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Abstract
Preference relations are one of the most common tools used to represent decision 
makers’ preferences. Self-confident preference relations, whose preference elements 
include self-confidence levels and preference values, is a new and effective tool that 
can be used to express decision makers’ self-confidence levels in the preference rela-
tion. When using self-confident preference relations in group decision-making prob-
lems, the individual consistency and group consensus are two fundamental issues. 
To deal with these issues, a consistency index is proposed to measure the consist-
ency level of a self-confident additive preference relation. Meanwhile, a consensus 
index is presented to measure the group consensus level of self-confident additive 
preference relations. Subsequently, two nonlinear optimization methods are devel-
oped to manage consistency and consensus issues for group decision-making within 
the context of consensus reaching without feedback. The first model is used to derive 
self-confident additive preference relations with acceptable consistency, and the sec-
ond optimization model is employed to promote consensus reaching that simultane-
ously manage individual consistency. A hypothetical application with comparative 
analysis is conducted to show the usability and validity of the proposed methods.
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1 Introduction

Group decision making (GDM) is a problem-solving process, which is devoted 
to identifying and choosing alternatives based on the knowledge (or opinions) 
expressed by a set of decision makers (DMs) (Li et  al. 2021; Liu et  al. 2018b, 
2019c). In GDM problems, the concept of preference relations is one of the most 
common tools used to express individuals’ opinions through pairwise compari-
sons of alternatives (Kou et al. 2016). Various kinds of preference relations have 
been proposed, such as additive preference relations (also called reciprocal fuzzy 
preference relations) (Herrera-Viedma et  al. 2007a; Pérez et  al. 2010; Tanino 
1984), multiplicative preference relations (Fan et al. 2006; Saaty 1980; Srdjevic 
2005; Srdjevic and Srdjevic 2013), and linguistic preference relations (Dong et al. 
2015; Li et al. 2018a; Wu et al. 2015, 2020).

In real-world decision problems, DMs may not be entirely self-confident about 
their opinions because of time pressure or limited expertise regarding the problem 
domain. In these situations, the form of incomplete preference relations is used to 
deal with preferences that lack self-confidence. In an incomplete preference rela-
tion, there are two self-confidence levels: (i) the individuals have self-confidence 
when they provide the preference information, and (ii) the individuals lack self-
confidence when the preference information is missing. Recently, a more gen-
eral theoretical context was developed by Liu et al. (2017), that is, self-confident 
preference relations, which allow DMs to express multiple self-confidence levels 
when providing their opinions. In a self-confident preference relation, each ele-
ment includes two components: the former part represents preference evaluation 
over a pair of alternatives, and the second part represents the self-confidence level 
over the first part. Meanwhile, Dong et al. (2019) discussed the validity of self-
confident preference relations through a large number of comparative simulation 
experiments, and indicated that self-confident preference relations exhibit better 
performance than incomplete preference relations in most cases. More studies on 
self-confident preference relations can be found in Refs. (Liu et al., 2018a, 2019a, 
2019b; Zhang et al. 2021a).

Individual consistency and group consensus are two important topics that use 
preference relations in classical GDM (Chiclana et al. 2008; Jin et al. 2020). In 
a rational GDM process, consistency is a formal property of individuals’ prefer-
ences, and it is associated with the transitivity property (Herrera-Viedma et  al. 
2007b; Chiclana et  al. 2008). Lack of consistency may lead to inconsistent and 
unreliable conclusions (Li et al. 2018b, 2019). Therefore, individual consistency 
should be sought after in order to make rational decision-making. Individual con-
sistency is usually applied to help DMs analyze their preferences and ensure that 
the DMs are neither illogical nor random in the decision-making process. The 
group consensus refers to the agreement among the group of DMs regarding the 
collective solution (Gong et al. 2017; Wu and Xu 2012; Xiao et al. 2021; Zhang 
et al. 2019b). In relation to the efficiency and effectiveness of group consensus, 
some interesting discussions have been held (Moreno-Jiménez et al. 2013; Rob-
erto 2005; Susskind, et al. 1999). Although consensus is achieved, this does not 
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necessarily imply that the best solution will be obtained. Efficiency (optimal use 
of resources or correct decisional procedure) is a key criterion that must be met, 
which legitimizes GDM to be a correct decision procedure with the following 
advantages: (i) Promoting communication among the DMs, and (ii) More effec-
tive implementation.

To maintain the individual consistency in the consensus reaching process, numer-
ous consistency and consensus models have been proposed in GDM problems 
(Cabrerizo et  al. 2018; Chiclana et  al. 2008; Wu and Xu 2016; Zhang and Guo 
2016; Zhang et al. 2014). For instance, Chiclana et al. (2008) presented a consen-
sus reaching model that deals with both consistency and consensus in GDM. Zhang 
and Guo (2016) developed consistency and consensus models for GDM with uncer-
tain 2-tuple linguistic preference relations. Zhang et  al. (2014) then developed a 
consensus framework to manage both individual consistency and group consensus 
issues. Meanwhile, Cabrerizo et al. (2018) proposed a multi-objective optimization 
approach that considers both consistency and consensus for GDM with linguistic 
preference relations. Moreno-Jiménez et  al. (2008) presented a consistency and 
consensus based method in Analytic Hierarchy Process-GDM, which was used in 
a real-life experiment on e-democracy developed for the City Council of Zaragoza. 
Gong et al. (2020) proposed two types of consensus models under consistency con-
straints for linear uncertain preference relations, which were applied to the sensitiv-
ity assessment of the meteorological industry in a region of China. To date, many 
studies have been conducted on consistency and consensus in GDM, with recent 
literature reviews on GDM provided by Li et al. (2019) and Zhang et al. (2020).

Although the existing related studies have made considerable progress regard-
ing consistency and consensus issues, some challenges still remain:

(1)  To our knowledge, consistency has an important influence on GDM. Liu et al. 
(2017) proposed self-confident preference relations to help DMs express multiple 
self-confidence levels in preference relations. Dong et al. (2019) analyzed the 
validity of self-confident preference relations by comparing the performance of 
complete preference relations, incomplete preference relations, and self-con-
fident preference relations. However, there are few studies on the consistency 
measurement of self-confident preference relations.

(2)  As mentioned above, consistency and consensus are two important issues in 
GDM with preference relations, and some consensus frameworks have been 
investigated to simultaneously manage individual consistency and consensus. It 
is natural that we hope to maintain individual consistency in consensus reaching 
process in GDM with self-confident additive preference relations.

(3)  In many situations, preference adjustment means the loss of original preference 
information and the cost consumption of reaching the consensus. In recent years, 
some consensus approaches with minimum adjustment have been investigated 
and widely employed in various GDM contexts (Xu et al. 2020; Zhang et al. 
2020). Based on the basic idea of minimum adjustments and minimum cost, an 
optimization-based problem is proposed: minimizing the preference and self-
confidence loss in GDM with self-confident additive preference relations.
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Motivated by these challenges, this study concentrates on obtaining optimal 
adjusted self-confident additive preference relations with acceptable consistency and 
consensus levels, in which the decision makers’ initial preferences are preserved as 
much as possible. Particularly, to focus on the main research objective of this study, 
we design the nonlinear optimization method within the context of consensus reach-
ing without feedback process (Palomares et  al. 2014; Zhang et  al. 2020). Specifi-
cally, the main research contributions and innovations of this work are summarized 
in the following three aspects:

(1)  A consistency measure method is developed to evaluate the individual consist-
ency level of a self-confident additive preference relation by considering the 
self-confidence levels. Moreover, a new consensus index is presented to measure 
the group consensus level of self-confident additive preference relations.

(2)  Based on the new consistency index, a nonlinear optimization model is pre-
sented to derive self-confident additive preference relations with acceptable 
consistency, which seeks to minimize the adjustment of preference and self-
confidence values.

(3)  Considering the new consensus index, a nonlinear optimization approach is 
proposed to improve the group consensus level that simultaneously manages 
individual consistency in GDM with self-confident additive preference relations.

