
Vol.:(0123456789)

Group Decision and Negotiation (2022) 31:49–80
https://doi.org/10.1007/s10726-021-09756-9

1 3

Exploring the Ordinal Classifications of Failure Modes 
in the Reliability Management: An Optimization‑Based 
Consensus Model with Bounded Confidences

Jing Xiao1 · Xiuli Wang1 · Hengjie Zhang2 

Accepted: 9 August 2021 / Published online: 30 August 2021 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Failure mode and effect analysis (FMEA) is a system activity that identifies, evalu-
ates and eliminates potential failure modes (FMs) in a system/process to enhance 
the quality and reliability of a product. In order to improve the implementation effi-
ciency of FMEA, this study proposes a consensus-based FMEA method to derive 
the ordinal classifications of FMs, in which the FMEA team members employ lin-
guistic distribution to convey their preferences. In the proposed FMEA method, a 
multi-stage consensus optimization model with bounded confidences is designed 
to help the FMEA team reach a consensus. In the consensus reaching process, a 
maximum consensus optimization model based on bounded confidences is provided 
to obtain the adjustment suggestions by maximizing the level of consensus among 
the FMEA team. If the predetermined level of consensus cannot be reached, the 
adjustment suggestions obtained by the maximum consensus optimization model 
are adopted to guide the preference-modification of the FMEA team members. Oth-
erwise, a two-stage consensus optimization model based on bounded confidences 
is designed to derive the adjustment suggestions for the preference-modification of 
the FMEA team members. Finally, a case study of marine diesel engine crankcase 
explosion, a sensitivity analysis and a comparative analysis are proposed to illustrate 
the feasibility and effectiveness of the proposed FMEA method.
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1 Introduction

Failure mode and effect analysis (FMEA) is a reliability management method 
based on a multi-disciplinary team, used to analyze systems/processes to iden-
tify potential failure modes (FMs), their causes, and their possible consequences 
on system/process performance (Liu et  al. 2016b). FMEA has received exten-
sive attention and recognition since it was first implemented in the US aerospace 
industry in the 1960s (Huang et  al. 2020). Nowadays, FMEA is considered an 
effective tool for managing safety and reliability issues, and it has been widely 
used in various industries, such as engineering (Yang and Wang 2015), climate 
(Shrestha et al. 2015), manufacturing (Baghery et al. 2018), water resources man-
agement (Ardeshirtanha and Sharafati 2020), healthcare (Faiella et al. 2018), and 
oil and gas (Catelani et  al. 2018) etc. A typical FMEA includes five key steps, 
that is, Preparation, Identification, Prioritization, Risk Reduction and Reassess-
ment. Among these steps, the prioritization of FMs is the most fundamental and 
influential because the following corrective actions are based on this (Bozdag 
et al. 2015).

The risk priority number (RPN) is utilized by the traditional FMEA to determine 
the prioritization of FMs. RPN is calculated based on the product of the following 
risk factors: severity (S), occurrence (O) and detection (D). Generally, all FMs are 
assessed on a 10-point qualitative scale based on the three risk factors (Pillay and 
Wang 2003), where a higher score means a higher risk. A series of recommended 
actions are taken to mitigate the risk of FMs with high RPN values. Although the 
conventional RPN method is proven to be effective in the early prevention of risks, 
it still has many drawbacks, such as the evaluation of FMs and the prioritization 
of FMs (Liu et  al. 2016b; Wang et  al. 2019). The drawbacks of the RPN method 
have motivated researchers to develop multiple streams of approaches for improv-
ing the application of FMEA process. For example, fuzzy set theory (Bozdag et al. 
2015), cloud model theory (Liu et al. 2017) and rough set theory (Wang et al. 2018) 
are proposed to evaluate the FMs respect to risk factors in FMEA. Compared with 
precise numbers, these evaluation methods can better capture the real perception of 
FMEA team members and enable FMEA team members to deal with information 
insufficient and professional restrictions in the actual FMEA process. Moreover, 
numerous effectiveness methods have been utilized to prioritize FMs. For instance, 
ELECTRE-based ranking approach (Liu et al. 2016b), improved TODIM approach 
(Huang et  al. 2017) and grey relational projection method (Liu et  al. 2014) are 
proposed to obtain a complete risk ranking of FMs. These ranking methods have 
enhanced the application of FMEA. Although traditional and improved FMEA 
methods have made great progress, the FMEA in the real world still needs to fill in 
some gaps: (i) Given the large number of FMs, it is a great burden for the FMEA 
team members to obtain an accurate and complete risk ranking; (ii) Although the 
complete risk ranking of FMs has been obtained, further analysis is needed to deter-
mine which FM sequences require corrective actions; (iii) The previous method 
seldom considered the issue of consensus among the FMEA team members, which 
may lead to conflicts between members.
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Compared with the complete risk ranking of FMs, the merits of assigning the 
FMs into several ordinal classes (such as low, medium, and high) are proposed in 
recent literatures (Certa et al. 2017; Lolli et al. 2015): (i) Several ordinal classes of 
FMs make it easier for the FMEA team members to understand and visualize a large 
number of FMs; (ii) Several ordinal classes of FMs allow the FMEA team members 
to quickly access or analyze a large number of FMs to take effective actions. To 
our best knowledge, only a few methods for classifying FMs have been proposed. 
Considering the benefits of assigning the FMs into ordinal classes in the practical 
applications of FMEA, relevant studies are insufficient.

The process of prioritizing FMs is quite complicated and is usually carried out by 
a multi-disciplinary team composed of decision makers from different departments 
(Bozdag et  al. 2015). Due to different backgrounds and interests, the preferences 
of the FMEA team members are very different. The existing ranking methods (Liu 
et al. 2019; Wang et al. 2019) and sorting methods (Certa et al. 2017; Lolli et al. 
2015) only focus on aggregating individual preferences into collective preference 
and further generating a group solution, without considering the consensus issue 
among the FMEA team members (Bozdag et al. 2015; Liu et al. 2016a; Wang et al. 
2019). The obtained group solution is difficult to be recognized by most FMEA 
members, which leads to a series of negative effects, such as conflicts among FMEA 
members and negative treatment of the group solution. In practice, deriving a con-
sensual group solution is essential in FMEA because: (i) Obtaining a consensual 
group solution requires communication and understanding between FMEA mem-
bers, which helps to create a harmonious working atmosphere; and (ii) The consen-
sual group solution can be widely accepted and recognized, which enables the group 
solution to be implemented smoothly. The benefits of consensual group solution 
analyzed above are presented in detail by Susskind et al. (1999). Consensus models 
are used in group decision making (GDM) to eliminate conflicts between decision 
makers and help decision makers reach a consensus, thereby obtaining a widely rec-
ognized consensual group solution (Li et  al. 2020; Zhang et al. 2019). Consensus 
models are widely applied in various fields (Liu et al. 2020; Yu et al. 2020). Despite 
the great practical value of the consensus models in GDM, few literatures aim to 
integrate consensus models into FMEA process to improve its application.

Due to the complexity of FMEA, it is natural and convenient for the FMEA team 
to apply multiple linguistic terms to convey their assessments of FMs respect to the 
three risk factors. Moreover, the possibility and importance of each linguistic term 
may be different. Therefore, the linguistic distribution is very suitable to be used 
by the FMEA team members to express their risk assessments of FMs. Linguistic 
distribution enables decision makers to assign different probabilities to different lin-
guistic terms by incorporating distribution information into linguistic terms (Zhang 
et al. 2014). Wu et al. (2021) provided a comprehensive perspective on the develop-
ment of distributed linguistic representations and showed that linguistic distribution 
is a powerful tool for modeling uncertainty. Linguistic distribution is widely recog-
nized and used in various applications (Chen et al. 2020; Ju et al. 2020; Zhang et al. 
2020b). On one hand, linguistic distribution can preserve the original assessment 
information of FMEA team members by means of multiple linguistic terms. On the 
other hand, linguistic distribution facilitates FMEA team members’ efforts to handle 
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sophisticated situation by considering the probabilities of linguistic terms. However, 
to our knowledge, linguistic distribution is seldom applied in FMEA process.

Motivated by the challenge of remedying the above-mentioned insufficient 
research on existing FMEA methods and inspired by the consensus models (Xiao 
et al. 2020a; Zha et al. 2019), this study proposes a FMEA method based on a multi-
stage consensus optimization model with bounded confidences to derive the ordi-
nal classifications of FMs. The main contributions of this study are summarized as 
follows:

1. This study uses linguistic distribution to model the vague assessments of FMs 
with respect to each risk factors provided by the FMEA team members.

2. This study proposes a multi-stage consensus model to help the FMEA team reach 
a consensus while considering the bounded confidences of the FMEA team mem-
bers.

3. This study helps the FMEA team members to classify FMs into several ordinal 
classes to deal with a large number of FMs.

