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Abstract
Consensus reaching processes (CRPs) including the feedback adjustment mechanism 
generally require extended periods of time to bridge the opinion gap among decision 
makers. Therefore, minimum cost consensus (MCC) problems with known adjust-
ment costs have been widely reported. However, the exact unit adjustment costs 
are difficult to obtain through practical CRPs. To solve these problems, this paper 
proposes a novel CRP framework for uncertain large-scale group decision-making 
based on robust discrete optimization. First, an enhanced iterative self-organizing 
data analysis technique algorithm is provided to dynamically cluster decision mak-
ers together in small subgroups under interval opinions. Second, to establish the 
optimization-based consensus rules in the feedback process, an MCC integer opti-
mization model is established to minimize the total consensus costs in consensus 
reaching. Furthermore, with the indeterminate unit adjusting costs, a robust discrete 
MCC optimization model is constructed, which can control the degree of conserva-
tism of the optimal consensus opinion and compute the optimal modified opinions 
of decision makers. Finally, a case study and comparative analysis indicate the effec-
tiveness and superiority of the proposed CRP method and that the robust discrete 
MCC model has stronger robustness in the uncertain decision environment.
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1 Introduction

The increasing complexity of decision problems makes it difficult for a single deci-
sion maker (DM) to comprehensively assess all of the relevant aspects of some prac-
tical problems. Therefore, the multiple-attribute group decision making problem has 
received increasing attention in recent years (Liu and Wang 2020; Liu et al. 2019; 
Wang et al. 2020; Zhang et al. 2018a), which utilizes the collective wisdom of mul-
tiple DMs to select the best alternative(s). Traditional decision problems involve a 
small number of DMs (e.g., three to five people). With the development of technol-
ogy, such as social media and e-democracy, however, the number of DMs with dif-
ferent skills and backgrounds is increasing (Li et al. 2019; Lu et al. 2020; Xiao et al. 
2020),and multiple-attribute large-scale group decision-making (LSGDM) problems 
are constantly emerging (Shi et al. 2018; Xu et al. 2018; Zha et al. 2019; Zhang et al. 
2020b).

LSGDM problems are generally characterized by the following four features 
(Tang and Liao 2021; Wu et  al. 2019a; Zhang et  al. 2018b):(a) The number of 
DMs is more than;(b)Heterogeneous preference representation structures are used 
to express DMs’opinions;(c)Reaching a unanimous agreement among the DMs is 
difficult but necessary; and(d)The degree of uncertainty and complexity in the deci-
sion-making process is increased. It is a vital step to decrease the dimensionality of 
large-scale DMs to address the complexity of LSGDM problems (Wu et al. 2019a). 
Clearly, an effective method is to cluster the DMs into several smaller subgroups to 
reduce the number of DMs to a more tractable level. (Wu and Liu 2016) reduced 
the complexity of multiple-attribute LSGDM by an interval type-2 fuzzy equiva-
lence clustering analysis. (Wu and Xu 2018) reduced the dimensions of DMs based 
on the k-means clustering method and used CPR to change the clustering results. 
(Zha et  al. 2019) developed a large-scale consensus model with a bounded confi-
dence-based feedback mechanism to classify DMs into different clusters based on a 
bounded confidence-based optimization approach.(Du et al. 2020) proposed a trust-
similarity analysis-based clustering method to manage the clustering operation in 
LSGDM problems under a social network context. (Liu et  al. 2021) introduced a 
probability k-means clustering algorithm to segment DMs with similar features into 
different subgroups. Clustering algorithms in machine learning are a kind of unsu-
pervised learning and their main characteristic is that the number of clustering cen-
tres must be determined in advance. However, it is difficult to decide the number of 
clustering centres according to the limited information.

It is critical to obtain a collective solution that is a unanimous agreement of 
DMs in some practical group decision-making problems (Cheng et al. 2016).One 
of the major aims of group decision-making is consensus, which facilitates the 
subsequent implementation of the solution (Herrera-Viedma et  al. 2014).There-
fore, CPRs are widely used to help DMs reach a consensus on the solution. (Xu 
et al. 2018) proposed a two-stage CRP method and applied it to select earthquake 
shelters. (Shi et  al. 2018) developed a uninorm-based comprehensive behavior 
classification CRP model for LSGDM. (Zha et al. 2019) proposed a CRP model 
with a bounded confidence-based feedback mechanism to promote the consensus 
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level among DMs with bounded confidences.(Li et  al. 2021) introduced a con-
sensus model to manage the non-cooperative behaviors of DMs and implemented 
a dynamic weight punishment mechanism for non-cooperative DMs in LSGDM 
problems.

Generally, CRPs including consensus measurement and feedback adjustment 
processes, are dynamic and interactive, where DMs discuss and modify their 
opinions coordinated by a moderator. A significant part of CRPs is the design 
of an efficient feedback adjustment process (Zhang et  al. 2019). Costs, such as 
money, time, and reconciliation efforts are also inevitable in the feedback pro-
cess. Obviously, it is preferable that the costs should be as low as possible. There-
fore, the implementation of optimization-based consensus rules has become a 
new rule of opinion-modification of DMs in the feedback process (Zhang et  al. 
2019).Optimization-based consensus rules were first proposed by Ben-Arieh 
(Ben-Arieh and Easton 2007).Subsequently, (Zhang et al. 2011) investigated the 
MCC problems to take the aggregation operators into account.(Liu et  al. 2012) 
extended the MCC model into the fuzzy GDM. Additionally, (Gong et al. 2015) 
reported primal–dual models of MCC problems and investigated their economic 
significance. Furthermore, (Li et  al. 2017b) proposed the MCC model with the 
uncertain interval costs. (Cheng et al. 2018) constructed MCC models with direc-
tional constraints based on goal programming theory. (Labella et  al. 2020) pro-
posed a comprehensive MCC model that considers the distance to global opinion 
and consensus degree whose optimal agreed solution was used to evaluate CRPs. 
(Zhang et al. 2021b) constructed a social trust driven minimum adjustments con-
sensus model for social network group decision-making and proposed a consen-
sus maximum optimization model.

Although previous studies of CRPs mentioned above are very effective tools to 
reach a consensus among DMs, there are still some challenges to further promote 
consensus achievement in the real-world LSGDM problems.

(1) Some clustering algorithms are widely used to cluster DMs into subgroups based 
on the information of DMs, such as preference or social relations. When applying 
the cluster methods, the number of cluster centres should be predetermined (Liu 
et al. 2021). And the application of clustering algorithms in LSGDM problems 
also need predetermine the number of cluster centres (Du et al. 2020; Zha et al. 
2019). However, it is difficult to predetermine the number of clustering centres 
according to the limited information and the number of clustering centres cannot 
be adjusted during the clustering process. In the existing methods of clustering 
DMs, there is still no solution to the problem of dynamically adjusting the num-
ber of clustering centres. Therefore, it is necessary to propose some methods to 
solve this problem.

(2) The existing CRPs of LSGDM with interval opinion have not yet considered the 
optimization-based consensus rules in the feedback process. Using the identifi-
cation rule (IR) and direction rule (DR) in the feedback process, the consensus 
costs can only be calculated passively after each round in iterations (Zhang 
et al. 2019). Resource consumption, such as time, money etc., is indispensable 
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in CRPs to modify DMs’ opinions. Especially, since LSGDM involves more 
DMs, it is particularly important to take the consensus cost into CPRs. There-
fore, establishing the MCC models of the optimization-based consensus rules 
for uncertain LSGDM is economically significant.

(3) For the existing MCC models, fixed DM costs are often considered (Cheng et al. 
2018). However, DM costs are very likely to change due to the behaviors or psy-
chologies of DMs. In real-world LSGDM problems, obtaining accurate unit costs 
of DMs is almost impossible. It is natural to assume that the unit adjusting costs 
of DMs are uncertain. Some studies have discussed the uncertain adjustment 
costs in the MCC model for the traditional group decision making problems (Li 
et al. 2017b), but few studies consider the uncertainty of unit adjustment costs 
in LSGDM problems. As the number of DMs increases, uncertain adjustment 
costs of DMs may have a greatly influence on the total consensus cost. To com-
prehensively explore the optimization-based consensus rules of the feedback 
process, it is also very useful to construct the MCC model under uncertainty 
unit adjustment costs of DMs in uncertain LSGDM.

