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Abstract
The robust optimization method has progressively become a research hot spot as 
a valuable means for dealing with parameter uncertainty in optimization problems. 
Based on the asymmetric cost consensus model, this paper considers the uncertain-
ties of the experts’ unit adjustment costs under the background of group decision 
making. At the same time, four uncertain level parameters are introduced. For three 
types of minimum cost consensus models with direction restrictions, including 
MCCM-DC,�-MCCM-DC and threshold-based (TB)-MCCM-DC, the robust cost 
consensus models corresponding to four types of uncertainty sets (Box set, Ellipsoid 
set, Polyhedron set and Interval-Polyhedron set) are established. Sensitivity analy-
sis is carried out under different parameter conditions to determine the robustness 
of the solutions obtained from robust optimization models. The robust optimization 
models are then compared to the minimum cost models for consensus. The exam-
ple results show that the Interval-Polyhedron set’s robust models have the smallest 
total costs and strongest robustness. Decision makers can choose the combination of 
uncertainty sets and uncertain levels according to their risk preferences to minimize 
the total cost. Finally, in order to reduce the conservatism of the classical robust 
optimization method, the pricing information of the new product MACUBE 550 is 
used to build a data-driven robust optimization model. Ellipsoid uncertainty set is 
proved to better trade-off the average performance and robust performance through 
different measurement indicators. Therefore, the uncertainty set can be selected 
according to the needs of the group.
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1  Introduction

Assessment and decision-making will occur in diverse fields, such as politics, 
economy, management and even daily life. It is also essential to attain a group 
consensus which is acceptable to most participants. However, due to different 
social experiences, national culture and educational background of participants, 
they often have different views and interpretations on the same thing, then they 
make different decisions. Group decision making (GDM) is to study how to coor-
dinate different decisions to achieve the final group opinions. The main goal of 
GDM is that all decision-makers (DMs) can reach group consensus.

In the consensus-reaching processes (CRPs), DMs published and modi-
fied their opinions according to the moderator’s guidance and finally managed 
to unify and reach a consensus. CRPs consists of five key elements (Dong et al. 
2018a): preference representation, aggregation, consensus measure, feedback 
mechanism, and selection. Zhang et  al. (2017a) summarized the application of 
CRPs into five categories: CRPs with different preference representation struc-
tures (Wu and Chiclana 2014; Dong et  al. 2015b; Gong et  al. 2018; Wu et  al. 
2019b; Xu et al. 2019), CRPs considering the behavior or attitude of DMs (Liu 
et al. 2017; Wu et al. 2019a), CRPs based on consistency and consistency meas-
ures (Gong et al. 2017; Xu et al. 2018), CRPs with minimum adjustment or mini-
mum cost (Gong et al. 2015b; Wu et al. 2018), and CRPs in a dynamic environ-
ment (Dong et al. 2018b; Xu et al. 2017). Obviously, it will inevitably consume a 
certain amount of workforce, material, time and money resources in CRPs. Fur-
thermore, the moderator wants to pay as little as possible. Therefore, it is neces-
sary to study how to make rational use of limited resources to reach the optimal 
decision. For this purpose, Ben-Arieh and Easton (2007) and Ben-Arieh et  al. 
(2008) proposed a consensus model based on minimum cost. The former studied 
the multi-criterion consensus model with linear cost opinion elasticity, while the 
latter studied the minimum cost consensus (MCC) with a quadratic cost function. 
Dong et al. (2010) studied decision-making consensus-based on different aggre-
gation operators in the linguistic environment and proposed a consensus operator. 
By introducing the aggregation operator into the minimum cost consensus model 
(MCCM), Zhang et al. (2011) proposed a new MCCM based on an aggregation 
operator.

Most of the existing research on the consensus problem of minimum cost set 
the unit adjustment cost of DMs as a certain value. However, the unit adjustment 
costs determined in many practical GDM problems are challenging to obtain. 
Such factors may be affected by the regional culture, educational background, and 
social experience of DMs, resulting in a strong fluctuation of the final consensus 
cost. This is also a considerable challenge that CRPs needs to overcome at pre-
sent. Using a mathematical modeling method to deal with the impact of uncertain 
parameters to achieve the goal of minimizing costs. Based on the interval value 
theory, Li et  al. (2017) put the uncertain unit adjustment cost into an interval, 
and established an optimization consensus model with uncertain minimum cost, 
which extended the MCCM to a certain extent. Based on stochastic programming 
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(SP), Zhang et  al. (2017b) and Tan et  al. (2018) established the MCCM with 
chance constraint. The former assumed that to reach a consensus, the cost paid by 
the moderator is lower than the budget at a certain level of confidence. The later 
took the minimum budget and maximum utility as objective functions and studied 
the consensus under multiple uncertain information.

However, the interval-valued operation cannot be satisfied in some cases, and the 
interval subtraction is irreversible. On the other hand, it is difficult to obtain the his-
torical data of uncertain parameters and accurate probability distribution informa-
tion, which significantly limits the SP method’s application. Meanwhile, in SP, the 
model’s solution may not be affected by the uncertainty of probability, so that the 
solution is no longer the optimal solution or even the unfeasible solution. Also, the 
chance constraint will destroy the model’s convexity to a certain extent, and increase 
the computational difficulty of the original problem. Inspired by this, we use robust 
optimization (RO) method to deal with uncertain parameters.

RO method was first proposed by Soyster (1973). It is usually used when the 
accurate distribution information of uncertain parameters is unknown, and only 
the boundary values are known. RO solves the effects of uncertain parameters in 
the model by worst-case analysis and minimax model. Its ultimate goal is to find a 
solution that satisfies all the constraints, which is feasible in all possible cases and 
can optimize the objective function’s value in the worst case. RO theory makes the 
optimal solution of the optimization problem-free from any uncertain factors in the 
given uncertainty set. The key is to measure the parameters’ uncertainty by con-
structing an uncertainty set and finding the optimal solution immune to uncertainty. 
Ben-Tal and Nemirovski (1998, 1999, 2000) proposed the ellipsoidal uncertainty set 
and established the robust counterpart of the nominal problem, which promoted the 
development of RO.