Moreover, the proposed optimization-based models optimally preserve the origi-
nal preference information and self-confidence levels according to the required con-
sistency and consensus levels.

This paper is organized as follows: Sect. 2 provides a review of some basic infor-
mation about the 2-tuple linguistic model, additive preference relations, and self-
confident additive preference relations. The consistency index and consensus index 
of self-confident additive preference relations are defined in Sect. 3. Section 4 pre-
sents two nonlinear optimization models. The first model is used to improve individ-
ual consistency, and the second model is used to improve the group consensus level 
that simultaneously manages individual consistency in GDM. Section 5 provides a 
hypothetical application with comparative analysis to show the usability and validity 
of the proposed methods. Finally, Sect. 6 provides concluding remarks.

2  Preliminaries

This section reviews some basic knowledge of the 2-tuple linguistic model, additive 
preference relations and self-confident additive preference relations.

2.1  The 2‑tuple Linguistic Model

As mentioned before, the self-confidence level is often characterized using a linguistic 
rating scale. In this study, the 2-tuple linguistic model is an effective tool to deal with 
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the operations of linguistic self-confidence levels. The basic concepts and mathematical 
formulations of the 2-tuple linguistic model are given by Herrera and Martínez (2000).

Let S = {si|i = 0, 1, ..., g} be an ordinal linguistic term set with odd g + 1 rat-
ing options, where si represents a possible value of a linguistic variable, and  
S = {si|i = 0, 1, ..., g} satisfies the following conditions:

.
Based on the linguistic term set S = {si|i = 0, 1, ..., g} , Herrera and Martínez 

proposed the 2-tuple linguistic representation model (Herrera and Martínez 2000) as 
follows.

Definition 1 (Herrera and Martínez 2000). Let � ∈ [0, g] be a number in the gran-
ularity interval of the linguistic term set S = {s0, ..., sg} and let i = round(�) and 
� = � − i be two values such that i ∈ [0, g] and � ∈ [−0.5, 0.5) . Then, � is called a 
symbolic translation, with round being the standard rounding operation.

The 2-tuple linguistic model represents the linguistic information by a 2-tuple 
(si, �) , where si ∈ S and � ∈ [−0.5, 0.5) . A one-to-one mapping between linguistic 
2-tuples and numerical values in [0, g] is possible.

Definition 2 (Herrera and Martínez 2000). Let S = {s0, ..., sg} be a linguistic term 
set and � ∈ [0, g] be a value representing the result of a symbolic aggregation opera-
tion, then the 2-tuple that expresses the equivalent information to � is obtained with 
the following function: Δ ∶ [0, g] → S × [−0.5, 0.5) , where.

Δ(�) = (si, �) , with 
{

si, i = round(�)

� = � − i, � ∈ [−0.5, 0.5).

For convenience, denoting S = S × [−0.5, 0.5) . Function Δ is a one-to-one mapping 
whose inverse function Δ−1 ∶ S → [0, g] is defined as Δ−1((si, �)) = i + � . For nota-
tion simplicity, this study sets Δ−1((si, 0)) = Δ−1(si) . Clearly, an ordering on the set of 
2-tuples and a negation operator can be defined as follows:

1) Let (sk, �) and (sl, �) be two 2-tuples. Then:
i) if k < l , then (sk, �) is smaller than (sl, �).
ii) if k = l , then

(a)  if � = � , then (sk, �) and (sl, �) represents the same information.
(b)  if 𝛼 < 𝛾 , then (sk, �) is smaller than (sl, �).

2) A 2-tuple negation operator:

si > sj if and only if i > j

(1)Neg((si,�)) = Δ(g − (Δ−1(si, �))).



218 W. Liu et al.

1 3

2.2  Additive Preference Relations

Additive preference relations are often used to represent the decision maker’s prefer-
ence opinions in GDM problems. Let X = {x1, x2, ..., xn} be a finite set of alternatives. 
The concept of additive preference relation is provided in Definition 3.

Definition 3 (Orlovsky 1978; Tanino 1984). An additive preference relation on a set 
of alternatives X is represented by a matrix F = (fij)n×n , with fij in [0, 1] being as the 
preference intensity of alternative xi to that of xj , satisfying the following reciprocity 
property: fij + fji = 1 for i, j = 1, 2, ..., n.

Specifically, fij = 0.5 signifies the indifference between xi and xj , fij > 0.5 indicates 
a definite preference for xi over xj , and fij < 0.5 denotes a definite preference for xi over 
xj.

In decision making with additive preference relations, transitivity is an important 
concept that help avoid inconsistent conclusions. Therefore, the consistency of additive 
preference relations is based on the concept of transitivity. Compared with the ordinal 
consistency, cardinal consistency is considered a stronger concept because it extends 
the transitivity of preferences by implementing the intensity of preferences.

Let F = (fij)n×n be an additive preference relation. Some transitive properties of 
additive preference relations can be described as follows (Herrera-Viedma et al. 2007b; 
Orlovsky 1978; Tanino 1984):

(a)  Weak stochastic transitivity. fij ≥ 0.5, fjk ≥ 0.5 ⇒ fik ≥ 0.5, ∀i, j, k.
(b)  Strong stochastic transitivity. fij ≥ 0.5, fjk ≥ 0.5 ⇒ fik ≥ max(fij, fjk), ∀i, j, k.
(c) Additive transitivity. fij = fik − fjk + 0.5, ∀i, j, k.

Based on the additive transitivity, an estimated preference value associated with the 
pair of alternatives (xi, xj) can be calculated using fik − fjk + 0.5 . Then, by computing 
the error between a preference value fij and its estimated value fik − fjk + 0.5 , a cardinal 
consistency measurement method for additive preference relations is presented as Defi-
nition 4.

Definition 4 (Herrera‑Viedma et al. 2007a). Let F = (fij)n×n be an additive preference 
relation. The consistency level ( CL ) of F = (fij)n×n is defined as follows:

Clearly, CL(F) ∈ [0, 1] . When CL(F) = 1 , the additive preference relation F is fully 
consistent; otherwise, the lower the value of CL(F) the more inconsistent F is.

(2)CL(F) = 1 −
2

3n(n − 1)(n − 2)

n∑

i,j,k=1

|fij + fjk − fik − 0.5|
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2.3  Self‑Confident Additive Preference Relations

Self-confident preference relation is a new effective tool to express the self-
confidence levels of DMs in preference relations (Liu et  al. 2017). In self-con-
fident additive preference relations, a linguistic term set SSL = {l0, l1, ..., lg} is 
often pre-established to help DMs express self-confidence levels. In particular, 
the linguistic term set SSL = {l0, l1, ..., lg} has g + 1 rating options (Alwin and 
Krosnick 1985; Wu et  al. 2021). For example, a possible linguistic term set 
SSL = {l0, l1, l2, l3, l4, l5, l6, l7, l8} contains 9-point linguistic terms. Detailed 
information about the linguistic terms set with a 9-point is listed in Table 1.

Let X = {x1, x2, ..., xn} be a set of n alternatives and SSL = {l0, l1, ..., lg} be a 
linguistic term set. The concept of self-confident additive preference relation is 
defined as follows:

Definition 5 (Liu et al. 2017). A self-confident additive preference relation on a set of 
alternatives X is represented by a matrix R = ((fij, sij))n×n , with each element (fij, sij) 
containing two parts: the first part, fij ∈ [0, 1] , represents the preference intensity 
of alternative xi to that of xj , and the second part, sij ∈ SSL , represents the self-con-
fidence level over the preference value fij . The following conditions are assumed: 
fij + fji = 1 , sij = sji , and sii = lg for i, j = 1, 2, ..., n.

In Definition 5, fii = 0.5 is the preference intensity of alternative xi to that of 
xi , and sii is the self-confidence level over fii . Thus, sii = lg . If the linguistic term 
in Table 1 are used to represent the DMs’ self-confidence levels, then sii = l8.