Based on the above analysis of issues, the objective of this paper is to pro-
pose a novel CPR for uncertain LSGDM problems based on robust discrete opti-
mization. Specifically, to solve the first problem mentioned above, this paper 
developed an enhanced ISODATA clustering method to divide DMs into small 
subgroups, which dynamically adjusts the clustering results. Then, considering 
the costs of CRPs, an MCC integer optimization model of LSGDM with interval 
opinions is constructed. Following this, a robust discrete MCC model is proposed 
to investigate the influences of the uncertain unit adjusting costs of DMs. The 
conservative degree of the optimal consensus opinion can be adjusted by the rele-
vant parameter in this model. Finally, this model becomes the optimization-based 
consensus rule in the proposed CRP.

The rest of the paper is organized as follows. In Sect. 2, some basic concepts 
and LSGDM problems are introduced. Section  3 proposes a novel CRP frame-
work for uncertain LSGDM. Section  4 develops an enhanced ISODATA. Sec-
tion  5 establishes an MCC integer model of LSGDM with the determined unit 
adjustment costs of DMs and further proposes a robust discrete MCC model of 
uncertain LSGDM. Following this, in Sect.  6, a case study, a comparison anal-
ysis, and a simulation are presented to indicate the feasibility of the proposed 
method. Finally, the conclusion and expectation of future research are shown in 
Sect. 7.

2  Preliminaries

In this section, we first introduce interval linguistic opinions. Then, the uncertain 
LSGDM problems are described. Finally, the minimum adjustment consensus 
model is presented.
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2.1  Interval Opinions

In the complex decision-making environment, DMs generally use the linguistic 
way to express their opinions, which can be described by either single determined 
linguistic terms or uncertain linguistic variables, which more precisely reflects 
their ideas and opinions (Dong et al. 2015; Wu et al. 2019b). Many studies intro-
duced the basic symbols and operation rules of language variables (Herrera et al. 
2008; Zadeh 1975).Let S = {s�|�= 1, 2,...,g} be a finite linguistic term set of odd 
cardinality values and s� refer to a possible value for a linguistic variable. For 
example, a linguistic scale can be defined as follows:

Linguistic variables are generally transformed to numerical scales. Several 
linguistic computational models have been developed to address linguistic vari-
ables in recent years (Dong et  al. 2009; Massanet et  al. 2014). The 2-tuple lin-
guistic representation model is the most widely used method (Morente-Molinera 
et al. 2015). It defines a transformation function between linguistic 2-tuples and 
numerical scales. Since the 2-tuple linguistic computational model is a symbolic 
computation approach, the linguistic terms can be represented by integer values.

Instead of using only one crisp-determined linguistic term to express DM opin-
ions, DMs are inclined to use interval linguistic variables to express their ideas 
more accurately (Herrera et al. 2008). An interval linguistic variable is denoted 
s̃ =

[
sL, sU

]
 , where sL, sU ∈ S are the lower bound and upper bound of the inter-

val, respectively. By transformation, interval linguistic variables are represented 
by interval numbers, which have been shown to be applicable (Wu et al. 2019b). 
For example, an interval linguistic variable 

[
s6, s7

]
 refers to the rating value being 

“between slightly good and good”. Transformation represents the interval num-
ber [6, 7] . The interval numbers are used to represent the opinions of DMs in this 
paper. Part of the operations for interval arithmetic can be defined as follows:

Definition 2 (see (Moore et al. 2009)):For two positive interval numbers ã = [aL, aU] 
and b̃ = [bL, bU] , the addition and multiplication operations between ã and b̃ are 
defined as follows:

Definition 3 (see (Xu 2004)): Let 
{
ã1, ã2, ..., ãn

}
 be a set of positive interval set 

numbers where ãi =
[
aiL, aiU

]
.The IWA operator is defined as.

S = {s1 = extremely poor, s2 = very poor, s3 = poor,

s4 = slightly poor, s5 = fair, s6 = slightly good,

s7 = good, s8 = very good, s9 = extremely good}

(1)ã + b̃ = [aL + bL, aU + bU]

(2)ã × b̃ = [aL × bL, aU × bU]
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where � = [� 1, � 2, ..., � n]
T is the associated weight vector such that 

� i ≥ 0,
∑ n

i=1
� i = 1.

2.2  Problems Description

Due to the complexity of LSGDM problems and the habits of human thinking and 
reasoning, DMs prefer to express their preferred information in linguistic variables 
(Zhang et al. 2021a). An uncertain multi-attribute LSGDM problem can be defined 
as a situation where a large number of DMs use the interval linguistic opinions to 
evaluate multiple attributes of a set of alternatives to make decisions. The uncer-
tainty refers to it that the DM’s opinions are uncertain in this paper. Furthermore, 
the unit adjustment costs of DMs are also viewed as uncertain in CRPs. To describe 
the problems, the following notations are used.

For clarity, we denote M = {1, 2, ...,m},N = {1, 2, ..., n} and 
H = {1, 2, ..., h}(h ≥ 20).Let A =

{
a1, a2, ..., am

}
 be a set of attributes. Let 

� = (�1,�2, ...,�m)
T be the attribute weight vector, where �i ≥ 0,

∑
i∈M �i = 1

.X =
{
x1, x2, ..., xn

}
 is a discrete finite set of potential alternatives, and 

E =
{
e1, e2, ..., eh

}
 is a group of DMs. When the number of DMs is more than or 

equal to 20,it can be viewed as a large scale GDM problem (Dong et al. 2018). Each 
DM ei(i ∈ H) is assigned a weight �i(i ∈ H) based on their importance such that 
�i ≥ 0,

∑
i∈H �i = 1.

In the real decision-making scenarios, the DM’s opinions could be uncertain, and 
interval linguistic variables are used to represent rating values to tackle uncertainty. 
For an alternative xj ∈ X(j ∈ N) and attribute aj ∈ A(j ∈ M) , DM ek ∈ E(k ∈ H) 
provides his/her opinions by a matrix D̃k = (d̃k

ij
)n×m, k ∈ H,where d̃k

ij
=

[
dk
ijL
, dk

ijU

]
 

denotes the rating value on attribute aj of alternative xj.DMs modify their opinions 
after a moderator guides and supervises in CRPs. Let R̃k = (r̃k

ij
)n×m, k ∈ H be a 

revised matrix for DM ek and c = (c1, c2, ..., ch)
T be the unit adjusting cost vector of 

DMs.

Remark Many papers have studied the weights of attributes. However, weighting 
attributes is beyond the range of this study. Thus, the maximum entropy principle is 
used and all attributes are assumed to have equal weights.

2.3  The Minimum Adjustment Consensus Model

In the feedback process of CRPs, resource consumption is indispensable. Obviously, it is 
preferable that the costs of the CRPs should be as low as possible. In the last decade, the 

(3)IWAA(ã1, ã2, ..., ãn) =

[
n∑
i=1

𝜆iaiL,

n∑
i=1

𝜆iaiU

]
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feedback mechanism with minimum cost or adjustment model has been widely devel-
oped. Zhang et. al reviewed these models and proposed future challenges of them (Zhang 
et al. 2020a). Ben-Arieh et al. first proposed the MCC problem to obtain a group consen-
sus opinion at the lowest possible cost (Ben-Arieh and Easton 2007).

The concepts of unit adjustment costs of DMs and consensus level introduced 
by Ben-Arieh and Easton. Furthermore, they constructed the MCC model with lin-
ear cost, which is not presented in the form of an optimization model. Let oi, i ∈ H 
denote the original opinion of DMs, oi, i ∈ H be the revised opinions and let O be 
the consensus opinion. Then, Zhang et al. presented the optimization model of origi-
nal MCC as follows (Zhang et al. 2011):

where � is the maximum deviation between the original opinions and revised 
opinions.