With the maturity of RO theory, many researchers began to use different uncer-
tainty sets to solve practical problems in various fields. For example, interval set was 
applied to emergency medical services (Zhang and Jiang 2014). The ellipsoid set 
was used to establish emergency medical service network design model (Shishebori 
and Babadi 2015). Moreover, a polyhedron set was used to solve scheduling prob-
lem (Conde 2019). Huang et al. (2019) applied the uncertainty set of the probability 
distribution to the portfolio problem and established a multi-stage distributionally 
RO model based on risk aversion. Ji et al. (2020) proposed a fuzzy-robust weighted 
method to address the uncertainty of the exact weights over each DM’s objectives. 
However, in GDM, most of the research is focused on robustness (Greco et al. 2012; 
Nag et al. 2018), while few works of literature use the RO method to solve uncertain 
problems from the perspective of modeling. For example, Han et al. (2019, 2020) 
applied uncertainty set (Box set, Ball set, Box-Ball set, and Box-Polyhedron set) and 
distributionally uncertainty set to the MCCM, which overcame the effects of uncer-
tainties to some extent.

So far, the classical RO methods are mostly based on experience to obtain uncer-
tainty sets, which is highly subjective. The advantages of big data are ignored, and 
the results are also too conservative. However, the starting point of all uncertainty 
sets is raw data, a set of observation data of uncertain parameters. These data are 
then processed to accommodate different assumptions about the shape and size of the 
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uncertainty set and the DM’s preferences. At the same time, tighter uncertainty sets 
can often lead to better economies. The data-driven RO method (Bertsimas et al. 2018; 
Chassein et al. 2019) uses historical data to construct uncertainty sets, which improves 
the rationality and economy of the uncertainty sets of the traditional RO method. How-
ever, a few types of research on applying data-driven RO to solve GDM problems.

This paper introduces four uncertainty sets (Box set, Ellipsoid set, Polyhedron set 
and Interval-Polyhedron set). Base on the three MCCMs with directional constraints 
proposed by Cheng et al. (2018), we establish four robust optimization consensus mod-
els for each directional constraint model based on four uncertainty sets. By placing the 
DMs’ unit adjustment costs in the uncertainty set, the optimization model’s worst solu-
tion can be found. Then the best solution satisfying all cases is obtained in the worst 
case. Numerical experiments show that: 

1.	 The robust model’s uncertain level parameters indicate the degree of risk prefer-
ence of DMs and measure the conservative degree of constraint conditions. The 
larger the uncertain level parameter, the larger the minimum cost, the worse the 
model’s robustness, and the higher the risk aversion degree of the DM. As a 
result, the Interval-Polyhedron set is the most robust.

2.	 The compromise limit parameter and the cost-free threshold parameter are also 
closely related to the minimum cost. The compromise limit decreases, the mini-
mum cost increases and goes to infinity. With the increase of the cost-free thresh-
old parameter, the minimum cost decreases and tends to zero.

3.	 The robust model under the Interval-Polyhedron set has the smallest pessimism 
coefficient and strongest robustness.

Finally, in order to reduce the conservatism of the classical RO method, this paper fur-
ther introduces the data-driven RO method. The uncertainty set of unit adjustment cost 
is constructed by using the pricing information of the new product MACUBE 550 of 
the DEEPCOOL company. By using different indicators to measure the applicability of 
models of these sets, it is concluded that the Ellipsoid uncertainty set can better trade-
off the average performance and robust performance.

The rest of this paper is organized as follows. Section 2 introduces the MCCM and 
three MCCMs with directional constraints. In Sect. 3, three robust equivalence mod-
els with directional constraints are proposed under four uncertainty sets. Section 4 is 
numerical analysis, and comparisons are made from different perspectives. The data-
driven RO method is presented in Sect. 5, and the performance comparison is carried 
out by taking new product development as an example. Section 6 deals with conclu-
sions and future work.

2 � Basic Model of MCC and MCCM with Direction Constraints

The MCC theory has recently been gaining growing attention. Zhang et al. (2013) 
introduced weighted average operator or ordered a weighted average operator into 
the maximum expert consensus model, and obtained the equivalent mixed 0–1 linear 
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programming problem. Gong et al. (2014, 2015c) established the MCCM based on 
the moderator and the maximum return model based on DMs using the primal–dual 
linear programming theory. In addition, the former studied the MCC problem from 
the aspect of fuzzy decision making by combining the grey interval preference. 
The later proposed two minimum cost models for all individuals or one individual. 
Gong et al. (2015a) established a new consensus model with limited consensus cost 
and nonlinear utility constraint, which significantly improved the effectiveness of 
GDM. In the context of distributed linguistic trust, Wu et al. (2018) established a 
trust model based on social network analysis (SNA) method, and the boundary feed-
back parameters generated by the minimum adjustment cost optimization model are 
used to identify inconsistent users. The effect of group attitudes on the consensus-
building process was studied in Wu et al. (2019a). The conclusion was obtained that 
the implementation attitude parameters were proportional to the adjustment cost and 
consensus level. The deviation of opinion change and the number of DMs who need 
to change their opinions also affect the cost of consensus. Based on this, a multi-
attribute GDM model is established to minimize the deviation of opinion change and 
minimize the number of DMs who need to change their opinions, so as to reduce the 
consensus cost (Zhang and Dong 2013; Zhang et al. 2014; Dong et al. 2015a). In 
recent years, the MCC problem has been applied to problems such as scheme nego-
tiation, urban housing demolition negotiation and road intersection control (Dong 
et al. 2018b; Gong et al. 2017; Kwok and Lau 2016).