Example 1 Let X = {x1, x2, x3} be a set of three alternatives. Let 
SSL = {l0, l1, l2, l3, l4, l5, l6, l7, l8} be a linguistic term set with a 9-point (the 
detailed information of SSL can be found in Table 1). Then, a self-confident additive 
preference relation on the set of alternatives X can be represented by the following 
matrix R:

Table 1  The detailed 
information about the 9-point 
linguistic terms set

Linguistic label Semantic meaning

l0 Extremely low confident
l1 Very low confident
l2 Low confident
l3 Slightly low confident
l4 Medium confident
l5 Slightly high confident
l6 High confident
l7 Very high confident
l8 extremely high confident
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In R , f12 = 0.2 represents the preference intensity of alternative x1 over x2 is 0.2, 
and s12 = l5 means the self-confident level over the preference value f12 is l5 (i.e., 
slightly high confident). Other elements in R can be explained similarly.

Let R = ((fij, sij))n×n be a self-confident additive preference relation. Some tran-
sitive properties of self-confident additive preference relations can be described as 
follows (Liu et al. 2017):

(a)  Weak stochastic transitivity at self-confidence level l ∈ SSL.
  fij ≥ 0.5, fjk ≥ 0.5 ⇒ fik ≥ 0.5, ∀i, j, k and sij ≥ l, ∀i, j.
(b)  Strong stochastic transitivity at self-confidence level l ∈ SSL.
  fij ≥ 0.5, fjk ≥ 0.5 ⇒ fik ≥ max(fij, fjk), ∀i, j, k and sij ≥ l, ∀i, j.
(c)  Additive transitivity at self-confidence level l ∈ SSL.
  fij = fik − fjk + 0.5, ∀i, j, k and sij ≥ l, ∀i, j.

Clearly, the additive transitivity condition is stronger than strong stochastic tran-
sitivity, and the strong stochastic transitivity condition is stronger than weak sto-
chastic transitivity.

Note 1: Tanino (1984) analyzed individual preference from the perspective of 
individual utility values. In the case where individual preferences are represented 
by utility values, the preference relations can be converted from the utility functions 
(Tanino 1990). In GDM problems, preference relation is one of the most commonly 
used representation formats because the pairwise comparison mode is more accu-
rate than the non-pairwise methods (Herrera-Viedma et al. 2021; Millet 1997). This 
paper focuses on relevant studies on improving individual consistency and the defor-
mation of preference relations in GDM. Therefore, the relationship between prefer-
ence relation and utility function is not the focus of this paper.

3  Consistency and Consensus Indexes

In this section, we present a method to measure the consistency level of a self-con-
fident additive preference relation. Moreover, a new consensus measure method is 
developed to measure the consensus level among DMs in GDM with self-confident 
additive preference relations.

3.1  Individual Consistency Index

Consistency is an important problem regarding preference relations because it has a 
direct impact on the final decision results. Traditionally, individual consistency degree 
of an additive preference relation can be evaluated by calculating the difference 
between the estimated values and the preference values. Herrera-Viedma et al. (2007b) 

R =

⎛
⎜
⎜
⎝

(0.5, l8) (0.2, l5) (0.8, l2)

(0.8, l5) (0.5, l8) (0.6, l3)

(0.2, l2) (0.4, l3) (0.5, l8)

⎞
⎟
⎟
⎠
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introduced a method to measure the individual consistency level ( CL ) of additive pref-
erence relations (i.e., Eq. (2)). In Eq. (2), if |fij + fjk − fik − 0.5| has a larger value, the 
consistency degree of preferences values over the alternatives (xi, xj, xk) is worse. In 
this case, when providing a self-confident additive preference relation, it is reasonable 
to assign smaller self-confidence levels over the preference values (fij, fjk, fik) . The con-
sistency level of the self-confident additive preference relation should be as large as 
possible. Thus, by extending Herrera-Viedma et al.’s individual consistency measuring 
method (Herrera-Viedma et al. 2007b), we propose a method to evaluate the individual 
consistency level of a self-confident additive preference relation by considering the 
self-confidence levels.

Definition 6 Let R = ((fij, sij))n×n be a self-confident additive preference relation, 
and SSL = {l0, l1, ..., lg} be a linguistic term set to express self-confidence levels. 
Then, the consistency index for self-confident additive preference relation is defined 
as,

In Eq. (3), the parameters fij, fjk, fik ∈ [0, 1] represent the preference values in R . 
The parameters sij, sjk, sik ∈ SSL represent the self-confidence levels over the prefer-
ence values fij, fjk and fik , respectively. The parameter lg ∈ SSL represents the self-con-
fidence level over fii.

Clearly, SCL(R) ∈ [0, 1] . The larger the value of SCL(R) , the more consistent R is. 
If SCL(R) = 1 , then R is a fully consistent self-confident additive preference relation. 
According to reality situation, a consistency threshold SCL ∈ [0, 1] is often established 
for SCL(R) . If SCL(R) ≥ SCL , we conclude that the consistency of R is acceptable; 
otherwise, the consistency of R is unacceptable.

The construction of individual consistency index SCL extends the concept of CL 
(i.e., Eq. (2)), and when sij = sjk = sik = lg ∀i, j, k , the index SCL becomes the index 
CL.

3.2  Consensus Index

In the GDM problem, when the difference in preference information among DMs is 
sufficiently large, it will be difficult to obtain a consensus solution. In general, the con-
sensus index is applied to measure the degree of agreement among DMs. By comput-
ing the difference between preference values, we can evaluate the consensus level 
among DMs. Let F(r) = (f

(r)

ij
)n×n and F(t) = (f

(t)

ij
)n×n be two additive preference rela-

tions. In the work developed by Chiclana et al. (2008), a distance function is presented 
to measure the similarity degree of the preference values between DMs dr and dt , on a 
pair of alternatives xi and xj , as follows:

(3)

SCL(R) = 1 −
2

3n(n − 1)(n − 2)

n∑

i,j,k=1

Δ−1(sij) + Δ−1(sjk) + Δ−1(sik)

3Δ−1(lg)
|fij + fjk − fik − 0.5|

(4)s
(

f
(r)

ij
, f

(t)

ij

)

= 1 − |f
(r)

ij
− f

(t)

ij
|
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In self-confident additive preference relations, when the preference value fij 
has a self-confidence level sij ( sij ∈ SSL ), the similarity degree of preference 
information between two DMs needs to be measured at self-confidence levels. 
Let R(r) = ((f

(r)

ij
, s

(r)

ij
))n×n and R(t) = ((f

(t)

ij
, s

(t)

ij
))n×n be two self-confident additive 

preference relations. A new distance function with self-confidence levels to 
measure the similarity degree between (f (r)

ij
, s

(r)

ij
) and (f (t)

ij
, s

(t)

ij
) is proposed as 

follows,

It is clear that 0 ≤
Δ−1(s

(r)

ij
)+Δ−1(s

(t)

ij
)

2Δ−1(lg)
≤ 1 . The value of 

Δ−1(s
(r)

ij
)+Δ−1(s

(t)

ij
)

2Δ−1(lg)
 in Eq.  (5) 

determines the magnification of the difference between preference values f (r)
ij

 
and f (t)

ij
 . When s(r)

ij
= s

(t)

ij
= lg , the new distance function with self-confidence 

levels in Eq. (5) reduces to Eq. (4).
Consider a GDM problem under self-confident additive preference relations 

context. Let D = {d1, d2, ..., dm} be a set of m DMs and X = {x1, x2, ..., xn}

(n ≥ 2 ) be a set of n alternatives. The DMs use linguistic terms set 
SSL = {l0, l1, ..., lg} to express self-confidence levels. Based on the new distance 
function ss((f (r)

ij
, s

(r)

ij
), (f

(t)

ij
, s

(t)

ij
)) (i.e., Eq. (5)), we present a new consensus index 

to evaluate the group consensus level of self-confident additive preference rela-
tions. The underlying idea of the new consensus index consists of fusing the 
similarity of the preferences of all DMs on each pair of alternatives.