In model (4), the distance is used to measure the consensus level. And several 
methods also can measure the consensus level. When the DM’s unit adjustment 
cost vector is the unit vector, the MCC problems become the minimum adjustment 
consensus (MAC) problems (Zhang et al. 2020a).From a practical perspective, the 
revised opinions of DMs are restricted to the original scale in this model and the 
consensus level for each DMs regarding his/her adjusted opinions should exceed the 
consensus threshold. Wu et.al developed the MAC model under the following inter-
val opinions (Wu et al. 2019b):

where d(⋅) is the distance between the original opinions and revised, NCI is the indi-
vidual DM’s consensus index and GCI is the consensus threshold.

3  Framework of CRPs of LSGDM with Uncertain Unit Adjustment 
Costs

In this section, we propose a novel CRP method for uncertain LSGDM prob-
lems. Specifically, a robust discrete MCC optimization model is used to compute 
the optimal modified opinions of DMs and the consensus opinions in the feedback 

(4)
min

h∑
i=1

ci
||oi − oi

||
s.t.||oi − o|| ≤ �

(5)

min
h
∑

k=1
d(D̃k − R̃k)

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
k

NCI(R̃k) ≥ GCI,∀k
rkijL ≤ rkijU ,∀i, j, k

rkijL, r
k
ijU ∈ domainS,∀i, j, k
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adjustment process, and then the moderator guides DMs to revise their opinions by 
referring to the optimal solution of the robust discrete MCC optimization model. 
Therefore, an interactive CRP with the robust discrete MCC optimization model is 
developed.

Typically, the process of group decision making consists of selection process and 
consensus process. The purpose of the selection process is to aggregate DM’s opin-
ions over alternatives into a collective opinion, and the consensus process aims to 
improve the consensus level among DMs. The proposed consensus framework also 
includes the above two processes. With traditional group decision making problems, 
a few DMs usually participate in the decision. However, when involving a mass 
number of DMs, the decision process becomes more complex. Clustering large-
scale DMs has become a crucial process for resolving the complexity of LSGDM 
problems (Wu et al. 2019a).

Therefore, the clustering process is indispensable for the proposed CRP 
framework.

For an uncertain LSGDM problem, large-scale DMs participate in the discus-
sion. First, an enhanced ISODATA clustering algorithm is provided to cluster a large 
number of DMs into some small subgroups, and then assign weights according to 
the size of the subgroups. Furthermore, an aggregation operator is used to calcu-
late the collective opinions of the different subgroups. Finally, to reach a consensus 
among DMs, the CRP is activated. The details of the framework are described in 
Fig. 1.

3.1  (a) The Clustering Process

In the cluster step, an enhanced ISODATA clustering algorithm is proposed in 
Sect. 4. In recent years, the k-means algorithm has often been used to cluster DMs 
into subgroups to reduce the dimensionality of large-scale DMs (Liu et al. 2021; Wu 

Fig. 1  The overall CRP framework of the uncertain LSGDM problems
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and Xu 2018). Clustering algorithms are a kind of unsupervised machine learning, 
so it is necessary to set the clustering coefficient in advance. However, the number 
of clustering centres is hardly determined. Based on the k-means clustering algo-
rithm, ISODATA can add two algorithms of merging and splitting to the clustering 
process to delete or add clustering centres, which can dynamically adjust the number 
of clusters.

We denote Q = {1, 2, ...,Nc} . Let G =
{
G1,G2, ...,GNc

}
 be a set of clusters. Nc is 

the number of clustering centres. A large-scale DM can be divided into G�(� ∈ Q) 
cluster. Naturally, the larger scale groups should be assigned larger weights. After 
the clustering process, the weights of clusters are obtained. We denote �� as the 
weight of clusters. Without loss of generality, it is defined as (Zhang et al. 2018b):

where n� is the number of DMs in cluster G�.
The same weight is assigned to DMs in the same cluster in that their opinions are 

similar. Therefore, the weight �k of DM ek in the cluster G� is calculated as:

3.2  (b) Selection Process

In the selection step, let us first obtain the k-th DM’s interval opinion matrix 
D̃k = (d̃k

ij
)n×m.Then, the IWAA aggregation operator is used to calculate the collec-

tive matrix R̃𝜏
c
= (r̃𝜏

c
)n×m and r̃𝜏

c,ij
= [r𝜏

c,ijL
, r𝜏

c,ijU
] of cluster G� , � ∈ Q.According to the 

weight �k of DMs obtained by the clustering process, the collective opinion matrix 
of cluster G� is calculated as follows:

Based on the weights �l,l ∈ Q of the cluster and IWAA aggregation operator, the 
collective matrix R̃c = (r̃c,ij)n×m , and r̃c,ij = [rc,ijL, rc,ijU] is defined as follows:

(6)�� =
||n� ||2

/∑
�∈Q

||n� ||2

(7)�k = 1
/||n� ||

(8)r̃𝜏
c,ij

=

[∑
𝜏∈Q

∑
e(k)∈G𝜏

𝜋kd
𝜏(k)

ijL
,
∑
𝜏∈Q

∑
e(k)∈G𝜏

𝜋kd
𝜏(k)

ijU

]

(9)r̃c,ij =

[∑
𝜏∈Q

𝜆𝜏r
𝜏
c,ijL

,
∑
𝜏∈Q

𝜆𝜏r
𝜏
c,ijU

]
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3.3  (c) Consensus Process

Generally, the consensus process is to obtain a collective solution that meets the 
predetermined consensus level threshold. The CRP proposed in this study consists 
of two parts: a consensus measure and feedback adjustment.

The consensus measures are part and parcel (Wu et  al. 2019b), when con-
firming the consensus level of a group of DMs. The distance functions are the 
basis of defining consensus measures. The Manhattan distance is generally used. 
Therefore, we define the consensus measures based on the Manhattan distance 
between uncertain interval variables. The Manhattan distance between interval 
numbers is given as follows:

Definition 4 Let ã1 = [a1L, a1U] and ã2 = [a2L, a2U] be interval numbers. The Man-
hattan distance between ã1 and ã2 is defined as follows:

The distance between two interval decision matrixes can be obtained according to 
the distance function (Xu et al. 2014).

Definition 5 (see (Xu et al. 2014)): Let F̃1 = (f̃1ij)n×m and F̃2 = (f̃2,ij)n×m be two inter-
val matrixes, where f̃1ij = [f1ijL, f1ijU] and f̃2ij = [f2ijL, f2ijU].The Manhattan distance 
between them is defined as follows:

For clarity, let NCI(G� ) be the cluster consensus index, which measures the 
similarity between the collective opinion matrixes of clusters and the collective 
opinion matrix of the group. Note that the consensus index takes value in the 
interval [0, 1] . The value 1 indicates full consensus, and the higher the value, the 
higher the degree of consensus. The NCI for the cluster G� is defined as follow:

where Ψ = g − 1 and g is the number of linguistic term sets S.
The group consensus index GCI refers to the unanimous degree of the whole 

group defined as:

By Eq. (12), we can obtain the degree of consensus of the subgroups. Using 
Eq. (13), the degree of consensus of group is obtained. When the group consen-
sus index is below the consensus threshold, it is necessary to enter the feedback 
process to modify the DMs’ opinions. The subgroup with the lowest degree of 

(10)d(ã1, ã2) =
1

2
(||a1L − a2L

|| + ||a1U − a2U
||)

(11)d(F̃1, F̃2) =
1

2nm

n∑
i=1

m∑
j=1

(|||f1ijL − f2ijL
||| +

|||f1ijU − f2ijU
|||
)

(12)NCI(G� ) = 1 −
1

2nm

n∑
i=1

m∑
j=1

1

Ψ

(|||r
�
c,ijL

− rc,ijL
||| −

|||r
�
c,ijU

− rc,ijU
|||
)

(13)GCI = min
�

NCI(G� )
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consensus is selected to modify opinions. The consensus opinion and the revised 
opinions of the DMs are calculated according to the proposed model under the 
uncertain costs. Then, the degree of consensus of the group is calculated again, 
and if it is lower than the consensus threshold, the opinions of DMs are further 
modified until the consensus threshold is reached.