However, most existing studies on MCC theory assume that DMs’ unit adjust-
ment costs on the upward and the downward direction are symmetrical. Cheng et al. 
(2018) pointed out that in many applications of MCC theories, the assumption that 
the consensus costs are symmetric in both directions is unreasonable, and they are 
usually asymmetric. Three consensus models, the minimum cost consensus model 
with directional constraints (MCCM-DC), the �-MCCM-DC, and the threshold-
based (TB)-MCCM-DC, were proposed to study the MCC problem with directional 
constraints. It has also been applied to the transboundary pollution control in Taihu 
Lake Basin, which provides some references for the government to make policy. 
Research on asymmetric costs have been widely applied in the supply chain (Bolan-
difar et al. 2017; Mahadevan et al. 2017; Yang et al. 2018).

Next, we introduce the basic model of MCC and the MCCM with direction 
constraints.

2.1 � Basic Model of MCC

Suppose there are m DMs A = {a1, a2,… , am} in the GDM process. Let 
oi(i = 1, 2,… ,m) represents the original opinion of the ith DM ai , and oc represents 
the opinion of the moderator (i.e. the ideal opinion). Without loss of generality, 
assume 0 ≤ o1 ≤ o2 ≤ ⋯ ≤ om , that is, the original opinions of DMs are arranged 
in ascending order. Then the best value of the moderator’s opinion oc should meet 
o1 = o2 = ⋯ = om = oc . However, in many practical situations, the moderator’s 
absolute ideal opinion is hard to come by. The moderator must give a relatively 
ideal opinion, and most DMs are satisfied with it. Such oc is also known as group 
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consensus. Besides, it is not difficult to see that o1 ≤ oc ≤ om must be true, that is, 
the value of consensus opinion must be located in the interval between the minimum 
and maximum values of all DMs’ opinions. Assuming that O is the feasible set of 
consensus opinion oc , then oc ∈ O ⊂ [o1, om] (Cheng et al. 2018).

In the process of GDM, every DM hopes that his/her opinion will be fully taken 
into account, and is more willing to adjust his/her opinion as little as possible. Sup-
pose di(oc) = ||oi − oc|| represents the deviation between DM ai ’s original opinion oi 
and consensus opinion oc . From the perspective of consensus, the smaller the value 
of di(oc) , the higher the consensus degree of GDM. Since DMs are generally reluc-
tant to change their opinions for free, the moderator needs to give some compensa-
tion to persuade DMs to make changes. Define ci as the unit adjustment cost of the 
moderator to persuade the DM ai . Therefore, the smaller the cost cidi(oc) of per-
suading the DM ai , the closer the DM’s opinion is to the consensus opinion. There-
fore, according to Gong et al. (2015c), the minimum cost consensus model can be 
expressed as a nonlinear optimization model:

2.2 � MCC Model with Direction Constraints

In Sect. 2.1, let ti = oi − oc , then the cost function of DM ai is Fi(ti) = cidi(o
c) = ci

||ti|| . 
At the same time, Fi(ti) = Fi(−ti) is established, which indicates that model (2.1) is 
established under the environment of symmetric cost. In this case, DMs’ unit adjust-
ment costs are equal on the upward and downward. In general, DMs give their opin-
ions according to their interests, and they always want to maximize their interests. 
It is more difficult for DMs to give up a unit of profit than to accept a unit of profit. 
Therefore, in many GDM problems, the unit adjustment costs of DMs are asymmet-
ric in both directions. For example, in the problem of new product design, different 
departments may hold opposite opinions, making the difficulties of adjusting them 
in two directions are different. Obviously, their unit adjustment costs in two direc-
tions are asymmetric. Cheng et  al. (2018) proposed the following three minimum 
cost consensus models with directional constraints.

2.2.1 � MCCM‑DC

In the MCC problem with direction constraint, the unit adjustment cost of each DM 
is assumed to be related to the adjustment direction. The DM, whose opinion value 
is lower than the consensus opinion value, needs to adjust his/her opinion upward. 
On the contrary, the DM whose opinion value is higher than the consensus opinion 
value needs to adjust his/her opinion downward. Here, the unit adjustment cost of 
the DM’s change of opinion in the upward and downward directions are expressed in 
cU
i

 and cD
i
 , respectively. Thus, MCCM-DC can be obtained as follows:

(2.1)
min

m∑
i=1

ci
||oi − oc||

s.t. oc ∈ O.
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Here, the first part of the objective function represents the cost of persuading the 
DM whose opinion value is lower than the consensus opinion value. The second 
part represents the cost of persuading DM, whose opinion value is higher than the 
consensus opinion value. The constraint is to ensure that the consensus sought is 
feasible.

Since solving the nonlinear model is very complicated and challenging, positive 
deviation parameter �+

i
 and negative deviation parameter �−

i
 are introduced to trans-

form model (2.2) into the following linear programming model:

It is equivalent to

Among them, �+

i
= (oi − oc)+,�−

i
= (oc − oi)

+ represent the positive and negative 
deviations of DMs’ opinions and consensus opinions respectively. In addition, there 
is at least one of �+

i
 and �−

i
 is zero, that is, �+

i
⋅ �

−
i
= 0. By solving the model (2.3), 

the minimum cost and consensus opinion of reaching consensus in the GDM prob-
lem with direction constraint can be obtained. The value of the positive and negative 
deviations can be used to calculate the adjusted opinions of DMs.

2.2.2 � "‑MCCM‑DC

DMs are unlikely to adjust their opinions indefinitely to protect their interests. So 
they have a scope constraint on the extent of their adjustment, called the compro-
mise limit, which is denoted here by �i(i = 1, 2,… ,m) . Obviously, the larger the 
�i , the higher the adjustment range that the DM can tolerate. Define the deviation 
between DMs’ opinions and consensus opinions as consensus index of ai , which 
can be expressed as CIi = ||oi − oc|| . Obviously, when CIi ≤ �i , the opinion of ai 
can be considered as acceptable. This means that all DMs’ opinions are deviated 

(2.2)
min

∑
i∶ oi

< occU
i
(oc − oi) +

∑
i∶ oi>o

c

cD
i
(oi − oc)

s.t. oc ∈ O

min

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
)

s.t. oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0, i = 1, 2,… ,m

(2.3)

min B

s.t.