Following this, a case study on the marine diesel engine crankcase explosion is 
proposed to demonstrate the application of the consensus-based FMEA. A sensitiv-
ity analysis and a comparative analysis are offered to verify the effectiveness of the 
proposed approach.

The rest of the research arrangements are as follows. Section  2 reviews the 
improved FMEA methods and the consensus models in GDM. Section 3 introduces 
the two-tuple linguistic model and the linguistic distribution assessment. Section 4 
presents the general FMEA and establishes a consensus-based FMEA to facilitate 
its resolution. Section 5 proposes a multi-stage consensus optimization model with 
bounded confidences. A case study regarding the problem of crankcase explosion 
of marine diesel engines is presented in Sect. 6. A detailed sensitivity analysis and 
comparative analysis are presented in Sect. 7. Finally, Sect. 8 offers conclusions and 
future research directions.

2  Literature Review

Here, we introduce the improved FMEA approach and the consensus models in 
GDM based on their relevance to the subject of this study.

(1) FMs evaluation in FMEA

Information insufficient, professional limitations, and the inherent vagueness 
of human judgement make it difficult for the FMEA team to evaluate the FMs 
with precise numbers. Therefore, numerous integrated FMEA approaches have 
been provided to address the risk assessment information of FMs in FMEA. 
Bowles and Peláez (1995) pioneered the use of fuzzy set theory to evaluate FMs 
in FMEA. Followed by Bowles and Peláez (1995), many fuzzy set theory based 
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methods have been presented to address the uncertain evaluation information 
offered by the FMEA team (Jee et  al. 2015; Pillay and Wang 2003; Yang et  al. 
2008). Examples include triangular fuzzy set (Bhuvanesh Kumar and Paramesh-
waran 2018), intuitionistic fuzzy set (Liu et  al. 2019), interval-valued fuzzy set 
(Baghery et  al. 2018) and trapezoidal fuzzy set (Liu et  al. 2012). Besides, the 
linguistic assessment approaches are widely applied by the FMEA team to convey 
their preferences for FMs. Liu et al. (2016b) and Ko et al. (2013) utilized a two-
tuple linguistic computational method to address the assessment information of 
the FMs in FMEA. Li et al. (2017) used linguistic terms based method to model 
the evaluation information offered by the FMEA team. Other methods used by 
the FMEA team to model uncertain assessment information include cloud model 
theory (Liu et al. 2017; Wang et al. 2020), evidential reasoning approach (Chin 
et  al. 2009; Liu et  al. 2013) and rough set theory (Song et  al. 2014). Particu-
larly, Huang et  al. (2017) utilized linguistic distributions to handle the FMEA 
team members’ preferences for FMs. As an effective tool to model uncertainty 
of assessment information, linguistic distributions are seldom applied in FMEA 
with the exception of Huang et al. (2017).

(2) Prioritization of FMs in FMEA

Many literatures have been presented to remedy the drawbacks of conven-
tional RPN method in the process of deriving the prioritization of FMs in FMEA. 
For instance, Liu et al. (2014) utilized grey relational projection method to derive 
the ranking of FMs. Pillay and Wang (2003) and Yang et al. (2008) constructed 
a fuzzy rule based method to generate the risk prioritization of FMs in FMEA. 
Additional methods presented to derive the ranking of FMs can be found in Bhu-
vanesh Kumar and Parameshwaran (2018), Jee et al. (2015), Zhou et al. (2016). 
In essence, the process of deriving the prioritization of FMs in FMEA is a mul-
tiple criteria GDM (Das Adhikary et  al. 2014). Therefore, various multiple cri-
teria GDM approaches have been proposed to derive the prioritization of FMs 
in FMEA. Examples include VIKOR approach (Wang et  al. 2018), improved 
TODIM methods (Huang et al. 2017; Wang et al. 2019), TOPSIS methods (Kutlu 
and Ekmekçioğlu 2012; Song et al. 2013), extended gained and lost dominance 
score method (Wang et  al. 2020), and PROMETHEE method (Liu et  al. 2017). 
Although these ranking methods have greatly improved the implementation effi-
ciency of FMEA, there are still some shortcomings that need to be improved in 
the real-world FMEA process (Certa et al. 2017; Lolli et al. 2015). Some sorting 
methods have been proposed to remedy the shortcomings of the ranking meth-
ods in FMEA. Certa et al. (2017) proposed an ELECTRE TRI-based approach to 
assign FMs to several ordinal classes based on the performance of FMs respect 
to multiple risk factors. Further, Lolli et al. (2015) utilized FlowSort-group deci-
sion support systems for sorting FMs into several ordinal classes by considering 
multiple decision makers. Although the methods proposed in Certa et al. (2017), 
Lolli et al. (2015) are quite useful, they still have some limitations: (i) The con-
sensus issue among the multiple decision makers cannot guaranteed in Lolli et al. 
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(2015); (ii) The two methods proposed in Certa et al. (2017), Lolli et al. (2015) 
require a large number of parameters, such as upper reference profiles of classes, 
cutting level, indifference and the preference thresholds; and (iii) The two meth-
ods proposed in Certa et al. (2017), Lolli et al. (2015) obtain the classifications 
by comparing the FMs with the determined reference profiles or limiting profiles, 
and thus cannot guarantee the number of FMs in each category. Hence, it is nec-
essary to continue the related research on sorting methods to improve its perfor-
mance in FMEA.

(3) Consensus models in GDM

The FMs prioritization process requires a multidisciplinary team with swarm intel-
ligence owing to its complexity, which is actually a GDM problem. In GDM, the 
original preferences of decision makers usually vary greatly due to their different 
backgrounds. Hence, reaching a consensus in GDM is essential to eliminate con-
flicts between decision makers and promote the smooth implementation of GDM. 
Given the benefits of consensus in GDM, many scholars devote themselves to the 
research of consensus models to assist decision makers in reaching a consensus 
(Cheng et al. 2021; Herrera-Viedma et al. 2018; Xu et al. 2020). For instance, Altu-
zarra et al. (2010) promoted the consensus among decision makers in AHP-GDM 
by a Bayesian-based approach. Chao et  al. (2021) constructed a consensus model 
to facilitate decision makers with non-cooperative behaviors in large-scale GDM 
reach a consensus. Preference-modifications are required by decision makers in the 
consensus process of GDM, which means consuming resources. Considering the 
limited resources and cost in the consensus building process, Ben-Arieh and Easton 
(2007) helped decision makers in multi-criteria GDM reach a consensus by a mini-
mum cost consensus model. Zhang et  al. (2020a) proposed feedback mechanisms 
with maximum fuzzy consensus and minimum consensus cost in GDM considering 
private interest of the moderator. Further, Xu et  al. (2020) investigated the mini-
mum consensus cost in GDM under the influence of non-cooperative behaviors and 
decision rules. Additional minimum adjustment consensus models can be found in 
Xiao et al. (2020a, b). Recently, some scholars studied the willingness of decision 
makers to accept adjustment suggestions in the consensus process and showed that 
decision makers are willing to update their preferences only when the modifications 
are within a certain level of confidence (Dong et al. 2018). Followed by Dong et al. 
(2018), Zhang et  al. (2021) established a minimum adjustment consensus model 
based on bounded confidences for multi-criteria GDM. Zha et al. (2019) constructed 
a consensus-building process based on a feedback mechanism with bounded con-
fidences in large-scale GDM. Zhang et al. (2020c) proposed a consensus reaching 
algorithm based on the bounded confidences and leadership of decision makers 
in the social network GDM. Although the consensus models have received wide-
spread attention and recognition, and have made achievements in many fields (Liu 
et al. 2020; Yu et al. 2020), the consensus models are rarely used to help the FMEA 
members eliminate conflicts and obtain consensual group solution in the process of 
deriving the prioritization of FMs in FMEA.
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3  Preliminaries

This section begins with an introduction to the widely used two-tuple linguistic 
model. Furthermore, the linguistic distribution is introduced in detail.

(1) Two-tuple linguistic model

Let S = {st|t = 0, 1,… , g} be a linguistic term set with the granularity g + 1 , where 
st(t = 0, 1,… , g) denotes a linguistic term. Generally, the following two basic 
requirements should be satisfied by the linguistic term set S:

(i) It is ordered si ≤ sj ⇔ i ≤ j,
(ii) There is such an inverse function neg(st) = sg−t.
Naturally, decision makers prefer to utilize linguistic terms rather than precise 

numerical values to convey their preferences. To address the linguistic evaluation 
information, Herrera and Martinez (2000) constructed a famous linguistic comput-
ing model, called the two-tuple linguistic model.

Definition 1 (Herrera and Martinez 2000) Let S be as given above. The linguistic 
two-tuple representing information equivalent to � ∈ [0, g] can be generated by the 
following function:

where round(⋅) is a rounding operator.