4  Enhanced ISODATA Clustering Algorithm

Clustering has been widely applied in large-scale group decision-making problems, 
which divides large-scale DMs into different subgroups to reduce the complexity of 
the problems (Xu et al. 2019).The most commonly used clustering algorithm is the 
k-means algorithm ((Lu et al. 2020; Wu and Xu 2018),which minimizes the distance 
between points and cluster centres (Kanungo et al. 2002). It can classify data with 
unknown label. The k-means algorithm includes the following steps: (1) Randomly 
select the initial clustering centres; (2) Calculate the distance between the data and 
the clustering centre and divide the point into the closest cluster; (3) Recalculate the 
clustering centre of each cluster; and (4) Repeat steps 2 and 3 until the clustering 
centres remain the same.

Based on the k-means algorithm, the k-medoids algorithm, the k-means +  + algo-
rithm and ISODATA algorithm are developed to optimize the process of k-means 
clustering. The k-means +  + algorithm optimizes the selection of the initial cluster-
ing centres by calculating the distance between clustering centres and the roulette 
method (Arthur and Vassilvitskii 2007) and the ISODATA algorithm is developed to 
dynamically adjust the number of cluster centres by merging and splitting algorithms 
(Ahmad and Sufahani 2013; Li et  al. 2017a). However, the ISODATA algorithm 
randomly selects the clustering centres. Therefore, inspired by the k-means +  + algo-
rithm, an enhanced ISODATA clustering algorithm is proposed to cluster large-scale 
DMs into subgroups under the interval opinions in LSGDM. The flow chart of the 
enhanced ISODATA clustering algorithm is shown in Fig. 2.

For LSGDM problems, DMs ek, k ∈ H evaluate multiple attributes aj, j ∈ M of a 
set of alternatives xi, i ∈ N to make decisions by a matrix D̃k = (d̃k

ij
)n×m , where 

d̃k
ij
=
[
dk
ijL
, dk

ijU

]
. The goal of clustering part of the enhanced ISODATA algorithm is 

minimize the distance between the DMs’ opinion matrix D̃k, k ∈ H and the cluster-
ing centres matrix Ṽ𝜏 = (v𝜏

ij
)n×m, 𝜏 ∈ Q . Based on the Manhattan distance, the model 

is constructed:

The enhanced ISODATA involves the following main steps:

(1) Set parameters. The description of parameters in the enhanced ISODATA clus-
tering algorithm is shown in Table 1. Note that if the number of DMs is less than 

(14)min
1

2nm

∑
�∈Q

∑
ek∈Cl

n∑
i=1

m∑
j=1

|||d
�(k)

ijL
− v

�(k)

ijL

||| +
|||d

�(k)

ijU
− v

�(k)

ijU

|||
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�n , it will not be regarded as a cluster. Then, obtain the initial clustering centres 
by the selection algorithm.

Fig. 2  Flow chart of the enhanced ISODATA clustering algorithm

Table 1  Nomenclature Notations Description

K Expected number of clustering centres
N
I

The initial number of clustering centres
I The maximum number of interiors
�
s

The maximum standard deviation of a distance distri-
bution in a cluster

�
c

The minimum distance between two clustering centres
�
n

The minimum number of DMs in a cluster
C
r

Clustering results
N
c

The number of clustering centres
Ṽ Clustering centres matrix
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(2) Calculate Manhattan distances between DMs’ opinion matrixes and clustering 
centres matrixes as their similarity. Then, based on the index of similarity, clus-
tering algorithm is used to divide DMs into subgroups.

(3) Utilize merging or aggregate algorithms to dynamically adjust the clusters 
according to the associated parameters and conditions.

(4) Repeat the iteration until the maximum number of iterations is reached

The above steps of the enhanced ISODATA have four key subroutines. First, the 
selection algorithm is used to generate the initial clustering centres. Second, the 
splitting algorithm is applied to add the new clusters to prevent too many DMs in a 
cluster. Third, the merging algorithm is adopted to reduce the number of clustering 
centres to protect the diversity of clusters. Finally, according to the k-means algo-
rithm, the clustering results are obtained. The detailed design of the key subroutines 
of the enhanced ISODATA clustering algorithm is introduced as follows.

4.1  (a) Selection Algorithm

We design a novel initial point selection scheme to maintain the diversity and disper-
sion of the clustering centres, which effectively accelerates the convergence rate of 
clustering algorithm (Arthur and Vassilvitskii 2007). In general, when the distances 
between clustering centres are greater, the clustering centres are more dispersed and 
clustering algorithms will converge faster. If the clustering centres are too similar, 
the number of iterations to find the real clustering centre will increase. Therefore, 
initial clustering centre selection is a significant process.

Specifically, the selection of initial cluster centres is mainly according to the 
Manhattan distances between the clustering centre and the potential centre. The pro-
posed selection scheme involves the roulette method and random number, which can 
ensure the diversity and dispersion of clustering centres. Assuming that the first 
cluster centre matrix is randomly selected and denoted Ṽ𝜏 = (v𝜏

ij
)n×m, 𝜏 ∈ Q , then the 

selected probability of the next clustering centre is based on the following formula:

where dM is the Manhattan distance calculated by Eq. (11).
This process is presented in Algorithm 1.

(15)p
�
ek
�
=

d(Ṽ (𝜏), D̃(k))∑h

k=1
d(Ṽ (𝜏), D̃(k))

, ek ∈ E
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∼∼ ∼∼
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∼∼

4.2  (b) Clustering Algorithm

The DMs are clustered into small subgroups based on the similarity of their opinion 
matrixes. It can be calculated by the Manhattan distance from Eq.  (12). The general 
process for DM clustering in Algorithm 2.
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∼∼ ∼∼

∼∼

After clustering, the number of clusters needs to be checked. If the number 
does not exceed �n , this cluster will be deleted, the DMs of this cluster will be 
divided into another subgroup according to their similarity, and the number of 
clusters will be modified. Then, optimize the clustering centres as following:

where n� is the number of DMs in G�.

4.3  (c) Merging Algorithm

When the number of clustering centres is large, it is necessary to check the dis-
tance between clustering centres. Let D be the distance between clustering cen-
tres set.The pairwise inter-cluster distances between all distinct pairs of cluster-
ing centres are as follow:

According to these distances Dij and �c , it is determined which cluster centres 
need to be merged. Combining the two clustering centres Ṽ (i)

m
 and Ṽ (j)

m  , the new 
clustering centre is calculated as follows:

(16)Ṽ (𝜏) =
1

n𝜏

∑
ek∈G𝜏

D̃𝜏(k)

(17)Dij =
|||Ṽ

(i) − Ṽ (j)|||, i = 1, 2,… ,Nc − 1, j = 1, 2,… ,Nc
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The merging process is shown in Algorithm 3.

∼∼

∼∼

∼∼

4.4  (d) Splitting Algorithm

An excessive number of DMs in a cluster on account of fewer clustering centres. In this 
case, clustering centres need to be added. Use the standard deviation or the mean dis-
tance within and between clusters to decide whether the clustering centres need to be 
split. The standard deviation is computed by as follows:

The mean distance within clusters D
�
, � ∈ Q is calculated as follows:

(18)Ṽ (∗) =
1

(ni + nj)
× (niṼ

(i)
m

+ njṼ
(j)
m
)

(19)𝜎𝜏
ij
=

√
1

n𝜏

∑
𝜏∈Q

‖‖‖d̃
𝜏(k)

ij
− ṽ𝜏

ij

‖‖‖2, i ∈ M, j ∈ N

(20)D
𝜏
=

1

n𝜏

∑
ek∈G𝜏

|||D̃
𝜏(k) − Ṽ𝜏 |||
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Based on the mean distance within clusters, the overall the mean distance between 
clusters is computed as following:

The splitting process is shown in Algorithm 4.