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
) ≤ B

oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0, i = 1, 2,… ,m
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within their tolerance, so the moderator can guide DMs to reach a group consen-
sus through compensation (money, resources, etc.). Similar to Sect. 2.2.1, cU

i
 and 

cD
i

 are respectively used to represent the unit adjustment cost of DMs’ change 
of opinion in the upward and downward directions. Thus, �-MCCM-DC can be 
obtained:

Introducing positive deviation parameter �+

i
 and negative deviation parameter 

�
−
i
 , let �+

i
= (oi − oc)+,�−

i
= (oc − oi)

+ , and �+

i
⋅ �

−
i
= 0 is satisfied. In addi-

tion, when oi ≥ oc , ||oi − oc|| = oi − oc = �
+

i
≤ �i , and �−

i
= 0 . When oi ≤ oc , ||oi − oc|| = oc − oi = �

−
i
≤ �i , and �+

i
= 0 . So 0 ≤ �

+

i
,�−

i
≤ �i . Therefore, model 

(2.4) can be converted into the following linear programming model:

It is equivalent to

The opinions of DMs may be unacceptable in many practical situations. This means 
that the deviations between DMs and consensus are beyond the scope of their com-
mitments. So oc ∈ O might not be true. At this point, CIi ≥ �i , which means that the 
opinions of DMs are not in the interval [oi − �i, oi + �i] . The following consensus 
framework can effectively address the issue of unacceptable opinions. 

1.	 Input the DM’s original opinion oi(i = 1, 2,… ,m) and compromise limit param-
eter �i(i = 1, 2,… ,m) . Set the maximum number of iterations Maxrounds ≥ 1 , 
and set the initial value t = 1.

(2.4)

min
∑

i∶ oi<o
c

cU
i
(oc − oi) +

∑
i∶ oi>o

c

cD
i
(oi − oc)

s.t. oc ∈ O

||oi − oc|| ≤ 𝜀i, i = 1, 2,… ,m.

min

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
)

s.t. oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0

�
+

i
,�−

i
≤ �i, i = 1, 2,… ,m.

(2.5)

min B

s.t.

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
) ≤ B

oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0

�
+

i
,�−

i
≤ �i, i = 1, 2,… ,m.
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2.	 Calculate the acceptable range [oi − �i, oi + �i] of DM. The two endpoints are 
represented by lt

i
 and rt

i
 respectively. Find the endpoints lt

p
 and rt

q
 with the most 

significant difference in the tth round. Then check if there are any other unac-
ceptable comments. If lt

p
≤ rt

q
 , go to step 5. Otherwise, go to the next step.

3.	 By giving some compensation to DMs ap and aq , the moderator can persuade 
them to increase their adjustment range constraint parameters.

4.	 If lt
p
≤ rt

q
 or t ≥ Maxrounds is true, go to the next step. Otherwise, let t = t + 1 and 

go to step 1.
5.	 Establish the new �-MCCM-DC and solve the minimum cost and consensus opin-

ion.

Remark  When �i → +∞ , it may be argued that the decision maker can toler-
ate unlimited compromise. So in this case, �-MCCM-DC can be simplified to 
MCCM-DC.

2.2.3 � TB‑MCCM‑DC

Generally speaking, DMs are more willing to reach a consensus in GDM. Therefore, 
such scope exists, and when consensus is within this scope, DMs are willing to change 
their opinions for free. We use �i(i = 1, 2,… ,m) to represent this range, and call the 
DMs satisfying this property as threshold-based DMs. So [oc − �i, o

c + �i] is the cost-
free interval of DM in Sect. 2.2.1, the cost function Fi(o

c) of ai can be expressed as:

Therefore, TB-MCCM-DC can be expressed in the following form:

Positive deviation parameters �
+

i
,�+

i
 and negative deviation parameters 

�
−
i
,�−

i
 are introduced. Let �

+

i
= (o

i
− o

c + �
i
)+,�−

i
= (oc − �

i
− o

i
)+,�+

i
=

(o
i
− �

i
− o

c)+,�−
i
= (oc − o

i
+ �

i
)+ , Therefore, model (2.7) can be converted into 

the following linear programming model:

(2.6)Fi(o
c) =

⎧⎪⎨⎪⎩

cU
i
(oc − �i − oi), oi ∈ [0, oc − �i)

0, oi ∈ [oc − �i, o
c + �i]

cD
i
(oi − �i − oc), oi ∈ (oc + �i,+∞)

(2.7)
min

∑
i∶ oi<o

c−𝜂i

cU
i
(oc − 𝜂i − oi) +

∑
i∶ oi>o

c+𝜂i

cD
i
(oi − 𝜂i − oc)

s.t. oc ∈ O.
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It is equivalent to

Obviously, �
−
i
∈ [0, oc − �

i
],�+

i
∈ [oc − �

i
, o

c],�−
i
∈ [oc, oc + �

i
],�+

i
∈ [oc + �

i
,+∞] . 

And it satisfies �+

i
⋅ �

−
i
= 0,�+

i
⋅ �

−
i
= 0.

3 � MCCM‑DC Based on RO Method

Uncertain parameters often exist in actual GDM problems. For example, DMs’ unit 
adjustment cost may be affected by factors such as the regional culture, educational 
background of DMs, resulting in substantial uncertainty of the final consensus cost. 
However, the MCCMs in the second section are established under the condition 
that the DMs’ unit adjustment costs are determined and known, ignoring the impact 
brought by uncertainty. Different from the SP method, this paper adopts the RO 
method to deal with the uncertainty problem. To some extent, it makes up for the 
defect that it is not easy to obtain the SP method’s accurate probability distribution 
of parameters. RO’s key is to measure the uncertainties of parameters by construct-
ing uncertainty sets and finding the optimal solution immune to uncertainty. In this 
section, we establish a robust counterpart of nominal models (2.3), (2.5) and (2.8) 
respectively in Box set, Ellipsoid set, Polyhedron set, and Interval-Polyhedron set.