The set of linguistic two-tuples is expressed as S = {(st, �)|st ∈ S, � ∈ [−0.5, 0.5)} . 
It is obvious that Δ is a one-to-one mapping function. Hence, there is an inverse 
function of Δ , such that: Δ−1 ∶ S → [0, g] with Δ−1((st, �)) = t + � . As an effective 
tool to deal with uncertainty, the two-tuple linguistic model is widely used in GDM. 
In addition, many extended linguistic computing models based on the two-tuple lin-
guistic model have been proposed, such as linguistic distribution.

(2) Linguistic distsribution assessment

In GDM, a single linguistic term (for example, weak or strong) may not fully rep-
resent the perception of decision makers. Decision makers often hesitate between 
several linguistic terms when providing assessments. Moreover, the possibility or 
importance of each linguistic term may be different. To this end, Zhang et al. (2014) 
proposed linguistic distribution to increase the flexibility of the expression of lin-
guistic assessment information by introducing distribution information into linguis-
tic terms. A detailed description of the linguistic distribution presented in the Refs. 
(Wu et al. 2018; Zhang et al. 2014) is given as follows.

(1)Δ ∶ [0, g] → S × [−0.5, 0.5),

(2)Δ(�) = (st, �),with

{
st, t = round(�)

� = � − t, � ∈ [−0.5, 0.5)
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Definition 2 (Wu et  al. 2018; Zhang et  al. 2014) Let S = {st|t = 0, 1,… , g} be as 
given above. Let d = {(st, pt)|t = 0, 1,… , g} , where st ∈ S , pt ∈ [0, 1] is the sym-
bolic proportion of st , and 

∑g

t=0
pt = 1 . Then, d is called a linguistic distribution 

assessment of S.

Definition 3 (Wu et al. 2018; Zhang et al. 2014) Let d = {(st, pt)|t = 0, 1,… , g} be 
as given above. The expectation of d is computed as follows:

where NS(st) = t is the numerical scale of st ∈ S.

For a detailed introduction to the numerical scale, please refer to (Dong et  al. 
2009). Clearly, E(d) ∈ S . Moreover, we have that Δ−1(E(d)) =

∑g

t=0
pt × NS(st).

A computational model for linguistic distribution is presented as follows. Let 
dz = {(st, p

z
t
)|t = 0, 1,… , g} and du = {(st, p

u
t
)|t = 0, 1,… , g} be any two linguistic 

distributions over S . Then,
(i) A comparison operator: (a) If E(dz) < E(du) , then dz is smaller than du ; (b) If 

E(dz) = E(du) , then dz and du represent the same assessment information.
(ii) The distance function: The distance between dz and du is defined as follows:

Obviously, we have d(dz, du) ∈ [0, 1] . Besides, a larger d(dz, du) value indicates a 
greater distance between dz and du.

4  FMEA and Its Resolution Framework

The general FMEA is formally presented in this section. Further, a consensus-based 
FMEA is developed to facilitate the FMEA team members obtain the consensual 
classifications of FMs.

4.1  Problem Formulation

Let DM = {DM1,DM2,… ,DMq} be a set of FMEA team members. Let 
� = (�1, �2,… , �q)

T be the weight vector over DM , where �k ∈ [0, 1] is the weight 
of DMk and 

∑q

k=1
�k = 1 . Let FM = {FM1,FM2,… ,FMm} be a set of FMs and 

RF = {RF1,RF2,… ,RFn} be a set of risk factors. Let W = (w1,w2,… ,wn)
T be the 

weight vector over RF , where wj ∈ [0, 1] is the weight of RFj  and 
∑n

j=1
wj = 1 . Let 

Vk = (vk
ij
)m×n (k = 1, 2,… , q) be the linguistic distribution assessment matrix 

(LDAM) provided by DMk , where vk
ij
= {(st, p

k
ij,t
)|t = 0, 1,… , g} denotes the risk 

degree of FMi over RFj.
In this study, the FMEA classifies the FMs into several ordinal classes based 

on the LDAMs {V1,V2,… ,Vq} provided by the FMEA team members. The FMs 

(3)E(d) = Δ(
∑g

t=0
pt × NS(st))

(4)d(dz, du) =
|Δ−1(E(dz)) − Δ−1(E(du))|

g
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FM = {FM1,FM2,… ,FMm} are classified into r (r ≥ 2) ordinal classes, denoted as 
C1 , C2 , … Cr . The risk of FMs in Category Ci is higher than that of FMs in Cat-
egory Cj when i > j . Let hl (l = 1, 2,… , r) be the number of FMs in Category Cl . 
For simplification, let Q = {1, 2,… , q} , M = {1, 2,… ,m} , N = {1, 2,… , n} , 
G = {0, 1, 2,… , g} , and R = {1, 2,… , r}.

4.2  Resolution Framework

As we mentioned above, the existing literature mainly focuses on the complete 
ranking of FMs without considering the consensus issue among the FMEA team 
members. In order to remedy the disadvantages of the existing FMEA methods 
and improve the implementation efficiency of FMEA, this study proposes a FMEA 
method based on a consensus model to derive the consensual collective classifica-
tions of FMs, as shown in Fig. 1.

The proposed consensus-based FMEA contains two key processes.

(1) Consensus measure

In practice, a complete agreement between the FMEA team members is usually 
not necessary, and it is also difficult to achieve. It is necessary to measure the 
degree of consensus among the FMEA team members. Two methods are widely 

Yes

Output the consensual collective classifications of FMs

Adjustment suggestions

No 

No 

Yes
Multi-stage consensus model with 

bounded confidences

Expressing/modifying 
preferences 

Is the consensus level 
acceptable?

Two-stage consensus optimization 
model with bounded confidences

(i) Optimization 1: Minimizing the 
number of adjustment elements

(ii) Optimization 2: Minimizing the 
adjustment distance

Maximum consensus optimization 
model with bounded confidences

Aggregation

Is the consensus level 
acceptable?

FMEA team members

Linguistic distribution 
assessment matrices on 

FMs

The individual preference 
vectors of FMs

The collective preference 
vector of FMs

Consensus measure

Exploitation

Fig. 1  Consensus-based FMEA
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used to measure the consensus of decision makers (Chiclana et al. 2013; Herrera-
Viedma et al. 2014): One method is to calculate the distances between the indi-
vidual preferences and group preference, and the other method is to calculate the 
distances between the preferences of every two decision makers. Obviously, the 
previous consensus measurement method based on the complete ranking is not 
suitable for the FMEA based on the ordinal classes. Hence, a consensus measure-
ment method for the FMEA team based on the ordinal classes is proposed below.

Let Vk = (vk
ij
)m×n (k ∈ Q) , where vk

ij
= {(st, p

k
ij,t
)|t = 0, 1,… , g} , and 

W = (w1,w2,… ,wn)
T be as given above. Let PVk = (pvk

1
, pvk

2
,… , pvk

m
)T(k ∈ Q) be 

the individual preference vector derived from Vk . Then, pvk
i
 (k ∈ Q, i ∈ M) can be 

computed as follows:

Let � = (�1, �2,… , �q)
T be as given above. Let PVc = (pvc

1
, pvc

2
,… , pvc

m
)T be 

the collective preference vector derived from {PV1,PV2,… ,PVq} . Then, pvc
i
 

(i ∈ M) can be obtained as follows:

Definition 4 Let hl (l ∈ R) and PV = (pv1, pv2,… , pvm)
T be as given above. Let 

O = (o1, o2,… , om)
T be the classifications of FMs. Then, oi (i ∈ M) can be obtained 

in the following way:

Example 1 Let FM = {FM1,FM2,… ,FM8} be eight FMs that need to be 
classified into four ordinal classes: C1 , C2 , C3 and C4 . Let h1 = 1 , h2 = 2 , 
h3 = 3 and h4 = 2 . Moreover, the preference vector of the eight FMs is 
PV = (0.44, 0.29, 0.5, 0.19, 0.56, 0.3, 0.2, 0.62)T.

Then, we have pv1 as the 4th largest value in PV  and h4 + 1 ≤ 4 ≤ h3 + h4 . 
Hence, we have o1 = 3 . Similarly, we obtain O = (3, 2, 3, 1, 4, 3, 2, 4)T . Based 
on O , we have C1 = {FM4} , C2 = {FM2,FM7} , C3 = {FM1,FM3,FM6} and 
C4 = {FM5,FM8}.

Let Ok = (ok
1
, ok

2
,… , ok

m
)T (k ∈ Q) and Oc = (oc

1
, oc

2
,… , oc

m
)T be the ordi-

nal risk classes of FMs derived from PVk = (pvk
1
, pvk

2
,… , pvk

m
)T and 

PVc = (pvc
1
, pvc

2
,… , pvc

m
)T respectively.