∼∼

∼∼

∼∼

∼∼

5  The Robust Discrete Optimization MCC Model for LSGDM

In this section, the deterministic MCC model with uncertain LSGDM is first described. 
Then, based on the uncertain unit adjusting costs of DMs, the robust discrete optimiza-
tion MCC model for uncertain LSGDM is proposed.

(21)D =
1

Nc

∑
�∈Q

n�D�
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5.1  The Deterministic MCC Model for LSGDM

If the current NCI among subgroups is unacceptable,GCI is below the predefined 
consensus threshold. This indicates that DMs’ opinions have not yet reached a pre-
determined level of consensus. To reach consensus, a CRP must be activated so that 
subgroup DMs have the opportunity to discuss and change their opinions guided and 
supervised by a moderator. Inevitably, CRPs involved in the feedback process take a 
great deal of time and effort; for example, they involve repeated surveys, conversa-
tions, and interviews, all of which can noticeably escalate costs.

In the feedback part of the CRP, it is necessary to guide DMs to modify opinions 
according to certain rules. The first kind of consensus rule is IR and DR, the second 
type is optimization-based consensus rule. Using IR and DR of the feedback process 
in the CRP, the consensus costs can only be calculated passively after each round in 
iterations. From an economic viewpoint, it is necessary to establish an optimization-
based rule based on consensus cost for LSGDM problems with interval opinions.

To establish the model, suppose that the unit adjusting costs of DMs are certain. 
The objective is to minimize the total costs for modifying opinions of DMs and 
revised opinions are measured by the Manhattan distance. In addition, the modi-
fied opinions of DMs are restricted to the original rating scale and the linguistic 
scale has been transformed to a corresponding integer scale, which is denoted as 
domainS.For a subgroup G� whose DMs are required to adjust opinions, we denote 
H� =

{
1, 2, ...n�

}
.Let E� =

{
e1, e2, ..., en�

}
 be DMs in cluster G�.Then, the determin-

istic MCC model of uncertain multi-attribute LSGDM for subgroup G� , � ∈ Q is 
constructed as follows:

where D̃𝜏(k) and R̃𝜏(k) are the original opinions and revised opinions of DM ek of the 
cluster G� , respectively.� is the deviation of opinion before and after modification. 
The decision variables in model (22) are r�(k)

ijL
 and r�(k)

ijU
 , for i ∈ N, j ∈ M,ek ∈ G� . 

Note that r�
c,ijL

 and  r�
c,ijU

 are computed by r�(k)
ijL

 and r�(k)
ijU

 , respectively.
Since model (22) is difficult to solve, it is further preferable to transform it to a 

mixed integer programming (MIP) problem.

(22)

min 1
2nm

∑

k∈Ht

n
∑

i=1

m
∑

j=1
(||
|

d�(k)ijL − r�(k)ijL
|

|

|

+ |

|

|

d�(k)ijU − r�(k)ijU
|

|

|

) ⋅ c�(k)

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
2nm

n
∑

i=1

m
∑

j=1

1
Ψ
(||
|

r�c,ijL − rc,ijL
|

|

|

+ |

|

|

r�c,ijU − rijU
|

|

|

) ≤ �

r�c,ijL =
n�
∑

k=1
��(k) ⋅ r�(k)ijL ,∀i, j

r�c,ijU =
n�
∑

k=1
��(k) ⋅ r�(k)ijU ,∀i, j

r�(k)ijL ≤ r�(k)ijU ,∀k ∈ H� , i, j

r�(k)ijL , r�(k)ijU ∈ domainS,∀k ∈ H� , i, j
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Theorem 1 Model (22) is equivalent to integer linear programming (23).

Proof On the basis of the property |x| = max{x,−x},let 
t�
ijL

=
|||r�c,ijL − rc,ijL

|||, t�ijU =
|||r�c,ijU − rc,ijU

|||.Then, we have 
r�
c,ijL

− rc,ijL ≤ t�
ijL
,−r�

c,ijL
+ rc,ijL ≤ t�

ijL
 and r�

c,ijU
− rc,ijU ≤ t�

ijU
,−r�

c,ijU
+ rc,ijU ≤ t�

ijU
 . 

Thus, the second to fifth constraints are added to model (23). Similarly, let 
y�
ijL

=
|||d

�(k)

ijL
− r

�(k)

ijL

|||, y�ijU =
|||d

�(k)

ijU
− r

�(k)

ijU

|||.d
�(k)

ijL
− r

�(k)

ijL
≤ y

�(k)

ijL
,−d

�(k)

ijL
+ r

�(k)

ijL
≤ y

�(k)

ijL
,and 

d
�(k)

ijU
− r

�(k)

ijU
≤ y

�(k)

ijU
 , d�(k)

ijU
− r

�(k)

ijU
≤ y

�(k)

ijU
 are obtained. The sixth to ninth constraints 

are pulsed to model (23). To subsequently model, we add the equivalent constraint 
y
�(k)

ijL
+ y

�(k)

ijU
= z

�(k)

ij
.Therefore, the objective function for model (22) is transformed to 

the objective function for model (23). This completes the proof of Theorem 1.

5.2  The Robust Discrete MCC Model for LSGDM

The robust discrete optimization method is an effective and popular tool for deal-
ing with data uncertainty in mathematical programming models. In the extant MCC 
models, the unit adjustment cost of each DM is assumed to be exactly known. In 
real-world LSGDM, however, it is difficult for the moderator to obtain the exact unit 
adjustment costs of DMs. To address the uncertain unit adjusting costs of the DM 

(23)

min
1

2nm

N��
k=1

n�
i=1

m�
j=1

z
�(k)

ij
⋅ c

�(k)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2nm

n∑
i=1

m∑
j=1

1

Ψ
(t�
ijL

+ t�
ijU
) ≤ �

r�
c,ijL

− rc,ijL ≤ t�
ijL
,∀i, j

−r�
c,ijL

+ rc,ijL ≤ t�
ijL
,∀i, j

r�
c,ijU

− rc,ijU ≤ t�
ijU
,∀i, j

−r�
c,ijU

+ rc,ijU ≤ t�
ijU
,∀i, j

d
�(k)

ijL
− r

�(k)

ijL
≤ y

�(k)

ijL
,∀k ∈ H� , i, j

−d
�(k)

ijL
+ r

�(k)

ijL
≤ y

�(k)

ijL
,∀k ∈ H� , i, j

d
�(k)

ijU
− r

�(k)

ijU
≤ y

�(k)

ijU
,∀k ∈ H� , i, j

−d
�(k)

ijU
+ r

�(k)

ijU
≤ y

�(k)

ijU
,∀k ∈ H� i, j

y
�(k)

ijL
+ y

�(k)

ijU
= z

�(k)

ij
,∀k ∈ H� i, j

r�
c,ijL

=

nh�
k=1

��(k)
⋅ r

�(k)

ijL
,∀i, j

r�
c,ijU

=
nh∑
k=1

��(k)
⋅ r

�(k)

ijU
,∀i, j

r
�(k)

ijL
≤ r

�(k)

ijU
,∀k ∈ H� , i, j

r
�(k)

ijL
, r

�(k)

ijU
∈ domainS,∀k ∈ H� , i, j
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problem, we propose a robust discrete MCC model for uncertain LSGDM under 
indeterminate costs, which can adjust the degree of conservatism of the solution.

Assuming that adjusting costs of DMs c̃k ∈ [ck − ĉk, ck + ĉk],∀k ∈ Hh is inde-
pendent, symmetric, and by a bound random variable, but their distribution is 
unknown, where ck is the nominal value of uncertain adjusting unit cost of DM ek , ĉk 
is the perturbation value of uncertain adjusting unit cost of DM ek.For robustness of 
model (23) purposes, the parameter Γ is introduced that takes values in the interval 
[0, |J|] and is not necessarily integers, where J = {k|ĉk ≥ 0} . Up to ⌊Γ⌋ of the coef-
ficient is allowed to change. The parameter J is a set of cost coefficients affected by 
uncertainty. According to a symmetric distribution with a mean equal to the nominal 
value ck in the interval [ck − ĉk, ck + ĉk],c̃k, k ∈ J independently takes values. There-
fore, the role of the parameter Γ is the protection level for the constraint. The robust 
discrete MCC model of uncertain LSGDM problems is defined as:

To solve model (24), it is necessary to transform it to an MIP formulation that is 
easily obtains the optimal solution.