Firstly, considering a general linear programming problem

where x ∈ Rn×1 is the decision variable vector, A ∈ Rm×n is the coefficient matrix 
with uncertain parameters, and b ∈ Rm×1 is the vector with uncertain parameters. 
Then the uncertainty set can be defined as follows:

min

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
)

s.t. oc ∈ O

�
+

i
− �

−
i
= oi − oc + �i

�
+

i
− �

−
i
= oi − oc − �i

�
+

i
,�−

i
,�+

i
,�−

i
≥ 0, i = 1, 2,… ,m

(2.8)

minB

s.t.

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
) ≤ B

oc ∈ O

�
+

i
− �

−
i
= oi − oc + �i

�
+

i
− �

−
i
= oi − oc − �i

�
+

i
,�−

i
,�+

i
,�−

i
≥ 0, i = 1, 2,… ,m

(3.1)min
x

{
cTx|Ax ≥ b

}
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Definition 1  (Uncertainty set) Uncertain linear optimization problem is a set of lin-
ear programming problem minx {c

Tx|Ax ≥ b}U with common structure, whose data 
varies in a given uncertainty set .

where A,  b are uncertain parameters. When the uncertainty set is assumed to be 
parameterized, the perturbation vector � changes in the form of affine in a given 
perturbation set Z:

Definition 2  (Robust feasible solution) For vector x ∈ Rn×1 , it is a robust feasible 
solution for ( LOU ) if it satisfies all variations of the uncertainty set constraint.

Definition 3  (Robust goal value) If the candidate solution x satisfies 
c̃(x) = sup(A,b)∈U c

Tx , where c̃(x) is the maximum value of the objective value 
of ( LOU ) under the uncertainty set, c̃(x) is called the robust goal value of the RO 
problem.

Remark  The robust goal value is obtained in the robust worst-case scenario.

Definition 4  (Robust counterpart) The robust counterpart of uncertain optimiza-
tion problem can be expressed as:

It is the best robust goal value for all robust feasible solutions.
For the ith constraint in (3.1), according to the above definition, let 

ãij = aij + 𝜉ijāij, b̃i = bi + 𝜉i0b̄i , where aij, bi are the nominal values of uncertain 
parameters, āij, b̄i are perturbation values, and �ij, �i0 represent uncertain factors. In 
(3.1), the ith constraint can be written as

The robust counterpart of (3.1) can be written as follows:

Obviously, if x is the robust feasible solution of the model (3.3), all uncertainty set 
constraints are satisfied. The feasible solution of model (3.3) is the robust feasible 

(LO_{\mathcal {U}}})min
{
cTx|Ax ≥ b,∀A, b ∈ U

}

U =

{
[a;b] = [a0;b0] +

H∑
h=1

�h[ah;bh]∶ � ∈ Z

}

min
x

{
c̃(x)∶ c̃(x) = sup

(A,b)∈U

cTx∶Ax ≤ b,∀A, b ∈ U

}

(3.2)
∑
j

aijxj +
∑
j

𝜉ijāijxj ≤ bi + 𝜉i0b̄i

(3.3)

min
x

cTx

s.t.
∑
j

aijxj +max
𝜉∈U

{∑
j

𝜉ijāijxj−𝜉i0b̄i

}
≤ bi.
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solution of model (3.1), and the optimal solution of model (3.3) is the robust optimal 
solution of model (3.1). Since model (3.3) is a semi-infinite programming problem, 
it is difficult to solve. Therefore, it is necessary to convert the original problem into 
a convex optimization problem with polynomial solvability, usually a linear opti-
mization or a quadratic optimization problem. This is also the critical point of RO 
problem.

In this paper, the unit adjustment costs cU
i

 and cD
i
 are taken as uncertain param-

eters. They are placed in uncertainty sets respectively. A robust counterpart corre-
sponding to the MCCM-DC model is established. According to Definition 1, the 
uncertainty set can be expressed as

3.1 � RO‑MCCM‑DC

According to the form of uncertainty set, the first constraint of the model (2.3) can 
be written as:

Thus, similar to the form of (3.3), the robust equivalent of model (2.3) is

Next, we consider RO models in Box set, Ellipsoid set, Polyhedron set and Interval-
Polyhedron set, respectively.

3.1.1 � Box Set

First, considering that the uncertainty set Z is Box set. The Box set is defined 
according to the infinite norm (l∞) . Define ZBox = {� ∈ RH∶ ‖�‖∞ ≤ �} , where � 
is an uncertain level parameter. Let cU = (cU

1

, c
U

2

,… , c
U

m
), cD = (cD

1

, c
D

2

,… , c
D

m
),�+

= (�+

1

,�
+

2

,… ,�
+
m
)T ,�− = (�−

1

,�
−
2

,… ,�
−
m
)T.

U =

{
[cU;cD] = [cU

0
;cD

0
] +

H∑
h=1

�h[c
U
h
;cD

h
]∶ � ∈ Z

}
.

(3.4)

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
) ≤ B,∀

(
[cU;cD] = [cU

0
;cD

0
] +

H∑
h=1

�h[c
U
h
;cD

h
]∶ � ∈ Z

)
.

min B

s.t.

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
) +max

�∈U

{
H∑
h=1

�h(c
U
h
�
−
i
+ cD

h
�
+

i
)

}
≤ B

oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0, i = 1, 2,… ,m
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Theorem  1  The RO model of model (2.3) under Box set (BMCCM-DC) can be 
expressed as:

Proof  According to the form of Box set, (3.4) can be written as 
cU
0
�
− + cD

0
�
+ +

∑H

h=1
�h(c

U
h
�
− + cD

h
�
+) ≤ B,∀(�∶ ‖�‖∞ ≤ �) . Obviously, it is 

equivalent to max‖�‖∞≤�

∑H

h=1
�h(c

U
h
�
− + cD

h
�
+) ≤ B − cU

0
�
− − cD

0
�
+.