(5)pvk
i
=

n∑
j=1

wj × Δ−1(E(vk
ij
))

g

(6)pvc
i
=

q∑
k=1

�k × pvk
i

(7)

oi =

⎧⎪⎨⎪⎩

1, if pvi is jth largest value inPV and h2 +⋯ + hr + 1 ≤ j ≤ h1 +⋯ + hr
l, if pvi is jth largest value inPV and hl+1 +⋯ + hr + 1 ≤ j ≤ hl +⋯ + hr
r, if pvi is jth largest value inPV and j ≤ m − (h1 +⋯ + hr−1)
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Definition 5 (Xiao et  al. 2020b) Let Ok = (ok
1
, ok

2
,… , ok

m
)T (k ∈ Q) and 

Oc = (oc
1
, oc

2
,… , oc

m
)T be as given before. Then, the level of consensus on DMk based 

on his/her ordinal classifications of FMs can be obtained as follows:

The level of consensus on {DM1,… ,DMq} based on their ordinal classifications 
of FMs can be obtained as follows:

The larger the value of CL{PV1,… ,PVq} , the higher the level of consen-
sus among the FMEA team members. CL{PV1,… ,PVq} = 1 means that the 
FMEA team members have reached a complete agreement. In particular, let 
� ∈ [0, 1] , we consider the consensus level among the FMEA team is acceptable if 
CL{PV1,… ,PVq} ≥ �.

(2) Consensus model based on bounded confidences

A multi-stage consensus model considering the bounded confidences among the 
FMEA team is proposed to facilitate the FMEA team reach a consensus. In the con-
sensus reaching process, a maximum consensus optimization model (MCOM) based 
on bounded confidences is advised to derive the optimal LDAMs by maximizing 
the consensus level among the FMEA team. If the predetermined level of consensus 
cannot be reached, the optimal LDAMs obtained by the MCOM are used as adjust-
ment suggestions to guide the preference-modification of the FMEA team members. 
Otherwise, a two-stage consensus optimization model (TSCOM) based on bounded 
confidences is designed to derive the optimal LDAMs as adjustment suggestions for 
the preference-modification of the FMEA team members. Especially, the TSCOM 
contains two optimization processes: (i) Minimizing the number of adjustment ele-
ments between the original LDAMs and adjusted LDAMs; and (ii) Minimizing the 
adjustment distance between the original LDAMs and adjusted LDAMs.

The consensus model based on bounded confidences is described in detail in 
Sect. 5.

The consensus-based FMEA is described as follows.
First, the FMEA team members provide LDAMs on FMs. Further, the individual 

and collective preference vectors of FMs are obtained based on the LDAMs. If the 
consensus level among the FMEA team is acceptable, then the consensual collec-
tive classifications of FMs are obtained based on the collective preference vector of 
FMs. Otherwise, the MCOM is constructed to maximize the consensus level among 
the FMEA team. If the consensus level obtained by the MCOM is acceptable, then 

(8)CL{PVk} = 1 −

m∑
i=1

|ok
i
− oc

i
|

m(r − 1)

(9)

CL{PV1,… ,PVq} =
1

q

q∑
k=1

CL{PVk}

= 1 −

q∑
k=1

m∑
i=1

|ok
i
− oc

i
|

qm(r − 1)
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the TSCOM is designed to generate adjustment suggestions for the FMEA team to 
modify their original LDAMs. Otherwise, the adjustment suggestions obtained by 
the MCOM are used for the FMEA team to modify their original LDAMs. Repeat 
the above process until the consensual collective classifications of FMs are obtained.

5  Consensus model based on bounded confidences

A multi-stage consensus model based on bounded confidences is designed to facili-
tate the FMEA team members eliminate conflicts and reach a consensus. The multi-
stage consensus model generates the optimal LDAMs as adjustment suggestions to 
guide the preference-modification of the FMEA team members.

Because the original preferences provided by the FMEA team vary widely, they 
usually need to modify the original preferences to reach a consensus. Naturally, the 
FMEA team members hope to preserve their original preferences as much as possi-
ble. Hence, the preference-modification process is a difficult compromise process. A 
key question is how can the FMEA team be willing to modify their original prefer-
ences? Recently, some literatures showed that the FMEA team members are willing 
to update their preferences only when the modifications are within a certain range, 
that is, the FMEA team members have bounded confidences (Dong et al. 2018; Zha 
et al. 2019; Zhang et al. 2021). Let Vk = (vk

ij
)m×n (k ∈ Q) be as given above, where 

vk
ij
= {(st, p

k
ij,t
)|t = 0, 1,… , g} . Let Vk = (vk

ij
)m×n be the adjusted LDAM associated 

with Vk , where vk
ij
= {(st, p

k
ij,t
)|t = 0, 1,… , g} . Let U = {u1, u2,… , uq} be the 

bounded confidences associated with DM , where uk ∈ [0, 1] (k ∈ Q) be the bounded 
confidence of DMk . The FMEA team member DMk is willing to change vk

ij
 to vk

ij
 , if 

d(vk
ij
, vk

ij
) ≤ uk ; otherwise DMk rejects the modification. Therefore, Vk = (vk

ij
)m×n 

should satisfy the following condition:

(1) Maximum consensus optimization model with bounded confidences

A higher level of consensus among the FMEA team means a higher quality of 
FMEA implementation. Therefore, the level of consensus among the FMEA team 
is expected to be as large as possible with the predetermined bounded confidences. 
Based on this idea, we construct the MCOM as follows:

(10)d(vk
ij
, vk

ij
) =

|Δ−1(E(vk
ij
)) − Δ−1(E(vk

ij
))|

g
≤ uk
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In model (11), Vk = (vk
ij
)m×n (k ∈ Q) , PVc = (pvc

1
,… , pvc

m
)T , 

PVk = (pvk
1
,… , pvk

m
)T (k ∈ Q) , Ok = (ok

1
,… , ok

m
)T (k ∈ Q) , and Oc = (oc

1
,… , oc

m
)T 

are decision variables. The objective function of model (11) aims to obtain the 
maximum consensus level of {V1,… ,Vq} . Constraint (a) is employed to derive 
the individual classifications of FMs Ok = (ok

1
,… , ok

m
)T (k ∈ Q) based on PVk  . 

Constraint (b) is used to generate the collective classifications of FMs 
Oc = (oc

1
,… , oc

m
)T based on PVc . Constraints (c) and (d) are adopted to derive the 

individual preference vector PVk(k ∈ Q) and collective preference vector PVc , 
respectively. Constraint (e) is utilized to ensure that the adjustment of the FMEA 
team member DMk (k ∈ Q) is made with the specific bounded confidence uk.

Solving model (11) to generate the optimal LDAM Vk,∗ = (vk,∗
ij
)m×n (k ∈ Q) 

associated with Vk = (vk
ij
)m×n . Moreover, we can obtain the consensus level of 

{V1,∗,… ,Vq,∗} , which is denoted as MCL∗ . MCL∗ is the maximum consensus 
level among the FMEA team members. MCL∗ < 𝛼 means that the predefined con-
sensus level among the FMEA team cannot be obtained with the given bounded 
confidences. Then, the FMEA team member DMk (k ∈ Q) is advised to revise vk

ij
 

(k ∈ Q, i ∈ M, j ∈ N) into vk,∗
ij

 in order to increase the consensus among the FMEA 
team as much as possible. If MCL∗ ≥ � , then the TSCOM is proposed to obtain 
the optimal LDAMs as the adjustment suggestions for the process of 
preference-modification.

Model (11) is difficult to solve because it is a nonlinear programming model. 
Thus, we introduce Lemma 1 and Theorem 1 to facilitate the resolution of model 
(11), which are presented in the following.

Lemma 1 (Xiao et  al. 2020b) Let hl (l ∈ R) , PVc = (pvc
1
, pvc

2
,… , pvc

m
)T , and 

PVk = (pvk
1
, pvk

2
,… , pvk

m
)T (k ∈ Q) be as given above. Let �c = {�c

1
, �c

2
,… , �c

r
} 

(11)

max(1 −

q�
k=1

m�
i=1

�ok
i
− oc

i
�

qm(r − 1)
)

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ok
i
=

⎧⎪⎪⎨⎪⎪⎩

1, if pvk
i
is jth largest value inPVk and h2 +⋯ + hr + 1 ≤ j ≤ h1 +⋯ + hr

l, if pvk
i
is jth largest value inPVk and hl+1 +⋯ + hr + 1 ≤ j ≤ hl +⋯ + hr

r, if pvk
i
is jth largest value inPVk and j ≤ m − (h1 +⋯ + hr−1)

(a)

oc
i
=

⎧⎪⎪⎨⎪⎪⎩

1, if pvc
i
is jth largest value inPVc and h2 +⋯ + hr + 1 ≤ j ≤ h1 +⋯ + hr

l, if pvc
i
is jth largest value inPVc and hl+1 +⋯ + hr + 1 ≤ j ≤ hl +⋯ + hr

r, if pvc
i
is jth largest value inPVc and j ≤ m − (h1 +⋯ + hr−1)

(b)

pvk
i
=

n∑
j=1

wj×Δ
−1(E(vk

ij
))

g
, k ∈ Q, i ∈ M (c)

pvc
i
=

q∑
k=1

�k × pvk
i
, i ∈ M (d)

�Δ−1(E(vk
ij
))−Δ−1(E(vk

ij
))�

g
≤ uk , k ∈ Q, i ∈ M, j ∈ N (e)
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and �k = {�k
1
, �k

2
,… , �k

r
} (k ∈ Q) be a set of parameters, where 0 ≤ 𝜃p < 𝜃p+1 ≤ 1 

(p = 1, 2,… , r − 1) . Then, oc
i
 (i ∈ M) and ok

i
 (k ∈ Q, i ∈ M) can be obtained as 

follows.

where yk
ip
, yc

ip
∈ {0, 1} can be determined as follows.