Definition 7 Let {R(1), R(2), ..., R(m)} be a set of the self-confident additive prefer-
ence relations provided by m DMs, where R(k) = ((f

(k)

ij
, s

(k)

ij
))n×n represents the pref-

erence relation provided by the decision maker dk(k = 1, 2, ..., m ). The consensus 
level among all the DMs is given by,

When CCL{R(1), R(2), ..., R(m)} = 1 , a complete group consensus is reached; 
otherwise, a larger CCL{R(1), R(2), ..., R(m)} value indicates a higher consen-
sus level among all DMs {d1, d2, ..., dm} . In actual decision-making situations, 
a threshold value CCL ∈ [0, 1] is usually established for the consensus index. 
If CCL{R(1), R(2), ..., R(m)} ≥ CCL , it can be considered to reach an acceptable 
consensus level; otherwise, it will be considered that the consensus level is 
unacceptable.

(5)ss((f
(r)

ij
, s

(r)

ij
), (f

(t)

ij
, s

(t)

ij
)) = 1 −

Δ−1(s
(r)

ij
) + Δ−1(s

(t)

ij
)

2Δ−1(lg)
|f

(r)

ij
− f

(t)

ij
|

(6)

CCL{R(1)
, R(2)

, ..., R(m)} =
1

n(n − 1)

n∑

i=1

n∑

j=1,j≠i

(
2

m(m − 1)

m∑

t≥r

m∑

r=1

ss((f
(r)

ij
, s

(r)

ij
), (f

(t)

ij
, s

(t)

ij
)))

= 1 −
2

nm(m − 1)(n − 1)

n∑

i=1

n∑

j=1,j≠i

m∑

t≥r

m∑

r=1

Δ−1(s
(r)

ij
) + Δ−1(s

(t)

ij
)

2Δ−1(lg)
|f

(r)

ij
− f

(t)

ij
|.
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4  Nonlinear Optimization Models to Manage Individual Consistency 
and Group Consensus

As mentioned in Introduction, there are two basic issues in GDM: consistency 
and consensus (Chiclana et al. 2008). When the consistency level or the consen-
sus level is unacceptable, the DMs need to adjust their individual preferences. 
Preference adjustment usually means cost in GDM problems. In this section, two 
nonlinear optimization models are proposed to manage consistency and consen-
sus issues for GDM with self-confident additive preference relations. The first 
optimization-based model is used to derive self-confident additive preference 
relations with an acceptable consistency, and the second optimization-based 
model is used to improve the group consensus level that simultaneously man-
ages individual consistency.

Before discussing the nonlinear optimization models, we first introduce 
Manhattan distance, which is a distance function used to measure the distance 
between two additive preference relations. Let E = (eij)n×n and F = (fij)n×n be two 
additive preference relations. Manhattan distance between E and F is:

In this section, an extended Manhattan distance is used to measure the distance 
between two self-confident additive preference relations. Let R(r) = ((f

(r)

ij
, s

(r)

ij
))n×n 

and R(t) = ((f
(t)

ij
, s

(t)

ij
))n×n be two self-confident additive preference relations. The 

extended Manhattan distance between R(r) and R(t) is:

where �1 and �2 are normalization coefficients. The preference values fij and self-
confidence levels sij have different domains, so there could be a large difference 
between fij and sij . In order to eliminate the influence of varying domains in the 
measurement distance, �1 and �2 are used to normalize the distance of preference 
values fij and the distance of self-confidence levels sij . According to the matrix the-
ory, the normalization coefficient �k can be given by

where spk is Frobenius norm of matrix Gk , i.e., spk = ��Gk��2 =

�
n∑

i=1

n∑

j=1

(gk
ij
)2.

All notations are summarized in Table 2.

(7)d(E, F) =
1

n2

n∑

i=1

n∑

j=1

|eij − fij|

(8)

ds(R(r), R(t)) = �1 ×
1

n2

n∑

i=1

n∑

j=1
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| + �2 ×

1

n2
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j=1

|Δ−1(s
(r)
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) − Δ−1(s

(t)

ij
)|

(9)�k =
1

spk
, k = 1, 2.
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4.1  Improving Individual Consistency

Generally, a lack of consistency will lead to unreliable conclusions. When the 
preference relation is of unacceptable consistency, the decision maker needs to 
modify individual preferences. The consistency-improving process can be used 
to help the DMs improve individual consistency. Without loss of generality, an 
optimization-based method is proposed to obtain self-confident additive prefer-
ence relations with acceptable consistency in the present work.

Let SCL be a predefined individual consistency threshold for the consist-
ency index of a self-confident additive preference relation R = ((fij, sij))n×n . If 
SCL(R) < SCL , R is considered to be of unacceptable consistency. In this subsec-
tion, we present a nonlinear optimization model to construct a new self-confident 
additive preference relation R with acceptable consistency. The main idea of this 
optimization model is to minimize the information loss between R and R , includ-
ing the loss of preference information and the loss of self-confidence informa-
tion, and also to find a self-confident additive preference relation R = ((fij, sij))n×n 
that satisfies SCL(R) ≥ SCL . Therefore, based on the extended Manhattan dis-
tance (i.e., Eq. (8)), the objective function of the proposed nonlinear optimization 
model can be constructed as follows:

Table 2  Notation summary

{l0, l1, ..., lg} Linguistic term set
{x1, x2, ..., xn} Set of alternatives
{d1, d2, ..., dm} Set of DMs
� Weight vector of DMs
F Additive preference relation
R Self-confident additive preference relation
R(k) Self-confident additive preference relation provided by dk
R Adjusted self-confident additive preference relation associated with R

R(k) Adjusted self-confident additive preference relation associated with R(k)

R(c) Collective preference matrix

w(c) Collective preference vector
CL Consistency level of additive preference relation
SCL Consistency level of self-confident additive preference relation
CCL Consensus level of self-confident additive preference relations

SCL Consistency threshold

CCL Consensus threshold

d Manhattan distance
ds Extended Manhattan distance
� Normalization coefficient
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where �1 and �2 are the normalization coefficients. Due to the varying scales adopted 
for preference and self-confidence, there could be a large difference between the 
preference values and self-confidence values. In order to eliminate the influence of 
different scales, �1 and �2 are used to standardized measure the preference informa-
tion loss and self-confidence information loss (Ma et al. 2006; Zhang et al. 2019a).

Meanwhile, it is natural that the constructed self-confident additive preference 
relation R should have an acceptable consistency level, that is,

SCL(R) = 1 −
2

3n(n−1)(n−2)

n∑

i,j,k=1

Δ−1(sij)+Δ
−1(sjk)+Δ

−1(sik)

3Δ−1(lg)
�fij + fjk − fik − 0.5� ≥ SCL.

In this way, a nonlinear optimization model to obtain the self-confident additive 
preference relation with acceptable consistency can be constructed as follows:

where fij(i, j = 1, 2, ..., n ) and sij(i, j = 1, 2, ..., n ) are the decision variables. In 
model (11), the objective function is to minimize the information and self-confi-
dence loss between R and R . Formulas (2) and (3) are used to yield the new self-
confident additive preference relation R . Formula (4) is used to ensure that the con-
sistency level of R is acceptable. Model (11) not only guarantees that the adjusted 
individual self-confident additive preference relation can reach an acceptable con-
sistency but also seeks the optimal self-confident additive preference relation with 
minimum information and self-confidence loss from decision maker’s original pref-
erence relation.

Note 2: The nonlinear optimization model (11) is convex nonlinear programming. 
It is possible that there are multiple optimal solutions to model (11). The problem of 
uniqueness is not the core of our proposal, so in this paper we do not focus on this 
issue. In future studies we will discuss selecting the optimal solution from the set 
of optimal solutions of this model. For example, an index can be added to yield a 
unique optimal solution. The proposed nonlinear optimization models of this study 
can be solved by readily available software such as LINGO.