Clearly, the maximum value at the left end of the inequality is 
�

∑H

h=1
(cU

h
�
− + cD

h
�
+) . So the robust counterpart of (3.4) can be obtained. Its linear 

inequality system can be expressed as:

Applying (3.6) to model (2.3), (BMCCM-DC) can be established. 	�  ◻

3.1.2 � Ellipsoid Set

Considering the uncertainty set Z is Ellipsoid set. The Ellipsoid set is defined in 
terms of the 2 norm (l2) . Define ZEllipsoid = {� ∈ RH∶ ‖�‖2 ≤ �} , where � is the 
uncertain level parameter and represents the radius of the ellipsoid set.

Theorem 2  The RO model of model (2.3) under Ellipsoid set (EMCCM-DC) can be 
expressed as:

Proof  According to the form of Ellipsoid set, (3.4) can be written as 
cU
0
�
− + cD

0
�
+ +

∑H

h=1
�h(c

U
h
�
− + cD

h
�
+) ≤ B,∀(�∶ ‖�‖2 ≤ �) . Obviously, it is 

equivalent to max‖�‖2≤�
∑H

h=1
�h(c

U
h
�
− + cD

h
�
+) ≤ B − cU

0
�
− − cD

0
�
+ . This means 

�

�∑H

h=1
(cU

h
�
− + cD

h
�
+)2 ≤ B − cU

0
�
− − cD

0
�
+ . Therefore, the robust counterpart 

(3.5)

min cU
0
�
− + cD

0
�
+ + �‖u‖1

s.t. − ul ≤ cU
h
�
− + cD

h
�
+
≤ ul, h = 1,… ,H

(BMCCM-DC) oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0, i = 1, 2,… ,m

(3.6)

⎧⎪⎨⎪⎩

−uh ≤ cU
h
�
− + cD

h
�
+ ≤ uh, h = 1,… ,H,

cU
0
�
− + cD

0
�
+ + �

L∑
l=1

uh ≤ B.

(3.7)

min cU
0
�
− + cD

0
�
+ +�‖u‖2

s.t. − uh ≤ cU
h
�
− + cD

h
�
+
≤ uh, h = 1,… ,H

(EMCCM-DC) oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0, i = 1, 2,… ,m.
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of (3.4) can be obtained: cU
0
�
− + cD

0
�
+ +�

�∑H

h=1
(cU

h
�
− + cD

h
�
+)2 ≤ B . Its linear 

inequality system can be expressed as:

Applying (3.8) to model (2.3), (EMCCM-DC) can be established. 	�  ◻

3.1.3 � Polyhedron Set

Considering the uncertainty set Z is Polyhedron set. The Polyhedron set is 
defined in terms of the 1 norm l1 . Define ZPolyhedron = {� ∈ RH∶ ‖�‖1 ≤ � } , where 
�  is the uncertain level parameter.

Theorem 3  The RO model of model (2.3) under Polyhedron set (PMCCM-DC) can 
be expressed as:

Proof  Generally, the dual cone Z can be expressed as 
Z = {� ∈ RH∶ ∃� ∈ RH∶M� + N� + m ∈ K} , here K is a nonempty closed 
convex cone in RN , M, N are given matrices and m is a given vector. Then, 
Z

Polyhedron = {� ∈ RH∶M� + m ∈ K}.
Define M� = [�H×H;01×H],m = [0H×1;� ],K = {(s, t) ∈ RH × R∶ ‖s‖1 ≤ t} . 

Then the maximization problem on the left side of inequality can be expressed 
as: max‖�‖1≤� {

∑H

h=1
�h(c

U
h
�
− + cD

h
�
+)∶M� + m ∈ K} . Meanwhile, define 

g = [s;t] , where s,  t represent dual variables, and s is H-dimensional and t is one-
dimensional. According to the properties of dual cone, the dual cone of K is 
K∗ = {(s, t) ∈ RH × R∶ ‖s‖∞ ≤ t} . According to the form of Polyhedron set, (3.4) is 
equivalent to

It can be further written as

(3.8)

⎧
⎪⎨⎪⎩

−uh ≤ cU
h
�
− + cD

h
�
+ ≤ uh, h = 1,… ,H,

cU
0
�
− + cD

0
�
+ +�

�
H∑
h=1

uh
2 ≤ B.

(3.9)

min cU
0
�
− + cD

0
�
+ + �‖t‖∞

s.t. cU
h
�
− + cD

h
�
+ = −sh, h = 1,… ,H

(PMCCM-DC) oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0, i = 1, 2,… ,m

cU
0
�
− + cD

0
�
+ + mTg ≤ B,

cU
h
�
− + cD

h
�
+ +

(
MTg

)
h
= 0, h = 1,… ,H,

g ∈ K∗.
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Applying (3.10) to model (2.3), (PMCCM-DC) can be established. 	�  ◻

3.1.4 � Interval‑Polyhedron Set

Considering the uncertainty set Z is Interval-Polyhedron set. Define 
Z

Int-Poly = {� ∈ RH∶ ‖�‖∞ ≤ 1, ‖�‖1 ≤ � } , where �  is the uncertain level parameter. 
Interval-Polyhedron set is a special case of Box-Polyhedron set. Box-Polyhedron set is 
the intersection of Box set and Polyhedron set, which is defined according to l1

⋂
l∞.

Theorem  4  The RO model of model (2.3) under Interval-Polyhedron set (IPM-
CCM-DC) can be expressed as:

Proof  Based on the proof of Theorem  3, Z
Int-Poly = {� ∈ RH∶M

1

� + m
1

∈ K
1

,M
2

� + m
2

∈ K
2

}.
Define M1� = [�H×H;01×H],m1 = [0H×1;1],K1 = {(s, t) ∈ RH × R∶ ‖s‖∞ ≤ t} . 

Meanwhile, define g1 = [s1;t1] , where s,  t represent dual variables, and 
s is H-dimensional, t is one-dimensional. According to the proper-
ties of dual cone, the dual cone of K1 is K∗

1
= {(s, t) ∈ RH × R∶ ‖s‖1 ≤ t} . 