Theorem 2 Model (24) has an equivalent MIP model as follows:

(24)

minZ s.t.
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2nm
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m�
j=1

z
𝜏(k)
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{S̄∪{t}�S̄⊆J,
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{
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i=1
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ĉ𝜏(k)
���z
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𝜏(t)
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Proof Let

This equals to:

(25)

min
1

2nm
(

n𝜏�
k=1

n�
i=1

m�
j=1

z
𝜏(k)

ij
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i=1
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�
k∈J
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ij
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Obviously, the optimal solution value of model (27) consists of ⌊Γ⌋ variables 
at 1 and one variable at Γ − ⌊Γ⌋ . It is equivalent to the 
{S ∪ {t}�S ⊆ j,

���S
��� ≤ ⌊Γ⌋, t ∈ J�S} with corresponding function 

n∑
i=1

m∑
j=1

∑
k∈S

ĉ𝜏(k)
���z

𝜏(k)∗

ij

��� + (Γ − ⌊Γ⌋) ⋅ ĉ𝜏(t)���z
𝜏(t)∗

ij

���.
Consider the dual of model (27),

Based on strong duality, since model (27) is feasible and bounded for 
Γ ∈ [0, |J|] , the dual model (28) is also feasible and bounded, and their objective 
values are the same.

Therefore, �(z�(k)∗
ij

,Γ) is equal to the objective function value of model (28).

6  Numerical and Simulations Analysis

In this section, a practical case is presented to demonstrate the effectiveness of 
the proposed consensus model. Then, a comparison analysis with other existing 
methods is performed to indicate the superiority of the proposed CRP method. 
Furthermore, we design simulation experiments to discuss the performance 
of an enhanced ISODATA, the influences of the uncertain unit adjusting cost 
of each DM and the parameter of the protection level for indeterminacy in the 
robust discrete MCC model.

6.1  Case study

Sudden cardiac death (SCD) is a sudden death caused by various cardiac condi-
tions. The patient suddenly develops cardiac arrest and other manifestations. Dur-
ing out-of-hospital cardiac arrest (OHCA), survival declines by 7–10% for every 
minute without bystander intervention (Larsen et  al. 1993). Early cardiopulmo-
nary resuscitation (CPRS) and automated external defibrillators (AEDs) can 
greatly improve the chances of survival of a person with OHCA. If a patient with 
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�
k∈J

p
𝜏(k)

ij
+ v ⋅ Γ

s.t.

⎧
⎪⎨⎪⎩

v + p
𝜏(k)

ij
≥ ĉ𝜏(k) ⋅

���z
𝜏(k)

ij

���,∀k ∈ J, i, j

p
𝜏(k)

ij
≥ 0,∀k ∈ J, i, j

v ≥ 0
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OHCA is defibrillated within 3 min, survival can be as high as 70%.Public access 
defibrillation (PAD) programs refer to collocating AEDs and training CPRS in 
public places. People with OHCA are defibrillation and treated with AED by the 
first eyewitness before emergency personnel arrive in public places to improve 
survival. The number of AEDs in China is small, and the gap with developed 
countries is large. According to the current literature, there are 700 AEDs (Ringh 
et al. 2018) in the United States and 276 AEDs (Tsukigase et al. 2017) in Japan 
per 100,000 people, while in China, there are only 17.5 AEDs per 100,000 peo-
ple, in Shenzhen, 13 in Haikou, 11 in Pudong New Area of Shanghai and 5 in 
Hangzhou.

In recent years, China has been gradually promoting China-PAD (C-PAD) pro-
grams. With the guidance of the government, the Shanghai Red Cross installed 800 
AEDs in Pudong New District by the end of 2018. Beijing, the capital of China has 
approximately 600 AEDs and plans to install more AEDs on public transport.

Based on the background of the above Beijing AED plan, we formulated 
four alternatives and five attributes and simulated the LSGDM process using 
the proposed method to provide a reference for future AEDs layout plans. 
Given the actual situation, the Beijing Municipal Government convened 30 
experts from different fields, including medical, engineering and public trans-
portation to form a large group of DMs, denoted as E =

{
e1, e2, ..., e30

}
.The 

DMs were required to rate four alternatives that combinations of subway lines 
and select the optimal one to first install AEDs using the linguistic term set 
S,S = {s1 = extremely poor, s2 = very poor, s3 = poor, s4 = slightly.

poor, s5 == fair, s6 = slightly good, s7 = good, s8 = very good, s9 = extremely good} . Each  
of the alternatives is evaluated for attributes aj, j = 1, 2, 3, 4, 5 , where a1 is that which 
promotes the effect of AEDs after placing in these lines, a2 is the subsequent costs 
of maintenance of the AEDs, a3 is the difficulty in technical maintenance, a4 is the 
social impact and a5 is the conditions to support the facilities. After a pre-evaluation 
of the AEDs layout plan, the following four alternatives X = {x1, x2, x3, x4} were 
provided:

x1 : The first alternative is to collocate AEDs at subway lines around approxi-
mately 30 universities, specifically, Metro Line 4, Line 5, Line 10, and Line 13. Line 
10 also runs through Beijing’s Central Business District (CBD).

x2 : According to the 2019 Beijing Traffic Development Annual Report released 
by the Beijing Transport Development Research Institute, the comfort index 
of Metro Line 9, Ba Tong Line, Line 8, and Line 1 is higher, which reflects the 
degree of crowdedness in the metro area; the higher the value of the index, the more 
crowded it is. The second alternative is to prioritize to collocating AEDs on these 
lines.

x3 : The third alternative is to focus on Metro Lines 2, Line 13, Line 14, and Bei-
jing Daxing International Airport Express which are surrounded by long distance 
transport stations such as railway stations and airports where passenger flow will 
suddenly increase at certain times. Thus, the third alternative is prioritizing the allo-
cation of AEDs in these metro lines.

x4 : In the core of Beijing’s CBD, approximately four square kilometres, there are 
eight subway stations and four Metro lines, including Metro Line 1, Line 6, Line 10, 
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and Line 14. Meanwhile, Metro Line 1, with the largest number of shopping malls is 
surrounded by 15 shopping malls. This alternative mainly considers the installation 
of AEDs on the metro lines near the business district.

The DM’s opinions are allowed to be interval uncertain linguistic variables in 
that the real-world decision-making environment is indeterminate. Table  2 shows 
the 30 DMs opinion matrixes D̃(k) = (d̃k

ij
)n×m, k ∈ E.For convenience, all interval 

uncertain linguistic variables have been transformed to integers. In the following, 
the proposed CRP is adopted to help these large-scale DMs reach consensus.

The first step is the clustering process. In this case, we set the parameter values 
of the proposed enhanced ISODATA to cluster DMs as: �n = 3 , �s = 1.2 , �c = 0.12

,K = 4 and I = 18 . The enhanced ISODATA converges into six categories, so DMs 
can be divided into 6 subgroups. According to the Eq. (8) and Eq. (9), the weight of 
clusters and each DM can be calculated. The clustering and weight results are pre-
sented in Table 3.

The second step is the selecting process. Using the aggregation operator IWAA 
and weight information, the group collective interval linguistic matrix R̃c = (r̃ij)n×m 
can be calculated by Eqs. (8) and (9).We get the following matrix:

Finally, the last step is the consensus process. We set the parameter values of 
consensus threshold GCI to 0.88 . The consensus index NCI(G� ) of the subgroup 
can be calculated using Eq. (12), and they are NCI(G1) = 0.844,NCI(G2) = 0.865,

NCI(G3) = 0.888,NCI(G4) = 0.854,NCI(G5) = 0.875,NCI(G6) = 0.856 . Utilizing 
Eq. (13), we obtain the group consensus index GCI = 0.844 . Since GCI ≤ GCI,the 
feedback process is activated. Obviously, NCI(G1) is the lowest among them so sub-
group G1 is chosen to adjust opinions in the first consensus iteration.