We use seven transformed variables in model (11): aijk = fij + fjk − fik − 0.5 , 
bijk = |aijk| , sijk = (Δ−1(sij) + Δ−1(sjk) + Δ−1(sik))∕3Δ

−1(lg) , xij = fij − fij , cij = |xij| , 
yij = Δ−1(sij) − Δ−1(sij) , and dij = |yij| . In this way, model (11) can be transformed into 
the following nonlinear programming model:

(10)min �1 ×
1

n2

n∑

i=1

n∑

j=1

|fij − fij| + �2 ×
1

n2

n∑
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|Δ−1(sij) − Δ−1(sij)|

(11)
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n�
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n�

j=1

�fij − fij� + �2 ×
1
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n�

i=1

n�
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�Δ−1(sij) − Δ−1(sij)� (1)

s.t.
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⎪
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fij + fji = 1 (2)

Δ−1(sij) = Δ−1(sji) (3)

2

3n(n − 1)(n − 2)

n�

i,j,k=1

Δ−1(sij) + Δ−1(sjk) + Δ−1(sik)

3Δ−1(lg)
�fij + fjk − fik − 0.5� ≤ 1 − SCL (4)

fij ≥ 0, sij ∈ SSL (5)
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In model (12), constraints (4)−(6) guarantee that bijk = |aijk| = |fij + fjk − fik − 0.5| , 
constraint (8) guarantees that R is of acceptable consistency SCL(R) ≥ SCL , constraints 
(9)−(11) guarantee that cij = |xij| = |fij − fij| , and constraints (12)−(14) guarantee that 
dij = |yij| = |Δ−1(sij) − Δ−1(sij)|.

Solving nonlinear optimization model (12) obtains the adjusted self-confident addi-
tive preference relation R with acceptable consistency, SCL(R) ≥ SCL . When setting 
SCL = 1 , the obtained self-confident additive preference relation R is of full consist-
ency. According to different consistency thresholds SCL , the proposed approach 
can generate different feedback adjustment matrices for DMs to improve individual 
consistency.

Note 3: In this paper, the preference relations in the group decision-making process 
are homogeneous (i.e., all individuals are assumed to have equal weights), so we do 
not design the weight for the decision maker, and instead we focus on developing a 

(12)
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fij + fji = 1 i, j = 1, 2, ..., n (2)

Δ−1(sij) = Δ−1(sji) i, j = 1, 2, ..., n (3)

aijk = fij + fjk − fik − 0.5 i, j, k = 1, 2, ..., n (4)

bijk − aijk ≥ 0 i, j, k = 1, 2, ..., n (5)

bijk + aijk ≥ 0 i, j, k = 1, 2, ..., n (6)

sijk =
Δ−1(sij) + Δ−1(sjk) + Δ−1(sik)

3Δ−1(lg)
i, j, k = 1, 2, ..., n (7)

2

3n(n − 1)(n − 2)

n�

i,j,k=1

sijkbijk ≤ 1 − SCL i, j, k = 1, 2, ..., n (8)

xij = fij − fij i, j = 1, 2, ..., n (9)

cij − xij ≥ 0 i, j = 1, 2, ..., n (10)

cij + xij ≥ 0 i, j = 1, 2, ..., n (11)

yij = Δ−1(sij) − Δ−1(sij) i, j = 1, 2, ..., n (12)

dij − yij ≥ 0 i, j = 1, 2, ..., n (13)

dij + yij ≥ 0 i, j = 1, 2, ..., n (14)

fij ≥ 0 i, j = 1, 2, ..., n (15)

sij ∈ SSL i, j = 1, 2, ..., n (16)
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feedback adjustment with minimum information loss, which can generate adjustment 
suggestions that DMs use as a reference to modify their individual opinions. In future 
research we may discuss using the individual consistency level as a penalty factor to 
assign importance to the ranking of DMs.

4.2  Consensus Model

In real-life scenarios, the DMs may have different opinions about the decision-
making problem, making it difficult to directly obtain an acceptable collective 
solution. Thus, a consensus reaching process is usually designed to build connec-
tions among DMs and to improve the group consensus level (Dong et al. 2018; Li 
et al. 2020; Zhang et al. 2019c). To ensure individual consistency in the consen-
sus reaching process, Chiclana et  al. (2008) proposed a consensus model based 
on individual consistency and consensus measures, and Zhang et al. (2012) devel-
oped a linear optimization model controlling both consistency and consensus for 
additive preference relations. Based on the frameworks of Chiclana et al. (2008) 
and Zhang et  al. (2012), we propose an optimization-based consensus model to 
manage consistency and consensus issues in GDM with self-confident additive 
preference relations.

There are two basic elements in our optimization model: a set of m DMs, 
D = {d1, d2, ..., dm} , and a set of n alternatives, X = {x1, x2, ..., xn}(n ≥ 2 ). Let 
� = (�(1), �(2), ..., �(m))T be the weight vector of DMs. Let SSL = {l0, l1, ..., lg} be a 
linguistic term set provided for DMs to express their self-confidence levels. Each 
decision maker uses self-confident additive preference relations as the decision-
making tool to express preference information and self-confidence level. Let 
R(k) = ((f

(k)

ij
, s

(k)

ij
))n×n ( k = 1, 2, ..., m ) be a group of self-confident additive prefer-

ence relations with an unacceptable group consensus level. Let CCL be the prede-
fined consensus threshold. To reach consensus among DMs {d1, d2, ..., dm} , we 
need to find a new group of self-confident additive preference relations 
R(k) = ((f

(k)

ij
, s

(k)

ij
))n×n(k = 1, 2, ..., m ) with acceptable consensus and consistency 

levels. To preserve R(k)(k = 1, 2, ..., m ) as much information as possible, the dis-
tance measure between R(k) and R(k) should be as small as possible. Based on this 
idea, the objective function of the proposed optimization-based consensus model 
can be constructed as follows:
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Meanwhile, it is natural that the consistency of R(k) should be acceptable, that 
is,

SCL(R(k)) = 1 −
2

3n(n−1)(n−2)

n∑

i,j,c=1

Δ−1(s
(k)

ij
)+Δ−1(s

(k)

jc
)+Δ−1(s

(k)

ic
)

3Δ−1(lg)
�f
(k)

ij
+ f

(k)

jc
− f

(k)

ic
− 0.5� ≥ SCL, and the 

group DMs should have an acceptable consensus level, i.e.,

In this way, the following nonlinear optimization model to promote consensus 
reaching in GDM with self-confident additive preference relations is constructed:

where f
(k)

ij
(k = 1, 2, ..., m , i, j = 1, 2, ..., n ) and s

(k)

ij
(k = 1, 2, ..., m , 

i, j = 1, 2, ..., n ) are the decision variables. In model (14), the objective function is 
to minimize the total information and self-confidence loss between R(k) and R(k) . 
Formulas (2) and (3) are used to yield the new self-confident additive preference 
relation R(k) . Formula (4) is used to ensure that the consistency level of R(k) is 
acceptable. Formula (5) is used to ensure that the consensus level among DMs is 
acceptable. Model (14) guarantees that the individual self-confident additive prefer-
ence relation can reach an acceptable consistency level and that the group DMs can 
reach a predefined consensus level. Meanwhile, Model (14) seeks the optimal self-
confident additive preference relations R(k)(k = 1, 2, ..., m ) with minimum informa-
tion and self-confidence loss from the original preference relations of the DMs.

We use ten transformed variables in model (14): a(k)
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| . In this way, model (14) is transformed into 

the following nonlinear programming model:
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In model (15), constraints (4)−(6) guarantee that 
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f
(k)

ij
≥ 0 i, j = 1, 2, ..., n;k = 1, 2, ...,m (20)

s
(k)

ij
∈ SSL i, j = 1, 2, ..., n;k = 1, 2, ...,m (21)
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able consistency SCL(R(k)) ≥ SCL , constraints (9)−(11) guarantee that 
g
(rt)

ij
= |f

(rt)

ij
| = |f

(r)

ij
− f

(t)

ij
| , constraint (13) guarantees that {R(1), R(2), ..., R(m)} is of 

acceptable consensus level CCL{R(1), R(2), ..., R(m)} ≥ CCL , constraints (14)−(16) 

guarantee that c(k)
ij

= |x
(k)

ij
| = |f

(k)

ij
− f

(k)

ij
| , and constraints (17)−(19) guarantee that 

d
(k)

ij
= |y

(k)

ij
| = |Δ−1(s

(k)

ij
) − Δ−1(s

(k)

ij
)|.