M2� = [�H×H;01×H],m2 = [0H×1;� ],K2 = {(s, t) ∈ RH × R∶ ‖s‖1 ≤ t} are defined in 
the same way. Then the dual cone of K2 is K∗

2
= K1 = {(s, t) ∈ RH × R∶ ‖s‖∞ ≤ t} . 

According to the form of Interval-Polyhedron set, (3.4) is equivalent to

It can be further written as

(3.10)
cU
0
�
− + cD

0
�
+ + � t ≤ B,

cU
h
�
− + cD

h
�
+ = −sh, h = 1,… ,H,

‖s‖∞ ≤ t.

(3.11)

min cU
0
�
− + cD

0
�
+ + ‖‖t1‖‖1 + �

‖‖t2‖‖∞
s.t. cU

h
�
− + cD

h
�
+ = −(s1 + s2)h, h = 1,… ,H

(IPMCCM-DC) oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0, i = 1, 2,… ,m.

cU
0
�
− + cD

0
�
+ + mT

1
g1 + mT

2
g2 ≤ B,

cU
h
�
− + cD

h
�
+ +

(
MT

1
g1
)
h
+
(
MT

2
g2
)
h
= 0, h = 1,… ,H,

g1 ∈ K∗
1
, g2 ∈ K∗

2

(3.12)

cU
0
�
− + cD

0
�
+ + t1 + � t2 ≤ B,

cU
h
�
− + cD

h
�
+ = −(s1 + s2)h, h = 1,… ,H,

‖‖s1‖‖1 ≤ t1.

‖‖s2‖‖∞ ≤ t2.
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Applying (3.12) to model (2.3), (IPMCCM-DC) can be established. 	�  ◻

3.2 � "‑RO‑MCCM‑DC

In this part, based on �-MCCM-DC, Box set, Ellipsoid set, Polyhedron set and Inter-
val-Polyhedron set are used to establish the following four robust cost consensus 
models.

Similarly, similar to the form of (3.3), the robust counterpart of the model (2.5) is

 Case 1 Considering that the uncertainty set is Box set, without loss of generality, let 
Z

Box = {� ∈ RH∶ ‖�‖∞ ≤ �} , where � is an adjustable uncertain level parameter, 
so �-BMCCM-DC can be obtained:

Case 2 Considering that the uncertainty set is Ellipsoid set, without loss of gener-
ality, let ZEllipsoid = {� ∈ RH∶ ‖�‖2 ≤ �} , where � is an adjustable uncertain level 
parameter, so �-EMCCM-DC can be obtained:

min B

s.t.

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
) +max

�∈U

{
H∑
h=1

�h(c
U
h
�
−
i
+ cD

h
�
+

i
)

}
≤ B

oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0

�
+

i
,�−

i
≤ �i, i = 1, 2,… ,m

(3.13)

min cU
0
�
− + cD

0
�
+ + �‖u‖1

s.t. − ul ≤ cU
h
�
− + cD

h
�
+
≤ ul, h = 1,… ,H

(�-BMCCM-DC) oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0

�
+

i
,�−

i
≤ �i, i = 1, 2,… ,m

(3.14)

mincU
0
�
− + cD

0
�
+ +�‖u‖2

s.t. − uh ≤ cU
h
�
− + cD

h
�
+
≤ uh, h = 1,… ,H

(�-EMCCM-DC) oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0

�
+

i
,�−

i
≤ �i, i = 1, 2,… ,m
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Case 3 Considering that the uncertainty set is Polyhedron set, without loss of gener-
ality, let ZPolyhedron = {� ∈ RH∶ ‖�‖1 ≤ � } , where �  is an adjustable uncertain level 
parameter, so �-PMCCM-DC can be obtained:

Case 4 Considering that the uncertainty set is Interval-Polyhedron set, without loss 
of generality, let ZInt-Poly = {� ∈ RH∶ ‖�‖∞ ≤ 1, ‖�‖1 ≤ � } , where �  is an adjust-
able uncertain level parameter, so �-IPMCCM-DC can be obtained:

3.3 � TB‑RO‑MCCM‑DC

In this part, based on TB-MCCM-DC, Box set, Ellipsoid set, Polyhedron set and 
Interval-Polyhedron set are used to establish the following four robust cost consen-
sus models.

Similarly, similar to the form of (3.3), the robust counterpart of the model (2.8) is

 Case 1 Considering that the uncertainty set is Box set, without loss of generality, let 
Z

Box = {� ∈ RH∶ ‖�‖∞ ≤ �} , where � is an adjustable uncertain level parameter, 
so TB-BMCCM-DC can be obtained:

(3.15)

min cU
0
�
− + cD

0
�
+ + �‖t‖∞

s.t. cU
h
�
− + cD

h
�
+ = −sh, h = 1,… ,H

(�-PMCCM-DC) oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0

�
+

i
,�−

i
≤ �i, i = 1, 2,… ,m

(3.16)

mincU
0
�
− + cD

0
�
+ + ‖‖t1‖‖1 + �

‖‖t2‖‖∞
s.t.cU

h
�
− + cD

h
�
+ = −(s1 + s2)h, h = 1,… ,H

(�-IPMCCM-DC) oc ∈ O

oc + �
+

i
− �

−
i
= oi

�
+

i
,�−

i
≥ 0

�
+

i
,�−

i
≤ �i, i = 1, 2,… ,m.

min B

s.t.