The unit adjusting cost of each DM is uncertain. In the first consensus itera-
tion, the nominal values of adjusting the unit cost of DMs are assumed to be 
c4 = 3, c11 = 2, c14 = 4, c17 = 5 and the perturbation value of the uncertain adjusting 
unit cost of DMs in G1 are assumed to be ĉ4 = 0.5, ĉ11 = 0.3, ĉ14 = −0.1, ĉ17 = −0.2 . 
In addition, the parameters of model (25) are Γ = 1.5 and � = 0.11.Based on model 
(25), the LINGO solver is used to compute the optimal adjusting opinions of sub-
group G1 and the total cost of consensus. Then, the new consensus indexes are com-
puted for the subgroups after the first consensus iteration is finished, and we obtain 
NCI(G1) = 0.888,NCI(G2) = 0.865,NCI(G3) = 0.888,NCI(G4) = 0.853,NCI(G2) = 
0.878,NCI(G3) = 0.856.Using Eq. (13), we obtain the new group consensus index 
GCI = 0.853 ≤ 0.88 . Therefore, the consensus feedback process continues.

Finally, the iteration of the consensus process ended after four times. Each itera-
tion is for subgroup G� , � ∈ Q , and the unit adjusting costs of model (25) require 
different values. Specific parameters of the remaining iterations are described in 
Table 4.

R̃c =

⎡⎢⎢⎢⎣

[3.68, 5.06] [3.32, 4.58] [3.53, 5.09] [3.82, 5.12] [3.90, 5.19]

[3.34, 4.80] [3.32, 4.60] [3.92, 5.30] [3.81, 5.17] [3.63, 5.09]

[2.79, 4.13] [4.02, 5.40] [4.29, 5.65] [4.02, 5.42] [3.59, 4.90]

[4.09, 5.41] [4.23, 5.47] [3.45, 4.75] [4.00, 5.26] [3.80, 5.22]

⎤⎥⎥⎥⎦
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Model (25) is used to calculate the DMs’ adjusted opinions and the total consen-
sus costs for each modification. According to the modified opinions, we can calcu-
late the consensus index of subgroups until the predetermined consensus threshold 
is reached. The consensus index and total cost after each iteration of the consensus 
process are shown in Table 5.

6.2  Comparative Analysis

In this subsection, the proposed method compares favorably with that of three exist-
ing methods and the comparative analysis is carried out in the same case study.

Specifically, we take into account three indexes in the comparison as follows.

(a) Total consensus cost index of the CRP,C∗ =
∑�

i=1
c(i) , where � is the number of 

iterations in the CRP.
(b) Number of modifications index �(�) in each iteration of the CRP.
(c) The group consensus index GCIM in each iteration of the CRP.

For brevity, M1, M2, and M3 denote the three existing methods:

Table 3  The results of 
clustering and weight

The cluster 
label

DMs �
l

�
k

C1 {e4, e11, e14, e17} 0.1 0.025
C2 {e1, e10, e13, e26} 0.1 0.025
C3 {e2, e5, e12, e19, e24} 0.16 0.032
C4 {e7, e9, e18, e27, e29, e30} 0.23 0.0383
C5 {e6, e8, e15, e16, e20, e22, e25} 0.31 0.443
C6 {e3, e21, e23, e28} 0.1 0.025

Table 4  The parameters of the iterations of consensus process

The nominal value of costs The perturbation value of costs

{c7, c9, c18, c27, c29, c30} = {2, 4, 3, 1, 3, 6} {ĉ7, ĉ9, ĉ18, ĉ27, ĉ29, ĉ30} = {−0.6,−0.2, 0.3, 0.6, 0.5,−0.6}

{c3, c21, c23, c28} = {5, 3, 3, 4} {ĉ3, ĉ21, ĉ23, ĉ28} = {−0.7, 0.2, 0.6,−0.4}

{c10, c1, c13, c26} = {2, 3, 2, 4} {ĉ10, ĉ1, ĉ13, ĉ26} = {0.7,−0.3, 0.7,−0.4}

Table 5  The consensus index and total cost of the iterations of consensus process

Iteration NCI GCI The total costs

1 {0.888, 0.865, 0.888, 0.853, 0.878, 0.856} 0.853 4.03
2 {0.889, 0.870, 0.886, 0.884, 0.882, 0.862} 0.862 3.83
3 {0.889, 0.870, 0.886, 0.885, 0.881, 0.890} 0.870 3.20
4 {0.888, 0.893, 0.888, 0.886, 0.881, 0.892} 0.881 2.55
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(1) M1: This mothed, proposed by Wu et al., establishes integer optimization con-
sensus models based on the Manhattan distance (Wu et al. 2019b). However, it 
does not consider the uncertain unit adjusting costs of DMs. By comparison with 
this method, we can investigate the influences of the uncertain unit adjusting 
costs of DMs in the CRP. By applying this model to the case, we can obtain a 
detailed consensus iteration result shown in Table 6.

(2) M2: The k-means clustering algorithm method introduced by Wu and Xu to 
classify DMs with a possible distribution-based hesitant fuzzy element into 
subgroups (Wu and Xu 2018). To investigate the influences of the clustering 
algorithm, we apply this k-means clustering algorithm to the case, and we 
obtain the results of the cluster that is G1 = {e2, e12, e12, e24},G2 = {e3, e5, e19},

G3 = {e4, e7, e9, e11, e14, e17, e18, e21, e27 e29},G4 = {e1, e8, e10, e15, e26},

G5 = {e6, e16, e20, e22, e25},G6 = {e23, e28, e30} . The results of iterations are in 
the CRP exhibited in Table 7.

(3) M3: The method of CRP named the uninorm-based comprehensive behavior 
classification model with enhanced efficiency and rationality is proposed by 
(Shi et al. 2018). Based on a cooperative index and a non-cooperative index, 
this model updates the weight of DMs in CRPs. We apply this CRP method to 
investigate the influence of the different CRP methods.

The result of iterations in this CRP is exhibited in Table 8.
We obtain the total consensus cost index of the CRP, the number of modifications 

index and the group consensus index, which are described in Figs. 3, 4, 5, and 6.
From Figs. 2, 3, 4, 5, and 6, the following observations are summarized.

Table 6  The results of iterations in the CRP of the M1

Iteration NCI GCI Costs �(�)

1 {0.888, 0.864, 0.887, 0.851, 0.879, 0.858} 0.851 3.1 13
2 {0.883, 0.867.883, 0.882, 0.888, 0.860} 0.860 1.925 24
3 {0.883, 0.866, 0.883, 0.883, 0.886, 0.888} 0.866 2.150 9
4 {0.888, 0.893, 0.888, 0.886, 0.884, 0.892} 0.884 1.700 8

Table 7  The results of iterations in the CRP of the M2

Iteration NCI GCI Costs �(�)

1 {0.878, 0.859, 0.886, 0.854, 0.882, 0.842} 0.842 8.45 69
2 {0.877, 0.859, 0.887, 0.854, 0.878, 0.888} 0.854 4.70 47
3 {0.876, 0.857, 0.882, 0.889, 0.887, 0.891} 0.857 3.60 76
4 {0.876, 0.889, 0.887, 0.883, 0.889, 0.891} 0.876 2.05 32
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 (i) The total consensus costs obtained by the optimization model in the CRP are 
lower than those of CRP methods. Compared with M1,the total consensus 
costs increase. The reason is that the proposed method takes into account 
the uncertainty of the decision-making environment that is characterized by 
the DMs’ uncertain unit adjusting cost. This finding implies that the MCC 
model based on robust optimization is more realistic and robust. Moreover, 
by comparing M2 and the proposed method, the total consensus costs of the 
proposed method are lower than those of M2. This suggests that the clustering 
method is a key step in LSGDM that influences the costs of the CRP and that 
the enhanced ISODATA developed in this paper is more effective.

