson E, Dolan M, McArthur S, Ault G (2009) The use of constraint programming for the autono-
mous management of power flows, in: Intelligent system applications to power systems, 2009.
ISAP’09. 15th International Conference on, IEEE, pp. 1–7

Di Mauro N, Basile TM, Ferilli S, Esposito F (2010) Coalition structure generation with grasp. In: Inter-
national conference on artificial intelligence: methodology, systems, and applications, Springer, pp
111–120

Dimeas AL, Hatziargyriou ND (2007) Agent based control of virtual power plants. In: Intelligent systems
applications to power systems. ISAP 2007. International Conference on, IEEE, pp. 1–6

Hussin A, Fatima S (2016) Heuristic methods for optimal coalition structure generation. In: Multi-agent
systems and agreement technologies, Springer, pp. 124–139

Keinänen H (2009) Simulated annealing for multi-agent coalition formation. In: KES international sym-
posium on agent and multi-agent systems: technologies and applications, Springer, pp 30–39

Klusch M, Shehory O (1996) A polynomial kernel-oriented coalition algorithm for rational information
agents, Tokoro, ed 157–164

Kok J, Scheepers M, Kamphuis I (2010) Intelligence in electricity networks for embedding renewables
and distributed generation. In: Intelligent infrastructures, Springer, pp. 179–209

Larson KS, Sandholm TW (2000) Anytime coalition structure generation: an average case study. J Exp
Theor Artif Intell 12(1):23–42

Li C, Sycara K, Scheller-Wolf A (2010) Combinatorial coalition formation for multi-item group-buying
with heterogeneous customers. Decis Support Syst 49(1):1–13

Liu Y, Zhang G-F, Su Z-P, Yue F, Jiang J-G (2016) Using computational intelligence algorithms to
solve the coalition structure generation problem in coalitional skill games. J Comput Sci Technol
31(6):1136–1150

Michalak T, Rahwan T, Elkind E, Wooldridge M, Jennings NR (2016) A hybrid exact algorithm for com-
plete set partitioning. Artif Intell 230:14–50

Norman TJ, Preece A, Chalmers S, Jennings NR, Luck M, Dang VD, Nguyen TD, Deora V, Shao J, Gray
WA et al (2004) Agent-based formation of virtual organisations. Knowl-Based Syst 17(2):103–111

Pawłowski K, Kurach K, Svensson K, Ramchurn S, Michalak TP, Rahwan T (2014) Coalition structure
generation with the graphics processing unit. In: AAMAS, international foundation for autonomous
agents and multiagent systems, pp. 293–300

768 C. Narayan et al.

1 3

Rahwan T, Ramchurn SD, Dang VD, Giovannucci A, Jennings NR (2007) Anytime optimal coalition
structure generation. AAAI Conf Artif Intell 7:1184–1190

Rahwan T, Ramchurn SD, Dang VD, Jennings NR (2007) Near-optimal anytime coalition structure gen-
eration. Int Joint Conf Artif Intell 7:2365–2371

Rahwan T, Ramchurn SD, Jennings NR, Giovannucci A (2009) An anytime algorithm for optimal coali-
tion structure generation. J Artif Intell Res 34:521–567

Rahwan T, Michalak TP, Elkind E, Faliszewski P, Sroka J, Wooldridge M, Jennings NR (2011) Con-
strained coalition formation. AAAI Conf Artif Intell 11:719–725

Rahwan T, Jennings NR (2008) An improved dynamic programming algorithm for coalition structure
generation. In: Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems-Volume 3, International Foundation for Autonomous Agents and Multiagent
Systems, pp. 1417–1420

Rahwan T, Michalak TP, Jennings NR (2012) A hybrid algorithm for coalition structure generation., In:
AAAI conference on artificial intelligence, pp 1443–1449

Rothkopf MH, Pekeč A, Harstad RM (1998) Computationally manageable combinational auctions. Man-
age Sci 44(8):1131–1147

Sandhlom TW, Lesser VR (1997) Coalitions among computationally bounded agents. Artif Intell
94(1):99–137

Sen S, Dutta PS (2000) Searching for optimal coalition structures. In: MultiAgent Systems, Proceedings.
Fourth international conference on, IEEE, pp 287–292

Service TC, Adams JA (2010) Approximate coalition structure generation. In: Twenty-Fourth AAAI con-
ference on artificial intelligence, pp 854–859

Shehory O, Kraus S (1998) Methods for task allocation via agent coalition formation. Artif Intell
101(1–2):165–200

Shehory O, Kraus S (1995) Coalition formation among autonomous agents: Strategies and complexity
(preliminary report), Springer, pp. 55–72

Shehory O, Kraus S (1995) Task allocation via coalition formation among autonomous agents. In: Inter-
national joint conference on artificial intelligence, pp 655–661

Skibski O, Michalewski H, Nagórko A, Michalak TP, Dowell AJ, Rahwan T, Wooldridge M (2016)
Non-utilitarian coalition structure generation. In: European conference on artificial intelligence, pp
1738–1739

Vytelingum P, Ramchurn SD, Voice TD, Rogers A, Jennings NR (2010) Trading agents for the smart
electricity grid. In: Proceedings of the 9th international conference on autonomous agents and
multiagent systems, international foundation for autonomous agents and multiagent systems, pp
897–904

Vytelingum P, Voice TD, Ramchurn SD, Rogers A, Jennings NR (2010) Agent-based micro-storage
management for the smart grid. In: Proceedings of the 9th international conference on autonomous
agents and multiagent systems: volume 1, international foundation for autonomous agents and
multiagent systems, pp 39–46

Yang G, Esmailpour A, Cao Y, Nasser N (2016) A novel coalitional structure generation algorithm for
interference mitigation in small cell networks. Global Communications Conference (GLOBECOM).
IEEE, IEEE, pp 1–4

Yun Yeh D (1986) A dynamic programming approach to the complete set partitioning problem. BIT
Numer Math 26(4):467–474

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	An Abortion Based Search Method for Optimal Coalition Structure Generation
	Abstract
	1 Introduction
	2 Related Works
	3 CSG Problem Formulation
	4 ODP-IP Algorithm
	5 MIDP-IIP Algorithm
	5.1 MIDP Algorithm
	5.2 Improved IP (IIP) Algorithm
	5.3 Abortion Mechanism
	5.4 Searching Multiple Subspaces Simultaneously
	5.4.1 Comparison Between IP and IIP

	6 Performance Evaluation
	7 Conclusion
	Acknowledgements
	References