The optimal self-confident additive preference relations R(k) = ((f
(k)

ij
, s

(k)

ij
))n×n 

( k = 1, 2, ..., m ) with minimum information and self-confidence loss can be yielded 
by solving model (15). Let R(c) = ((f

(c)

ij
, s

(c)

ij
))n×n be the collective preference matrix 

obtained from R(k)(k = 1, 2, ..., m ) using the weighted average method, where

In Liu et  al. (2017), a linear programming method is presented to estimate the 
collective preference vector based on the heterogeneous self-confident preference 
relations. Inspired by the model of Liu et al. (2017), we use the following model to 
obtain the collective preference vector w(c) = (w

(c)

1
, w

(c)

2
, ..., w(c)

n
)T from R(c):

5  Hypothetical Application and Comparative Analysis

In this section, we use a hypothetical example of application to show the usability of 
the proposed methods. We consider a scenario namely venture capital investment. 
We further conduct the comparison analysis to show the influence of self-confidence 
levels on the decision-making results.

(16)f
(c)

ij
=

m∑

k=1

�(k)f
(k)

ij

(17)s
(c)

ij
= Δ(

m∑

k=1

�(k)Δ−1(s
(k)

ij
))

(18)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

min z =

n−1�

i=1

n�

j=i+1

z
(c)

ij

s.t.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�
(c)

ij
=

1

2
(w

(c)

i
− w

(c)

j
) + 0.5 − f

(c)

ij

z
(c)

ij
= �Δ−1(s

(c)

ij
)���

(c)

ij
�

�n

i=1
w
(c)

i
= 1
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5.1  Hypothetical Application

Venture capital investment is a form of financing that investors provide to startup com-
panies or small businesses that are believed to have long-term growth potential. Venture 
capital investment with high risk, high growth and high yield, plays an important role 
in fostering emerging industries in both developed and developing countries (Ewens 
et al. 2021). In this activity, several departments/experts are usually involved in order 
to make a better investment decision. Therefore, it makes sense to incorporate venture 
capital investment into a GDM problem.

A venture capital firm plans to invest in Internet projects. Through the preliminary 
screening of the company, four high-quality projects are selected into the final selection 
stage. Among these projects are.

x1 : Internet live broadcast project.
x2 : Internet parking project.
x3 : Internet delivery system project.
x4 : Internet education system project.
These four project proposals are submitted to the investment committee, which con-

sists six experts {d1, d2, ..., d6} from different departments: technology, product, mar-
keting, financing, team, and management. Considering the fairness among experts, we 
suppose that the weight of each expert is equal, �(1) = �(2) = ... = �(6) = 1∕6 . They are 
required to consider the risk and yield factors, and then give their opinions about the 
four projects. It is assumed that experts give their opinions by self-confident additive 
preference relations, as follows:

In the individual consistency improving process, we need to measure the consistency 
of R(k)

VC
(k = 1, 2,..., 6 ). In this hypothetical example, we assume that the consistency 

threshold is SCL = 0.90 . Based on Eq.  (3), the individual consistency levels of each 
expert would be the following SCL(R

(1)

VC
) = 0.756 , SCL(R

(2)

VC
) = 0.891 , 

SCL(R
(3)

VC
) = 0.847 , SCL(R(4)

VC
) = 0.937 , SCL(R(5)

VC
) = 0.797 and SCL(R(6)

VC
) = 0.937 . It 

can be found that SCL(R(k)

VC
) < SCL(k = 1, 2, 3, 5 ), which implies R(k)

VC
(k = 1, 2, 3, 5 ) is of 

unacceptable consistency. Then, we can use the consistency improving method (refer to 

R
(1)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.1, l7) (0.6, l7) (0.7, l6)

(0.9, l7) (0.5, l8) (0.2, l1) (0.5, l3)

(0.4, l7) (0.8, l1) (0.5, l8) (0.2, l6)

(0.3, l6) (0.5, l3) (0.8, l6) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(2)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.3, l2) (0.8, l3) (0.7, l6)

(0.7, l2) (0.5, l8) (0.5, l4) (0.5, l8)

(0.2, l3) (0.5, l4) (0.5, l8) (0.6, l6)

(0.3, l6) (0.5, l8) (0.4, l6) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(3)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.6, l5) (0.4, l4) (0.1, l3)

(0.4, l5) (0.5, l8) (0.7, l6) (0.8, l4)

(0.6, l4) (0.3, l6) (0.5, l8) (0.3, l7)

(0.9, l3) (0.2, l4) (0.7, l7) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(4)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.2, l3) (0.5, l1) (0.4, l6)

(0.8, l3) (0.5, l8) (0.3, l4) (0.7, l2)

(0.5, l1) (0.7, l4) (0.5, l8) (0.5, l4)

(0.6, l6) (0.3, l2) (0.5, l4) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(5)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.7, l8) (0.5, l7) (0.4, l6)

(0.3, l8) (0.5, l8) (0.1, l3) (0.7, l4)

(0.5, l7) (0.9, l3) (0.5, l8) (0.2, l7)

(0.6, l6) (0.3, l4) (0.8, l7) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(6)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l5) (0.4, l7) (0.6, l4)

(0.6, l5) (0.5, l8) (0.5, l8) (0.9, l2)

(0.6, l7) (0.5, l8) (0.5, l8) (0.6, l7)

(0.4, l4) (0.1, l2) (0.4, l7) (0.5, l8)

⎞
⎟
⎟
⎟
⎠
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model (12)) to deal with the inconsistency for R(k)

VC
(k = 1, 2, 3, 5 ) with the consideration 

of minimum adjustments. The adjusted R(k)

VC
 with acceptable consistency can be obtained.

Based on Eq. (3), we obtain that SCL(R(k)

VC
) = 0.9 ( k = 1, 2, 3, 5 ). All experts satisfy 

the individual consistency level. Notably, in this example we assume that the experts 
follow the adjusted suggestion.

Next, in the consensus reaching process let R(4)

VC
= R

(4)

VC
 and R(6)

VC
= R

(6)

VC
 . Accord-

ing to Eq.  (6), the group consensus level among six experts can be measured 
CCL{R

(1)

VC
, R

(2)

VC
, R

(3)

VC
, R

(4)

VC
, R

(5)

VC
, R

(6)

VC
} = 0.874 . Assume that consensus threshold 

value is CCL = 0.92 , we can see CCL{R(1)

VC
, R

(2)

VC
, R

(3)

VC
, R

(4)

VC
, R

(5)

VC
, R

(6)

VC
} < CCL , 

which implies that group consensus level does not satisfy the requirement. Applying 
consensus model (15) to solve this problem, the adjusted self-confident additive prefer-

ence relations R(1)

VC
 , R(2)

VC
 , R(3)

VC
 , R(4)

VC
 , R(5)

VC
 and R(6)

VC
 are obtained:

R
(1)

VC
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(0.5, l8) (0.303, l7) (0.6, l7) (0.303, l6)

(0.697, l7) (0.5, l8) (0.223, l1) (0.5, l3)

(0.4, l7) (0.777, l1) (0.5, l8) (0.202, l6)

(0.697, l6) (0.5, l3) (0.798, l6) (0.5, l8)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

R
(2)

VC
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(0.5, l8) (0.3, l2) (0.8, l3) (0.7, l6)

(0.7, l2) (0.5, l8) (0.5, l4) (0.539, l8)

(0.2, l3) (0.5, l4) (0.5, l8) (0.6, l6)

(0.3, l6) (0.461, l8) (0.4, l6) (0.5, l8)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

R
(3)

VC
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(0.5, l8) (0.6, l5) (0.4, l4) (0.1, l3)

(0.4, l5) (0.5, l8) (0.7, l6) (0.534, l4)

(0.6, l4) (0.3, l6) (0.5, l8) (0.3, l7)