 (ii) The total �(�) value of M1 is lower than that of the proposed method and the 
corresponding consensus cost is lower than the proposed model. Moreover, the 
total �(�) value of M3 is lower than that of the proposed method, however its 
cost is higher than that of the proposed method. This indicates that when the 
MCC model is not taken into account, a small amount of modification of DMs’ 

Table 8  The results of iterations in CRP of the M3

Iteration NCI GCI Costs �(�)

1 {0.851, 0.863, 0.889, 0.848, 0.879, 0.864} 0.848 6.275 38
2 {0.853, 0.856, 0.891, 0.853, 0.877, 0.864} 0.853 5.300 27
3 {0.862, 0.861, 0.889, 0.866, 0.871, 0.877} 0.861 5.575 21
4 {0.882, 0.875, 0.890, 0.879, 0.882, 0.884} 0.875 3.725 35

Fig. 3  The consensus cost of each iteration in these different methods
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opinions can also greatly increase the consensus costs. Finally, the total �(�) 
value of M2 is lower than that of the proposed method. This indicates that the 
clustering algorithm affects the number of modifications of DMs’ opinions.

Fig. 4  C∗ value in these different methods

Fig. 5  �(�) value in these different methods
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6.3  Simulation Analysis

In this subsection, we first use the several evaluation indexes to estimate the perfor-
mance of the enhanced ISODDATA, which are described in Fig. 7.

As the number of iterations increases, the sum of squares due to error (SSE) value 
is small at the beginning and then sharply rises, then falls, and finally converges. A 
larger number of cluster points leads to a small SSE value, and the reduction in clus-
tering centres cause an increase in the SSE value. When the number of clustering 
centres is 6, the SSE value starts to decrease and finally gradually converges and the 
reduction Calinski-Harabazs (CH) value, indicates that the best number of clustering 
centres is 6.

To test the convergence performance of the enhanced ISODDATA proposed in 
this paper, we extended the scope of DMs to 60. The parameters are set as �n = 5 , 
�s = 1.4 , �c = 0.13 , K = 4 and I = 30 . The iterative process of the clustering algo-
rithm is shown in Fig. 8.

Compared with the original ISODATA algorithm, the proposed algorithm can 
converge faster. The 60 DMs are clustered into 9 sub-groups.

Second, we conduct a simulation experiments to analyze the influence of the 
degree of uncertainties in the robust discrete MCC model. We also consider three 
indexes introduced in Sect. 6.2. Based on the same clustering result, let us set the 
different uncertain numbers of unit adjusting costs of DMs.(see Table  9).Then, 
we obtain the three indexes, which are described in Fig. 9.

From the experiment, the following observations are summarized.

 (i) With the increase in uncertainty, the method proposed still achieves consen-
sus. Meanwhile, it does not change the number of iterations. However, the 

Fig. 6  GCI value in these different methods
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consensus cost of each iteration rises, and the total consensus cost increases. 
This finding means that the uncertainty of the decision-making environment 
causes an increase in the costs of the CRP.

 (ii) The increase in uncertainty has little impact on the consensus degree of each 
iteration of the CRP. However, the number of modifications significantly 

Fig. 7  Performance test for ISODATA. a is the SSE value and b is the CH value

Fig. 8  The iterative process of the ISODATA and proposed method
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increased. This indicates that a stronger uncertainty in the decision-making 
environment will lead to an increase in the variation of DMs’ opinions.

A case study proved the effectiveness of the proposed CRP method for uncertain 
multi-attribute LSGDM problems, and the comparative analysis illustrated that the 
proposed clustering algorithm can dynamically cluster DMs into subgroups and that 
the robust discrete MCC model as the optimization-based consensus rules of CRPs, 
resists the uncertain decision environment and has stronger robustness.

Table 9  The different uncertain numbers of unit adjusting costs of DMs

The proportion of uncertain(%) Γ(�) The perturbation value of cost

25 {0.5, 0.5, 0.5, 0.5} {−0.5, 0.3,−0.1,−0.2}

{0.6, 0.2,−0.3,−0.6,−0.5,−0.6}

{−0.7, 0.2,−0.6,−0.4}

{−0.7, 0.3,−0.7,−0.4}

50 {1.5, 1.5, 1.5, 1.5} {0.5, 0.3,−0.1,−0.2}

{−0.6,−0.2, 0.3, 0.6,−0.5,−0.6}

{−0.7, 0.2, 0.6,−0.4}

{0.7,−0.3, 0.7,−0.4}

75 {2.8, 2.8, 2.8, 2.8} {0.5, 0.3, 0.1,−0.2}

{0.6, 0.2, 0.3, 0.6, 0.5,−0.6}

{0.7, 0.2, 0.6,−0.4}

{0.7, 0.3, 0.7,−0.4}

100 {3.7, 3.7, 3.7, 3.7} {0.5, 0.3, 0.1, 0.2}

{0.6, 0.2, 0.3, 0.6, 0.5, 0.6}

{0.7, 0.2, 0.6, 0.4}

{0.7, 0.3, 0.7, 0.4}

Fig. 9  Simulation experiments under different uncertainties



486 Y. Li et al.

1 3

7  Conclusion

The consensus problem is very important in LSGDM. There are still some gaps 
although CRPs have been thoroughly studied over the last several years. This study 
researched uncertain LSGDM with interval opinions and proposed a CRP method 
based on a robust discrete optimization MCC model to address the uncertain unit 
adjustment cost. Compared with the existing CRPs in LSGDM, the major contribu-
tions and innovations of this paper are summarized as follows.

(1) Clustering for large-scale DMs is a crucial step in addressing the complex-
ity of LSGDM problems. Based on the k-means clustering mechanism, an 
enhanced ISODATA is proposed to dynamically adjust the number of clusters 
to divide DMs into the subgroups under interval opinions. Meanwhile, this clus-
ter methods improve the quality of initial cluster centre selection inspired by 
k-means +  + which guarantees the diversity and dispersion of cluster centres.

(2) CRPs involving the feedback process take a great deal of time and effort, which 
can noticeably escalate costs. Therefore, considering the cost in CRPs, the MCC 
model under the interval opinions of DMs is established. This model aimed to 
minimize the total cost of modifying the opinions of DMs in uncertain LSGDM 
problems.

(3) To address the uncertain unit adjusting costs of DMs, we propose a robust dis-
crete MCC model for LSGDM under indeterminate costs. This model is allowed 
to control the degree of conservatism of the optimal consensus opinion and 
makes the feedback process of CRPs more economical in uncertain decision-
making environments. Meanwhile, a robust discrete counterpart is transformed 
to solve this model. In numerical experiments, the proposed robust discrete MCC 
model is more robust under uncertain circumstances.

The proposed method in this paper mainly used a cluster algorithm to reduce the 
complexity of large-scale DMs and constructed a robust discrete MCC model into a 
feedback strategy for multi-attribute LSGDM under uncertain situations. However, 
the mathematical model is not the only model involved in CRPs. The psychological 
elements of large-scale DMs are significant. Therefore, in future work, we argue that 
it will be interesting to discuss the influence of the psychological activities of DMs 
on uncertain LSGDM problems.

Additionally, since the robust discrete counterpart of the MCC model proposed is 
mixed integer linear programming, the mixed nonlinear integer programming prob-
lem is NP-hard when the Euclidean distance consensus measurement is considered 
in the MCC model. Generally, NP-hard problems take more time to obtain the sub-
optimal solution not the optimal solution. Thus, it would be interesting to discuss 
the MCC model with the Euclidean distance consensus measurement. Aggregation 
operators are used extensively to calculate a consensus opinion based on individual 
opinions. When a consensus opinion is calculated by aggregation operators, such 
as weighted average operator or ordered weighted average operator, in our future 
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research, we also try to take the aggregation operators into the MCC model of 
uncertain LSGDM problems.
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