And

Meanwhile, yk
ip

 and yc
ip

 satisfy the following condition.

Theorem 1 Let ak
i
 (k ∈ Q, i ∈ M) and bk

ij
 (k ∈ Q, i ∈ M, j ∈ N) be a set of non-nega-

tive variables. Then, the following linear programming model can be equivalently 
transformed from model (11):

(12)

⎧
⎪⎪⎨⎪⎪⎩

ok
i
=

r∑
p=1

yk
ip

oc
i
=

r∑
p=1

yc
ip

(13)
{

pvk
i
− 𝜃k

p
< yk

ip

yk
ip
− 1 < pvk

i
− 𝜃k

p

(14)

{
pvc

i
− 𝜃c

p
< yc

ip

yc
ip
− 1 < pvc

i
− 𝜃c

p

(15)

⎧⎪⎨⎪⎩

m∑
i=1

yk
ip
= hp +⋯ + hr

m∑
i=1

yc
ip
= hp +⋯ + hr
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Proof In model (16), we have |ok
i
− oc

i
| ≤ ak

i
 based on the constraints (a) and (b). 

Model (16) can obtain its optimal objective function value only when |ok
i
− oc

i
| = ak

i
 . 

Moreover, constraints (f) and (g) guarantee that |Δ−1(E(vk
ij
)) − Δ−1(E(vk

ij
))| ≤ bk

ij
 . 

Thus, |Δ−1(E(vk
ij
))−Δ−1(E(vk

ij
))|∕g ≤ bk

ij
∕g ≤ uk can be guaranteed. Constraints (h) 

and (p) can be generated from Lemma 1. This is complete the proof of Theorem 1. □

Model (16) can be easily solved by MATLAB and CPLEX. The optimal solu-
tion of model (11) can be obtained according to Theorem 1.

(16)

max(1 −

q�
k=1

m�
i=1

ak
i

qm(r − 1)
)

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ok
i
− oc

i
≤ ak

i
, k ∈ Q, i ∈ M (a)

−ok
i
+ oc

i
≤ ak

i
, k ∈ Q, i ∈ M (b)

pvk
i
=

n∑
j=1

wj×Δ
−1(E(vk

ij
))

g
, k ∈ Q, i ∈ M (c)

pvc
i
=

q∑
k=1

𝜆k × pvk
i
, i ∈ M (d)

bk
ij
∕g ≤ uk, k ∈ Q, i ∈ M, j ∈ N (e)

Δ−1(E(vk
ij
)) − Δ−1(E(vk

ij
)) ≤ bk

ij
, k ∈ Q, i ∈ M, j ∈ N (f )

−Δ−1(E(vk
ij
)) + Δ−1(E(vk

ij
)) ≤ bk

ij
, k ∈ Q, i ∈ M, j ∈ N (g)

ok
i
=

r∑
p=1

yk
ip
, k ∈ Q, i ∈ M (h)

oc
i
=

r∑
p=1

yc
ip
, i ∈ M (i)

pvk
i
− 𝜃k

p
< yk

ip
, k ∈ Q, i ∈ M, p ∈ R (j)

yk
ip
− 1 < pvk

i
− 𝜃k

p
, k ∈ Q, i ∈ M, p ∈ R (k)

pvc
i
− 𝜃c

p
< yc

ip
, i ∈ M, p ∈ R (l)

yc
ip
− 1 < pvc

i
− 𝜃c

p
, i ∈ M, p ∈ R (m)

m∑
i=1

yk
ip
= hp +⋯ + hr, k ∈ Q, p ∈ R (n)

m∑
i=1

yc
ip
= hp +⋯ + hr, p ∈ R (o)

𝜃k
p
, 𝜃c

p
∈ [0, 1], k ∈ Q, p ∈ R (p)
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(2) Two-stage consensus optimization model based on bounded confidences

(i) Optimization 1: Minimizing the number of adjustment elements

The preference-modification process is a process of resource and cost consump-
tion. With the limited costs and resources, the FMEA team members may hope that the 
number of adjustment elements is minimal in the preference-modification process.

Let Vk = (vk
ij
)m×n (k ∈ Q) and Vk = (vk

ij
)m×n (k ∈ Q) be as given before, where 

vk
ij
= {(st, p

k
ij,t
)|t = 0, 1,… , g} and vk

ij
= {(st, p

k
ij,t
)|t = 0, 1,… , g} . Let xk

ij
 

(k ∈ Q, i ∈ M, j ∈ N) be a 0–1 variable. If vk
ij
≠ vk

ij
 , that is, the FMEA team member 

DMk changes the risk degree of FMi over RFj , then xk
ij
= 1 . If vk

ij
= vk

ij
 , that is, the risk 

degree of FMi over RFj provided by the FMEA team member DMk remains unchanged, 
then xk

ij
= 0 . Then xk

ij
 can be obtained as follows:

The total number of the adjustment elements is expected to be minimal, i.e.,

Obviously, the consensus degree among {V1,… ,Vq} should be acceptable, i.e., 
CL{V1,… ,Vq} ≥ � . Then,

Based on above analysis, the minimum adjustment element consensus model based 
on bounded confidences is developed as follows:

(17)xk
ij
=

{
0, if pk

ij,t
= pk

ij,t
∀t = 0, 1,… , g

1, otherwise

(18)min

q∑
k=1

m∑
i=1

n∑
j=1

xk
ij

(19)CL{V1,… ,Vq} = 1 −

q∑
k=1

m∑
i=1

|ok
i
− oc

i
|

qm(r − 1)
≥ �

(20)

min

q�
k=1

m�
i=1

n�
j=1

xk
ij

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xk
ij
=

�
0, if pk

ij,t
= pk

ij,t
∀t = 0, 1,… , g

1, otherwise
, k ∈ Q, i ∈ M, j ∈ N

1 −
q∑

k=1

m∑
i=1

�ok
i
−oc

i
�

qm(r−1)
≥ �

All other constrints inmodel (11)
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Theorem 2 The following model can be equivalently transformed from model (20):

where M is a large enough number.

Proof The proof is obvious and we omit it for space limitation.  □

Model (21) can be solved with reference to model (11). The optimal solution 
of model (20) can be obtained according to Theorem 2.

(ii) Optimization 2: Minimizing the adjustment distance

Let Vk = (vk
ij
)m×n (k ∈ Q) and Vk = (vk

ij
)m×n (k ∈ Q) be as given above. In the 

preference-modification process, it is naturally that the FMEA team members 
hope that the total adjustment distance is minimal. That is,

Equation (22) can be written as follows:

Let X∗ be the optimal objective function value of model (20). Then, the mini-
mum adjustment distance consensus model with bounded confidences can be 
obtained as follows:

Model (24) can be solved with reference to model (20). Solving model (24) to 
obtain the optimal LDAM V⃛k,∗ = (v⃛k,∗

ij
)m×n (k ∈ Q) associated with Vk = (vk

ij
)m×n . 

(21)

min

q�
k=1

m�
i=1

n�
j=1

xk
ij

s.t.