(0.9, l3) (0.466, l4) (0.7, l7) (0.5, l8)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

R
(5)

VC
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(0.5, l8) (0.7, l8) (0.5, l7) (0.4, l6)

(0.3, l8) (0.5, l8) (0.297, l3) (0.647, l4)

(0.5, l7) (0.703, l3) (0.5, l8) (0.4, l7)

(0.6, l6) (0.353, l4) (0.6, l7) (0.5, l8)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

R
(1)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.303, l7) (0.548, l7) (0.303, l6)

(0.697, l7) (0.5, l8) (0.223, l1) (0.5, l3)

(0.452, l7) (0.777, l1) (0.5, l8) (0.4, l6)

(0.697, l6) (0.5, l3) (0.6, l6) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(2)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.3, l2) (0.8, l3) (0.6, l6)

(0.7, l2) (0.5, l8) (0.5, l4) (0.539, l8)

(0.2, l3) (0.5, l4) (0.5, l8) (0.5, l6)

(0.4, l6) (0.461, l8) (0.5, l6) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(3)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.55, l5) (0.4, l4) (0.303, l3)

(0.45, l5) (0.5, l8) (0.5, l6) (0.534, l4)

(0.6, l4) (0.5, l6) (0.5, l8) (0.4, l7)

(0.697, l3) (0.466, l4) (0.6, l7) (0.5, l8)

⎞
⎟
⎟
⎟
⎠
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The consensus level among the adjusted self-confident additive preference rela-

tions is acceptable due to CCL{R(1)

VC
, R

(2)

VC
, R

(3)

VC
, R

(4)

VC
, R

(5)

VC
, R

(6)

VC
} = 0.92 ≥ CCL . 

The individual consistency levels are SCL(R
(1)

VC
) = 0.9 , SCL(R

(2)

VC
) = 0.914 , 

SCL(R
(3)

VC
) = 0.945 , SCL(R

(4)

VC
) = 0.935 , SCL(R

(5)

VC
) = 0.9 and SCL(R

(6)

VC
) = 0.913 , 

which are acceptable due to SCL(R(k)

VC
) ≥ SCL(k = 1, 2,..., 6 ). The adjusted self-con-

fident additive preference relations would be used to ensure the rationality of the 
project investment decision.

Based on Eqs.  (16) and   (17), the collective preference matrix would be the 
following:

The collective preference vector can be obtained from R(c) using model (18), 
w
(c)

VC
= (0.159, 0.359, 0.191, 0.291)T.

5.2  Comparative Analysis

To show the influence of different self-confidence levels on the decision-making 
results, a comparative analysis is constructed for the hypothetical application. Com-
pared with the corresponding six self-confident additive preference relations R(k)

VC

(k = 1, 2,..., 6 ), the following twelve matrices have the same preference values but 
different self-confidence levels:

R
(4)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.3, l3) (0.5, l1) (0.4, l6)

(0.7, l3) (0.5, l8) (0.3, l4) (0.7, l2)

(0.5, l1) (0.7, l4) (0.5, l8) (0.5, l4)

(0.6, l6) (0.3, l2) (0.5, l4) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(5)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.55, l8) (0.5, l7) (0.4, l6)

(0.45, l8) (0.5, l8) (0.297, l3) (0.647, l4)

(0.5, l7) (0.703, l3) (0.5, l8) (0.4, l7)

(0.6, l6) (0.353, l4) (0.6, l7) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(6)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l5) (0.4, l7) (0.6, l4)

(0.6, l5) (0.5, l8) (0.5, l8) (0.9, l2)

(0.6, l7) (0.5, l8) (0.5, l8) (0.5, l7)

(0.4, l4) (0.1, l2) (0.5, l7) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(c)

VC
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l5) (0.525, l5) (0.434, l5)

(0.6, l5) (0.5, l8) (0.387, l4) (0.637, l4)

(0.475, l5) (0.613, l4) (0.5, l8) (0.45, l6)

(0.566, l5) (0.363, l4) (0.55, l6) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

.
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R
(1)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.1, l1) (0.6, l3) (0.7, l7)

(0.9, l1) (0.5, l8) (0.2, l8) (0.5, l8)

(0.4, l3) (0.8, l8) (0.5, l8) (0.2, l5)

(0.3, l7) (0.5, l8) (0.8, l5) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(1)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.1, l8) (0.6, l8) (0.7, l8)

(0.9, l8) (0.5, l8) (0.2, l8) (0.5, l8)

(0.4, l8) (0.8, l8) (0.5, l8) (0.2, l8)

(0.3, l8) (0.5, l8) (0.8, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(2)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.3, l2) (0.8, l5) (0.7, l1)

(0.7, l2) (0.5, l8) (0.5, l3) (0.5, l3)

(0.2, l5) (0.5, l3) (0.5, l8) (0.6, l4)

(0.3, l1) (0.5, l3) (0.4, l4) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(2)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.3, l8) (0.8, l8) (0.7, l8)

(0.7, l8) (0.5, l8) (0.5, l8) (0.5, l8)

(0.2, l8) (0.5, l8) (0.5, l8) (0.6, l8)

(0.3, l8) (0.5, l8) (0.4, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(3)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.6, l2) (0.4, l2) (0.1, l3)

(0.4, l2) (0.5, l8) (0.7, l1) (0.8, l4)

(0.6, l2) (0.3, l1) (0.5, l8) (0.3, l3)

(0.9, l3) (0.2, l4) (0.7, l3) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(3)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.6, l8) (0.4, l8) (0.1, l8)

(0.4, l8) (0.5, l8) (0.7, l8) (0.8, l8)

(0.6, l8) (0.3, l8) (0.5, l8) (0.3, l8)

(0.9, l8) (0.2, l8) (0.7, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(4)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.2, l2) (0.5, l6) (0.4, l3)

(0.8, l2) (0.5, l8) (0.3, l2) (0.7, l4)

(0.5, l6) (0.7, l2) (0.5, l8) (0.5, l3)

(0.6, l3) (0.3, l4) (0.5, l3) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(4)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.2, l8) (0.5, l8) (0.4, l8)

(0.8, l8) (0.5, l8) (0.3, l8) (0.7, l8)

(0.5, l8) (0.7, l8) (0.5, l8) (0.5, l8)

(0.6, l8) (0.3, l8) (0.5, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

Table 3  Comparative analysis 
results Three groups of 

matrixes
{R

(1)

VC
, R

(2)

VC
, ..., R

(6)

VC
}

{R
(1)

VC1
, R

(2)

VC1
, ..., R

(6)

VC1
}

{R
(1)

VC2
, R

(2)

VC2
, ..., R

(6)

VC2
}

Collective pref-
erence matrix

R
(c)

VC
=

⎛
⎜
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l5) (0.525, l5) (0.434, l5)

(0.6, l5) (0.5, l8) (0.387, l4) (0.637, l4)

(0.475, l5) (0.613, l4) (0.5, l8) (0.45, l6)

(0.566, l5) (0.363, l4) (0.55, l6) (0.5, l8)

⎞
⎟
⎟
⎟
⎟
⎠

R
(c)

VC1
=

⎛
⎜
⎜
⎜
⎜
⎝

(0.5, l8) (0.398, l2) (0.529, l3) (0.483, l3)

(0.602, l2) (0.5, l8) (0.417, l3) (0.667, l4)

(0.471, l3) (0.583, l3) (0.5, l8) (0.467, l3)

(0.517, l3) (0.333, l4) (0.534, l3) (0.5, l8)

⎞
⎟
⎟
⎟
⎟
⎠

R
(c)

VC2
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(0.5, l8) (0.45, l8) (0.455, l8) (0.5, l8)

(0.55, l8) (0.5, l8) (0.498, l7) (0.547, l8)

(0.545, l8) (0.502, l7) (0.5, l8) (0.408, l8)

(0.5, l8) (0.453, l8) (0.592, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Collective pref-
erence vector

w
(c)

VC
= (0.159, 0.359, 0.191, 0.291)T

w
(c)

VC1
= (0.208, 0.411, 0.158, 0.223)T

w
(c)

VC2
= (0.201, 0.301, 0.291, 0.207)T
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The 12 matrices would be divided into two groups: the first group contains R(1)

VC1
 , 

R
(2)

VC1
 , R(3)

VC1
 , R(4)

VC1
 , R(5)

VC1
 and R(6)

VC1
 , and the second group contains R(1)

VC2
 , R(2)

VC2
 , R(3)

VC2
 , 

R
(4)

VC2
 , R(5)

VC2
 and R(6)

VC2
 . The weight of each DM is equal, �(1) = �(2) = ... = �(6) = 1∕6 . 