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

g∑
t=0

�pk
ij,t

− pk
ij,t
� ≤ M × xk

ij
, k ∈ Q, i ∈ M, j ∈ N

xk
ij
∈ {0, 1}, k ∈ Q, i ∈ M, j ∈ N

1 −
q∑

k=1

m∑
i=1

�ok
i
−oc

i
�

qm(r−1)
≥ �

All other constrints inmodel (11)

(22)min

q∑
k=1

m∑
i=1

n∑
j=1

d(vk
ij
, vk

ij
)

(23)min

q∑
k=1

m∑
i=1

n∑
j=1

|Δ−1(E(vk
ij
)) − Δ−1(E(vk

ij
))|

g

(24)

min

q�
k=1

m�
i=1

n�
j=1

�Δ−1(E(vk
ij
)) − Δ−1(E(vk

ij
))�

g

s.t

⎧⎪⎨⎪⎩

q∑
k=1

m∑
i=1

n∑
j=1

xk
ij
= X∗

All other constrints inmodel (20)
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Then, the FMEA team member DMk (k ∈ Q) is advised to change vk
ij
 

(k ∈ Q, i ∈ M, j ∈ N) into v⃛k,∗
ij

 when offering new LDAMs.
Note: The proposed TSCOM first minimizes the number of adjustment elements 

and then minimizes the adjustment distance. If their order changes, then the result may 
change. By changing the optimization order of TSCOM, that is, minimizing the adjust-
ment distance first and then minimizing the number of adjustment elements, a new 
two-stage consensus optimization model is obtained, denoted as TSCOM-II. Let X∗ be 
as given above. Let M∗ be the minimum adjustment distance obtained from TSCOM. 
Let M∗

II
 and X∗

II
 be the minimum adjustment distance and the minimum number of 

adjustment elements obtained from TSCOM-II, respectively. Then, we have X∗ ≤ X∗
II

 
and M∗

II
≤ M∗ . The FMEA team members can flexibly choose TSCOM or TSCOM-II 

according to their needs. Due to limited space, only TSCOM is presented in this study.
(3) Algorithm for the consensus-based FMEA
We present an Algorithm (i.e., Algorithm I) to introduce in detail the steps of deriv-

ing the consensual collective classifications of FMs by using the consensus-based 
FMEA.

Algorithm I

Input: The LDAMs {V1,V2,… ,Vq} , the weight vector over DM � = (�1, �2,… , �q)
T , the weight 

vector over RF W = (w1,w2,… ,wn)
T , the bounded confidences U = {u1, u2,… , uq} , hl (l ∈ R) , 

and the consensus threshold �
Output: The consensual collective classifications of FMs, i.e., C1 , C2 , … Cr

Step 1: Let z = 0 , and Vk,z = Vk (k ∈ Q)

Step 2: Applying Eqs. (5) and (6) to derive the individual preference vectors {PV1,z,… ,PVq,z} and 
collective preference vector PVc,z , respectively

Step 3: Utilizing Eqs. (7) and (9) to derive the consensus level among {PV1,z,… ,PVq,z} , i.e., 
CL{PV1,z,… ,PVq,z} . If CL{PV1,z,… ,PVq,z} ≥ � , then proceed to Step 6. Otherwise, proceed 
to the next step

Step 4: Applying model (11) to generate the optimal LDAM Vk,z,∗ = (vk,z,∗
ij

)m×n (k ∈ Q) , and the 
maximum consensus level MCL∗

  If MCL∗ < 𝛼 , then the adjusted LDAM Vk,z+1 = (vk,z+1
ij

)m×n (k ∈ Q) is constructed as follows: 
v
k,z+1

ij
= v

k,z,∗

ij
 . Let z = z + 1 , and proceed to Step 2

  If MCL∗ ≥ � , proceed to the next step

Step 5: Using models (20) and (24) to derive the optimal LDAM V⃛k,z,∗ = (v⃛k,z,∗
ij

)m×n (k ∈ Q) . Then, 
the adjusted LDAM Vk,z+1 = (vk,z+1

ij
)m×n (k ∈ Q) is constructed as follows: vk,z+1

ij
= v⃛

k,z,∗

ij

  Let z = z + 1 , and proceed to Step 2
Step 6: The consensual collective classifications of FMs, i.e., C1 , C2 , … Cr , can be obtained based 

on PVc,z . Output C1 , C2 , … Cr

6  Case study

This section presents the application of the consensus-based FMEA to the problem 
of crankcase explosion in marine diesel engines, which is borrowed from Wang 
et al. (2019). The explosion of the crankcase of the marine diesel engines has caused 
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fatal damage to the crew members onboard and ship structure, and therefore it has 
attracted widespread attention from marine engineers and engine manufacturers. The 
ship operators and marine engine manufacturers have made great efforts to prevent 
crankcase explosion. Equipment-based solutions to prevent crankcase explosions, 
including flame arrester, crankcase relief valves, oil mist detector, etc. Despite these 
innovative marine technologies, crankcase explosions still occur frequently, which 
greatly bothers the ship operators and marine engine manufacturers. Thus, it is nec-
essary to apply the FMEA-based method to prevent marine diesel engine crankcase 
explosions by translating operational evidences and feedbacks to preventive meas-
ures (Wang et al. 2019). Wang et al. (2019) proposed a FMEA method to prevent 
marine diesel engine crankcase explosion, in which the FMEA team uses 9-member 
linguistic terms to evaluate FMs to obtain a complete priority orders of FMs from 
the highest to the least risky. However, the issue of whether the FMEA team mem-
bers reach a consensus has not been considered by the method proposed by Wang 
et al. (2019). Therefore, the proposed method is used to further improve the imple-
mentation efficiency in preventing marine diesel engine crankcase explosion.

In this section, six FMs that are most likely to cause crankcase explosion are 
determined according to the accident investigations and functional requirements. 
The six FMs and their detailed information are shown in Table 1. A four-member 
cross-functional FMEA team, i.e., DM = {DM1,DM2,DM3,DM4} , is required to 
sort the six FMs into three ordinal risk classifications based on the lowest to highest 
risk level (i.e., low, medium, and high), represented by C1 , C2 , and C3 , respectively. 
Let h1 = 2 , h2 = 2 , and h3 = 2 . Let the weight vector of the four FMEA team mem-
bers be � = (0.23, 0.3, 0.27, 0.2)T . D, O and S are the risk factors adopted to assess 
the six FMs, and their weight vector is W = (0.33, 0.45, 0.22)T . The proposed con-
sensus-based FMEA method is adopted to prevent marine diesel engine crankcase 
explosion, as shown below.

First, the FMEA team members utilize a seven-grade linguistic term set S to 
model their preferences for FMs based on the three risk factors, as shown below:

Let the consensus threshold be � = 0.8 . The FMEA team members generate the 
four individual LDAMs Vk = (vk

ij
)6×3 (k = 1, 2, 3, 4) on the six FMs based on the 

three risk factors, as shown in Tables 2, 3, 4 and 5.

(1) Consensus measure

First, Eqs.  (5) and (6) are adopted to generate the individual preference vec-
tors {PV1,PV2,PV3,PV4} and collective preference vector PVc , respectively. 
The obtained {PV1,PV2,PV3,PV4} and PVc are shown in the following: 
PV1 = (1.59, 4.36, 2.61, 2.93, 1.51, 4.11)T ; PV2 = (3.09, 3.84, 3.91, 3.42, 2.59, 1.5)T

;PV3 = (1.39, 5.04,1.82, 3.98, 3.98, 4.02)T ;PV4 = (4.82, 2.24, 0.69, 4.23, 3.24, 1.45)T

;PVc = (2.63, 3.96, 2.41, 3.62, 2.85, 2.77)T.

S = {s0 = Very Low, s1 = Low, s2 = Moderately Low,

s3 = Moderate, s4 = ModeratelyHigh, s5 = High, s6 = VeryHigh}
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Table 2  The LDAM provided by DM1

O S D

FM1 {(s1, 0.3), (s2, 0.7)} {(s1, 0.34), (s2, 0.66)} {(s1, 0.7), (s2, 0.3)}

FM2 {(s4, 0.5), (s5, 0.5)} {(s3, 0.45), (s4, 0.55)} {(s5, 0.2), (s6, 0.8)}

FM3 {(s2, 0.3), (s3, 0.4), (s4, 0.3)} {(s1, 0.6), (s2, 0.4)} {(s4, 0.5), (s5, 0.5)}

FM4 {(s1, 0.6), (s2, 0.4)} {(s4, 0.3), (s5, 0.7)} {(s1, 0.4), (s2, 0.6)}

FM5 {(s0, 0.2), (s1, 0.8)} {(s1, 0.5), (s2, 0.3), (s3, 0.2)} {(s2, 0.8), (s3, 0.2)}