Let SCL = 0.9 be the consistency threshold and CCL = 0.92 be the consensus thresh-
old, which are the same as in hypothetical example. Comparative analysis results of 

hypothetical example are listed in Table  2. The adjusted matrices R(k)

VCi
 ( i = 1, 2

,k = 1, 2,..., 6 ) can be obtained as follows (Table 3),

R
(5)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.7, l1) (0.5, l3) (0.4, l4)

(0.3, l1) (0.5, l8) (0.1, l2) (0.7, l3)

(0.5, l3) (0.9, l2) (0.5, l8) (0.2, l1)

(0.6, l4) (0.3, l3) (0.8, l1) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(5)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.7, l8) (0.5, l8) (0.4, l8)

(0.3, l8) (0.5, l8) (0.1, l8) (0.7, l8)

(0.5, l8) (0.9, l8) (0.5, l8) (0.2, l8)

(0.6, l8) (0.3, l8) (0.8, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(6)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l3) (0.4, l1) (0.6, l2)

(0.6, l3) (0.5, l8) (0.5, l2) (0.9, l4)

(0.6, l1) (0.5, l2) (0.5, l8) (0.6, l2)

(0.4, l2) (0.1, l4) (0.4, l2) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(6)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l8) (0.4, l8) (0.6, l8)

(0.6, l8) (0.5, l8) (0.5, l8) (0.9, l8)

(0.6, l8) (0.5, l8) (0.5, l8) (0.6, l8)

(0.4, l8) (0.1, l8) (0.4, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(1)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.186, l1) (0.6, l3) (0.699, l7)

(0.814, l1) (0.5, l8) (0.4, l8) (0.5, l8)

(0.4, l3) (0.6, l8) (0.5, l8) (0.599, l5)

(0.301, l7) (0.5, l8) (0.401, l5) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(2)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.3, l2) (0.775, l5) (0.7, l1)

(0.7, l2) (0.5, l8) (0.5, l3) (0.5, l3)

(0.225, l5) (0.5, l3) (0.5, l8) (0.6, l4)

(0.3, l1) (0.5, l3) (0.4, l4) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(3)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.6, l2) (0.4, l2) (0.1, l3)

(0.4, l2) (0.5, l8) (0.7, l1) (0.8, l4)

(0., l2) (0.3, l1) (0.5, l8) (0.3, l3)

(0.9, l3) (0.2, l4) (0.7, l3) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(4)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.2, l2) (0.5, l6) (0.4, l3)

(0.8, l2) (0.5, l8) (0.3, l2) (0.7, l4)

(0.5, l6) (0.7, l2) (0.5, l8) (0.5, l3)

(0.6, l3) (0.3, l4) (0.5, l3) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(5)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.7, l1) (0.5, l3) (0.4, l4)

(0.3, l1) (0.5, l8) (0.1, l2) (0.7, l3)

(0.5, l3) (0.9, l2) (0.5, l8) (0.2, l1)

(0.6, l4) (0.3, l3) (0.8, l1) (0.5, l8)

⎞
⎟
⎟
⎟
⎠
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We can observe that different self-confidence levels produce different adjusted 
self-confident additive preference relations with the same required consistency and 
consensus levels. Furthermore, different self-confidence levels lead to different col-
lective preference vector of projects, which means that different self-confidence lev-
els would lead to different decision-making results.

R
(6)

VC1
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l3) (0.4, l1) (0.6, l2)

(0.6, l3) (0.5, l8) (0.5, l2) (0.8, l4)

(0.6, l1) (0.5, l2) (0.5, l8) (0.6, l2)

(0.4, l2) (0.2, l4) (0.4, l2) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(1)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l8) (0.5, l8) (0.6, l8)

(0.6, l8) (0.5, l8) (0.699, l8) (0.5, l8)

(0.5, l8) (0.301, l8) (0.5, l8) (0.4, l8)

(0.4, l8) (0.5, l8) (0.6, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(2)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.5, l8) (0.5, l8) (0.6, l8)

(0.5, l8) (0.5, l8) (0.5, l8) (0.531, l8)

(0.5, l8) (0.5, l8) (0.5, l8) (0.416, l8)

(0.4, l8) (0.469, l8) (0.584, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(3)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.5, l8) (0.411, l8) (0.4, l8)

(0.5, l8) (0.5, l8) (0.699, l8) (0.5, l8)

(0.589, l8) (0.301, l8) (0.5, l8) (0.4, l8)

(0.6, l8) (0.5, l8) (0.6, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(4)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l8) (0.411, l8) (0.4, l8)

(0.6, l8) (0.5, l8) (0.411, l8) (0.626, l8)

(0.589, l8) (0.589, l8) (0.5, l8) (0.416, l8)

(0.6, l8) (0.374, l8) (0.584, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(5)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.5, l8) (0.5, l8) (0.4, l8)

(0.5, l8) (0.5, l8) (0.176, l0) (0.5, l8)

(0.5, l8) (0.824, l0) (0.5, l8) (0.4, l8)

(0.6, l8) (0.5, l8) (0.6, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠

R
(6)

VC2
=

⎛
⎜
⎜
⎜
⎝

(0.5, l8) (0.4, l8) (0.411, l8) (0.6, l8)

(0.6, l8) (0.5, l8) (0.5, l8) (0.626, l8)

(0.589, l8) (0.5, l8) (0.5, l8) (0.416, l8)

(0.4, l8) (0.374, l8) (0.584, l8) (0.5, l8)

⎞
⎟
⎟
⎟
⎠
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6  Conclusion

Self-confident additive preference relation is a new concept of preference relation. 
In this study, we investigate the consistency and consensus issues in GDM with 
self-confident additive preference relations. First, based on the individual consist-
ency measuring method presented by Herrera-Viedma et  al. (2007b), we propose 
a consistency index to measure the individual consistency level of a self-confident 
additive preference relation. Then, we present a new consensus index to evaluate 
the group consensus level of self-confident additive preference relations. Second, we 
propose two nonlinear optimization models to manage consistency and consensus 
issues for GDM with self-confident additive preference relations. The first nonlin-
ear optimization model is used to derive self-confident additive preference relations 
with acceptable consistency. The second nonlinear optimization model is used to 
promote consensus reaching that simultaneously manage individual consistency. 
Moreover, the proposed optimization-based models optimally preserve the original 
preference information and self-confidence levels, according to the required con-
sistency and consensus levels. Finally, the proposal is applied in a venture capital 
investment scenario, and a comparison analysis is conducted to show the influence 
of self-confidence levels on the decision-making results. The proposal in this study 
can provide group decision support to help DMs manage individual consistency and 
promote consensus building.

For the future work, we plan to work on the consensus problem based on het-
erogeneous self-confident preference relations in a large-scale decision-making 
context (Chen et  al. 2015; Zhang et  al. 2019a). Meanwhile, we argue that it is 
very interesting in future to design a consensus reaching model with a feedback 
process, in which the obtained optimal adjusted self-confident additive preference 
relations are employed as references for decision makers to modify their opin-
ions. Moreover, decision makers may express non-cooperative behaviors (Dong 
et al. 2016; Xu et al. 2019; Zhang et al. 2021b) in accepting the adjustment sug-
gestions in the feedback-based consensus reaching process. So, the investigation 
of non-cooperative behaviors in the feedback-based consensus reaching process 
with self-confident additive preference relations is another interesting research 
direction.
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