FM6 {(s4, 0.45), (s5, 0.55)} {(s5, 0.5), (s6, 0.5)} {(s0, 0.4), (s1, 0.6)}

Table 3  The LDAM provided by DM2

O S D

FM1 {(s3, 0.3), (s4, 0.7)} {(s1, 0.34), (s2, 0.66)} {(s5, 0.88), (s6, 0.12)}

FM2 {(s0, 0.5), (s1, 0.5)} {(s5, 0.6), (s6, 0.4)} {(s5, 0.33), (s6, 0.67)}

FM3 {(s2, 0.55), (s3, 0.45)} {(s5, 0.4), (s6, 0.6)} {(s2, 0.34), (s3, 0.66)}

FM4 {(s5, 0.72), (s6, 0.28)} {(s3, 0.46), (s4, 0.54)} {(s0, 0.6), (s1, 0.4)}

FM5 {(s1, 0.44), (s2, 0.56)} {(s2, 0.15), (s3, 0.85)} {(s3, 0.4), (s4, 0.6)}

FM6 {(s2, 0.5), (s3, 0.5)} {(s0, 0.34), (s1, 0.66)} {(s1, 0.3), (s2, 0.7)}

Table 4  The LDAM provided by DM3

O S D

FM1 {(s2, 0.6), (s3, 0.4)} {(s0, 0.66), (s1, 0.34)} {(s2, 1)}

FM2 {(s5, 0.5), (s6, 0.5)} {(s4, 0.55), (s5, 0.45)} {(s5, 0.45), (s6, 0.55)}

FM3 {(s0, 0.7), (s1, 0.3)} {(s2, 0.78), (s3, 0.22)} {(s3, 0.7), (s4, 0.3)}

FM4 {(s3, 0.44), (s4, 0.56)} {(s6, 1)} {(s0, 0.54), (s1, 0.46)}

FM5 {(s1, 0.44), (s2, 0.56)} {(s6, 1)} {(s3, 0.5), (s4, 0.5)}

FM6 {(s4, 0.64), (s5, 0.36)} {(s4, 0.44), (s5, 0.56)} {(s2, 0.6), (s3, 0.4)}

Table 5  The LDAM provided by DM4

O S D

FM1 {(s6, 1)} {(s4, 0.3), (s5, 0.55), (s6, 0.15)} {(s3, 1)}

FM2 {(s2, 0.45), (s3, 0.55)} {(s2, 0.7), (s3, 0.3)} {(s1, 0.34), (s2, 0.66)}

FM3 {(s0, 0.4), (s1, 0.6)} {(s1, 1)} {(s0, 0.8), (s1, 0.2)}

FM4 {(s5, 0.5), (s6, 0.5)} {(s2, 0.33), (s3, 0.67)} {(s5, 0.5), (s6, 0.5)}

FM5 {(s1, 0.26), (s2, 0.74)} {(s4, 0.88), (s5, 0.12)} {(s3, 0.3), (s4, 0.7)}

FM6 {(s3, 0.55), (s4, 0.45)} {(s0, 0.45), (s1, 0.55)} {(s0, 0.7), (s1, 0.3)}
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Further, CL{PV1,PV2,PV3,PV4} = 0.67 is obtained by putting 
{PV1,PV2,PV3,PV4} and PVc into Eqs. (7) and (9). The consensus level among the 
FMEA team is unacceptable because CL{PV1,PV2,PV3,PV4} < 0.8 . This means 
that there are large differences between {V1,V2,V3,V4} , which is not conducive to 
the implementation of the FMEA process. Therefore, the proposed multi-stage con-
sensus model based on bounded confidences is utilized to assist the FMEA team 
members in deriving the consensual collective classifications of FMs in the follow-
ing step.

(2) Multi-stage consensus model based on bounded confidences

First, the MCOM (i.e., model (11)) is applied to derive the maximum consensus 
level MCL∗ and the optimal LDAMs {V1,∗,V2,∗,V3,∗,V4,∗} . Let the bounded con-
fidences be U = {0.1, 0.08, 0.08, 0.08} . Taking U , {V1,V2,V3,V4} , h1 = 2 , h2 = 2 , 
h3 = 2 , W = (0.33, 0.45, 0.22)T , and � = (0.23, 0.3, 0.27, 0.2)T into model (11), we 
can obtain:

Based on Theorem 1, an equivalent linear programming model can be obtained 
from the above model to facilitate the solution of the above model. By solving the 
above model, the maximum consensus level MCL∗ = 0.875 and the optimal LDAMs 

(25)

max(1 −
�o1

1
− oc

1
� + �o1

2
− oc

2
� +⋯ + �o4

6
− oc

6
�

4 × 6 × 2
)

s.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pv1
1
=
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13
))
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⋯
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6
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0.33×Δ−1(E(v4
61
))+0.45×Δ−1(E(v4

62
))+0.22×Δ−1(E(v4
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))
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pvc
1
= 0.23 × pv1

1
+ 0.3 × pv2

1
+ 0.27 × pv3

1
+ 0.2 × pv4

1

⋯

pvc
6
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6
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6
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6
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1, if pv1
1
is jth largest value inPV1 and 5 ≤ j ≤ 6

2, if pv1
1
is jth largest value inPV1 and 3 ≤ j ≤ 4

3, if pv1
1
is jth largest value inPV1 and j ≤ 2

⋯

oc
6
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6
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6
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3, if pvc
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{V1,∗,V2,∗,V3,∗,V4,∗} are obtained. The optimal LDAMs {V1,∗,V2,∗,V3,∗,V4,∗} are 
omitted for space limitation.

Since MCL∗ > 𝛼 , the TSCOM is applied to derive the optimal LDAMs as adjust-
ment suggestions for the preference-modification of the FMEA team members. First, 
the minimum adjustment element consensus model with bounded confidences (i.e., 
model (20)) is applied to derive the minimum number of adjustment elements. Tak-
ing U , {V1,V2,V3,V4} , h1 = 2 , h2 = 2 , h3 = 2 , � = 0.8 , W = (0.33, 0.45, 0.22)T , and 
� = (0.23, 0.3, 0.27, 0.2)T into model (20), we can obtain:

Based on Theorems 1 and 2, an equivalent linear programming model can be 
obtained from the above model to facilitate the solution of the above model. By solv-
ing the above model, the minimum number of adjustment elements can be obtained 
X∗ = 13.

Furthermore, the minimum adjustment distance consensus model with bounded 
confidences (i.e., model (24)) is utilized to derive the optimal LDAMs 
{V⃛1,∗ = (v⃛1,∗

ij
)6×3,… , V⃛4,∗ = (v⃛4,∗

ij
)6×3} . Taking U , {V1,V2,V3,V4} , h1 = 2 , h2 = 2 , 

h3 = 2 , � = 0.8 , X∗ = 13 , W = (0.33, 0.45, 0.22)T , and � = (0.23, 0.3, 0.27, 0.2)T 
into model (24), we can obtain:

Based on Theorems 1 and 2, an equivalent linear programming model can be 
obtained from the above model to facilitate the solution of the above model. By 
solving the above model, the optimal LDAMs {V⃛1,∗ = (v⃛1,∗

ij
)6×3,… , V⃛4,∗ = (v⃛4,∗

ij
)6×3} 

are obtained as adjustment suggestions for the preference-modification of the FMEA 
team. Let Vk = (vk

ij
)6×3 (k = 1, 2, 3, 4) be as given above, then V⃛k,∗ = (v⃛k,∗

ij
)6×3 

(k = 1, 2, 3, 4) are shown as follows:
V⃛1,∗ : v⃛

1,∗

31
= {(s3, 1)} , v⃛

1,∗

32
= {(s1, 0.6), (s2, 0.4)} , v⃛

1,∗

33
= {(s4, 0.5), (s5, 0.5)} , 

v⃛
1,∗

51
= {(s0, 0.2),(s1, 0.8)} , v⃛

1,∗

52
= {(s1, 0.3), (s2, 0.7)} , v⃛

1,∗

53
= {(s2, 0.8), (s3, 0.2)} , and 

v⃛
1,∗

ij
= v1

ij
 for (i, j) ≠ (3, 1)∧ (3, 2) ∧ (3, 3) ∧ (5, 1) ∧ (5, 2) ∧ (5, 3).
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V⃛2,∗ : v⃛
2,∗

11
= {(s3, 0.3), (s4, 0.7)} , v⃛

2,∗

12
= {(s1, 0.34), (s2, 0.66)} , v⃛

2,∗

32
= {(s5, 0.4), (s6, 0.6)} , 

v⃛
2,∗

41
= {(s5, 0.72), (s6, 0.28)} , v⃛

2,∗

42
= {(s3, 0.46), (s4, 0.54)} , v⃛

2,∗

52
= {(s2, 0.15), (s3, 0.85)} , 

and v⃛2,∗
ij

= v2
ij
 for (i, j) ≠ (1, 1) ∧ (1, 2) ∧ (3, 2) ∧ (4, 1) ∧ (4, 2) ∧ (5, 2).

V⃛3,∗ : v⃛3,∗
41

= {(s3, 0.44), (s4, 0.56)} , and v⃛3,∗
ij

= v3
ij
 for (i, j) ≠ (4, 1).

V⃛4,∗ : V⃛4,∗ = V4.
Let {V1 = (v1

ij
)6×3,… ,V4 = (v4

ij
)6×3} be the new LDAMs provided by the FMEA 

team members. When constructing Vk = (vk
ij
)6×3 (k = 1, 2, 3, 4) , we suggest that 

Vk = V⃛k,∗ . Obviously, the degree of consensus between {V1,V2,V3,V4} is accepta-
ble. Further, the individual preference vectors {PV1,PV2,PV3,PV4} and collective 
preference vector PVc associated with {V1,V2,V3,V4} are generated by applying 
Eqs.  (5) and (6), which are presented as follows: 
PV1 = (0.27, 0.73, 0.35, 0.49, 0.35, 0.68)T ; PV2 = (0.47, 0.64, 0.62, 0.62, 0.47, 0.25)T

;PV3 =(0.23, 0.84, 0.3, 0.67, 0.66, 0.67)T ; PV4 = (0.8, 0.37, 0.12, 0.7, 0.54, 0.24)T ; 
PVc = (0.42, 0.66, 0.37,0.62, 0.51, 0.46)T.

According to PVc , the consensual collective classifications of FMs can be 
obtained: C1 = {FM1,FM3} , C2 = {FM5,FM6} , and C3 = {FM2,FM4} . Therefore, 
FM2 and FM4 are the most important FMs and therefore should be given sufficient 
attention to eliminate risks.

7  Sensitivity and Comparative Analysis

A sensitivity analysis and a comparative analysis are provided to assess the perfor-
mance of the proposed consensus-based FMEA. The preference-modification is crit-
ical to achieving consensus because the original preferences provided by the FMEA 
team vary widely. Naturally, the FMEA team hope that the number of adjustment 
elements (AE) between the original LDAMs and adjusted LDAMs and the number 
of FM adjustments (FMA) between the original LDAMs and adjusted LDAMs are 
minimal in the consensus reaching process. Hence, AE and FMA are crucial criteria 
to assess the performance of consensus model. The lower values of AE and FMA 
indicate a better performance of consensus model.

7.1  Sensitivity Analysis

Here, Simulation method I is constructed to analyze the influence of the param-
eter values of U = {u1, u2,… , uq} and � on values of AE and FMA. The calcula-
tion process of Simulation method I is to randomly obtain the LDAMs of q FMEA 
members, and put the generated LDAMs into the MCOM. If the objective function 
value obtained by the MCOM is acceptable, then put the generated LDAMs into the 
TSCOM to obtain AE and FMA. Otherwise, regenerate the LDAMs of q FMEA 
members until the objective function value obtained by the MCOM under the gener-
ated LDAMs is acceptable. The following two combination of parameter scenarios 
are set: (i) q = 4 , m = 7 , n = 3 , h1 = 3 , h2 = h3 = 3 , � = (0.25, 0.25, 0.25, 0.25)T , 
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W = (0.3, 0.4, 0.3)T , U1 = {0.12, 0.12, 0.12, 0.12} , U2 = {0.18, 0.18, 0.18, 0.18} , 
U3 = {0.24, 0.24,0.24, 0.24} , and � = {0.78, 0.81,0.84, 0.87, 0.9} ; (ii) q = 6 , m = 5 , 
n = 3 , h1 = 3 , h2 = h3 = 1 , � = (0.15, 0.25, 0.2, 0.1, 0.2, 0.1)T , W = (0.4, 0.4, 0.2)T , 
U1 = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1} , U2 = {0.2, 0.2,0.2, 0.2, 0.2, 0.2} , U3 = {0.3, 0.3,

0.3, 0.3, 0.3, 0.3} , and � = {0.76, 0.79, 0.82, 0.85, 0.88}.
Then, Simulation method I is operated 1000 times for parameter scenarios (i) 

and (ii) to derive the average values of AE and FMA, and the results are plotted in 
Figs. 2 and 3, respectively.

Figures 2 and 3 show that the values of AE and FMA increase with the increase 
of � ; the value of AE decreases as U increases; in most cases, the value of FMA 
decreases as U increases; in rare cases, the value of FMA increases as U increases.

Fig. 2  The average values of AE and FMA under parameter scenario (i)

Fig. 3  The average values of AE and FMA under parameter scenario (ii)
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7.2  Comparative Analysis

The minimum adjustment distance consensus model (MADCM) has received 
widespread attention due to its efficiency in preserving the original preferences of 
decision makers in the process of consensus reaching (Xiao et al. 2020a; Xu et al. 
2020; Zhang et  al. 2020a). Here, we compare the proposed TSCOM with 
MADCM to assess the performance of our proposal based on the criteria: AE and 
FMA. In this study, the MADCM can be obtained by removing xk

ij
 

(k ∈ Q, i ∈ M, j ∈ N) from model (24). Simulation methods I and II are utilized to 
conduct the comparative analysis. Simulation method I is the one used in 
Sect. 7.1. The calculation process of Simulation method II is to randomly obtain 
the LDAMs of q FMEA members, and put the generated LDAMs into the MCOM. 
If the objective function value obtained by the MCOM is acceptable, then put the 
generated LDAMs into the MADCM to obtain AE and FMA. Otherwise, regener-
ate the LDAMs of q FMEA members until the objective function value obtained 
by the MCOM under the generated LDAMs is acceptable. The following four 
combination of parameter scenarios are set: (i) q = 5 , m = 6 , n = 3 , 
h1 = h2 = h3 = 2 , � = (0.2, 0.2, 0.2, 0.2, 0.2)T , W = (0.3, 0.4, 0.3)T , 
U1 = {0.1, 0.1, 0.1, 0.1, 0.1} , U2 = {0.12, 0.1, 0.12, 0.11, 0.15} , U3 = {0.1, 0.15,

0.1, 0.15, 0.15} , and � = {0.75, 0.8, 0.85} ; (ii) q = 5 , m = 6 , n = 3 , 
h1 = h2 = h3 = 2 , � = (0.1, 0.3, 0.1, 0.3, 0.2)T , W = (0.4, 0.2, 0.4)T , 
U1 = {0.12, 0.12,0.12, 0.12, 0.12} , U2 = {0.12, 0.15,0.12, 0.15, 0.12} , 
U3 = {0.15, 0.12, 0.15, 0.15, 0.12} , and � = {0.76, 0.81, 0.86} ; (iii) q = 6 , m = 6 , 
n = 3 , h1 = 3 , h2 = 2 , h1 = 1 , � = (0.15, 0.15,0.15, 0.15, 0.2, 0.2)T , 
W = (0.2, 0.6, 0.2)T , U1 = {0.2, 0.2, 0.2, 0.2, 0.2, 0.2} , U2 = {0.2, 0.25, 0.2, 0.25,

0.2, 0.25} , U3 = {0.25, 0.25, 0.25, 0.2, 0.2,0.2} , and � = {0.8, 0.85, 0.9} ; (iv) q = 6 , 
m = 6 , n = 3 , h1 = 3 , h2 = 2 , h1 = 1 , � = (0.2, 0.1, 0.2, 0.1, 0.2, 0.2)T , 
W = (0.25, 0.35, 0.4)T , U1 = {0.18, 0.25,0.18, 0.25, 0.18, 0.25} , 
U2 = {0.2, 0.23, 0.25, 0.23, 0.2, 0.23} , U3 = {0.23, 0.25, 0.2, 0.23, 0.23, 0.2} , and 
� = {0.8, 0.85, 0.9}.

Then, Simulation methods I and II are operated 1000 times for parameter sce-
narios (i)—(iv) to derive the average values of AE and FMA, and the results are 
plotted in Figs. 4, 5, 6 and 7, respectively.

Figures  4, 5, 6 and 7 show that the values of AE and FMA obtained by the 
TSCOM are smaller than those obtained by MADCM under parameter scenarios 
(i)—(iv). This means that the proposed TSCOM has higher consensus efficiency 
compared to MADCM in terms of AE and FMA.

8  Conclusion

This study constructs a consensus-based FMEA that combines the multi-stage 
consensus model based on bounded confidences and linguistic distribution 
assessments with FMEA to derive the consensual collective classifications of 
FMs. In the consensus-based FMEA, the FMEA team utilizes LDAMs to express 
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their preferences for FMs against to risk factors. The MCOM and TSCOM are 
proposed to help the FMEA team obtain the consensual collective classifications 
of FMs. A case study regarding the problem of marine diesel engine crankcase 
explosion is offered to demonstrate the feasibility of the consensus-based FMEA. 
The results of sensitivity analysis show that the values of U and � have a sig-
nificant effect on the values of AE and FMA. The results of comparative analy-
sis show that the proposed TSCOM has higher consensus efficiency compared to 
MADCM in terms of AE and FMA.
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Moreover, we point out the following research directions for future studies:

1. In reality, the behavior and psychology of decision makers, such as strategic 
manipulation, non-cooperative behavior, and private interests, have an important 
influence on consensus reaching (Xu et al. 2020; Zhang et al. 2020a). Therefore, 
it will be interesting to study the behavior and psychology of the FMEA team in 
the consensus process.

2. Moreover, several novel GDM methods are developed in recent years, includ-
ing large-scale GDM methods (Chao et al. 2021; Gou et al. 2021), and flex-
ible linguistic expressions-based GDM method (Wu et al. 2020). It is of great 
significance to export these new GDM approaches into FMEA to improve the 
implementation efficiency of FMEA.
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