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
) +max

�∈U

{
H∑
h=1

�h(c
U
h
�
−
i
+ cD

h
�
+

i
)

}
≤ B

oc ∈ O

�
+

i
− �

−
i
= oi − oc + �i

�
+

i
− �

−
i
= oi − oc − �i

�
+

i
,�−

i
,�+

i
,�−

i
≥ 0, i = 1, 2,… ,m
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Case 2 Considering that the uncertainty set is Ellipsoid set, without loss of gener-
ality, let ZEllipsoid = {� ∈ RH∶ ‖�‖2 ≤ �} , where � is an adjustable uncertain level 
parameter, so TB-EMCCM-DC can be obtained:

Case 3 Considering that the uncertainty set is Polyhedron set, without loss of gener-
ality, let ZPolyhedron = {� ∈ RH∶ ‖�‖1 ≤ � } , where �  is an adjustable uncertain level 
parameter, so TB-PMCCM-DC can be obtained:

Case 4 Considering that the uncertainty set is Interval-Polyhedron set, without loss 
of generality, let ZInt-Poly = {� ∈ RH∶ ‖�‖∞ ≤ 1, ‖�‖1 ≤ � } , where �  is an adjust-
able uncertain level parameter, so TB-IPMCCM-DC can be obtained:

(3.17)

min cU
0
�
− + cD

0
�
+ + �‖u‖1

s.t. − ul ≤ cU
h
�
− + cD

h
�
+
≤ ul, h = 1,… ,H

(TB-BMCCM-DC) oc ∈ O

�
+

i
− �

−
i
= oi − oc + �i

�
+

i
− �

−
i
= oi − oc − �i

�
+

i
,�−

i
,�+

i
,�−

i
≥ 0, i = 1, 2,… ,m

(3.18)

min cU
0
�
− + cD

0
�
+ +�‖u‖2

s.t. − uh ≤ cU
h
�
− + cD

h
�
+
≤ uh, h = 1,… ,H

(TB-EMCCM-DC) oc ∈ O

�
+

i
− �

−
i
= oi − oc + �i

�
+

i
− �

−
i
= oi − oc − �i

�
+

i
,�−

i
,�+

i
,�−

i
≥ 0, i = 1, 2,… ,m

(3.19)

min cU
0
�
− + cD

0
�
+ + �‖t‖∞

s.t. cU
h
�
− + cD

h
�
+ = −sh, h = 1,… ,H

(TB-PMCCM-DC) oc ∈ O

�
+

i
− �

−
i
= oi − oc + �i

�
+

i
− �

−
i
= oi − oc − �i

�
+

i
,�−

i
,�+

i
,�−

i
≥ 0, i = 1, 2,… ,m

(3.20)

min cU
0
�
− + cD

0
�
+ + ‖‖t1‖‖1 + �

‖‖t2‖‖∞
s.t. cU

h
�
− + cD

h
�
+ = −(s1 + s2)h, h = 1,… ,H

(TB-IPMCCM-DC) oc ∈ O

�
+

i
− �

−
i
= oi − oc + �i

�
+

i
− �

−
i
= oi − oc − �i

�
+

i
,�−

i
,�+

i
,�−

i
≥ 0, i = 1, 2,… ,m.
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4 � Numerical Analysis and Sensitivity Analysis

4.1 � Numerical Analysis

Suppose that there are five DMs involved in GDM, and their optimal opin-
ions are o1 = 2, o2 = 3.5, o3 = 4.5, o4 = 6, o5 = 9 . In order to reach consen-
sus, their unit cost adjustment on the upward and downward directions are 
(cU

1
, cU

2
, cU

3
, cU

4
, cU

5
) = (5, 4, 2, 5, 6) and (cD

1
, cD

2
, cD

3
, cD

4
, cD

5
) = (3, 2, 3, 2, 3) , 

respectively. For experts whose opinion is higher than consensus level, his 
upward unit adjustment cost’s change does not affect the result of group deci-
sion. However, minor changes in downward unit adjustment cost may lead 
to considerable changes in the results of GDM. On the contrary, for experts 
whose opinions are below the consensus level, his downward unit adjust-
ment cost will not work. But changes in upward unit adjustment cost are cru-
cial to the results of GDM. Since [cU;cD] = [cU

0
;cD

0
] +

∑H

h=1
�h[c

U
h
;cD

h
] , suppose 

cU
0
= (cU

1
, cU

2
, cU

3
, cU

4
, cU

5
), cD

0
= (cD

1
, cD

2
, cD

3
, cD

4
, cD

5
) . Meanwhile, for the upward unit 

adjustment cost, cU
h

 takes the negative deviation of cU
0

.

For the downward unit adjustment cost, cD
h
 takes the negative deviation of cD

0

In addition, it is assumed that the uncertain level parameters in the four sets are 2, 
i.e., �,�,� = 2 . At the same time, we use the YALMIP toolbox to solve the robust 
model. YALMIP is characterized by its ability to integrate many external optimi-
zation solvers, making general optimization problems very manageable, especially 
SDP problems. Therefore, the YALMIP toolbox can provide a satisfactory solution 
to the robust consensus model.

By solving the model (3.5), (3.7), (3.9), (3.11), the minimum costs of the four 
robust cost models with directional constraints are 41.89, 38.4, 37.59, 36.32, respec-
tively. The positive and negative deviation parameters are 
�
+

Box
= �

+

Elli
= �

+

Poly
= �

+

Int-Poly
= (�+

1
,�+

2
,�+

3
,�+

4
,�+

5
) = (2.5, 1, 0, 0, 0) and 

�
−
Box

= �
−
Elli

= �
−
Poly

= �
−
Int-Poly

= (�−
1
,�−

2
,�−

3
,�−

4
,�−

5
) = (0, 0, 0, 1.5, 4.5) , respec-

tively. The final consensus opinions are oc
Box

= oc
Elli

= oc
Poly

= oc
Int-Poly

= 4.5.
Let the compromise limit (�1, �2, �3, �4, �5) = (3, 5, 3.5, 2, 4) in Sect.  2.2.2, and 

use the consensus framework to deal with the opinions beyond the compromise 
limit. Assuming Maxrounds = 3 , when t = 1 , each expert’s acceptable range is 

CU =

⎛
⎜⎜⎜⎜⎝

− 0.2 − 0.2 − 0.2 − 0.2 − 0.2

− 0.05 − 0.05 − 0.05 − 0.05 − 0.05

− 0.03 − 0.03 − 0.03 − 0.03 − 0.03

− 0.1 − 0.1 − 0.1 − 0.1 − 0.1

− 0.15 − 0.15 − 0.15 − 0.15 − 0.15

⎞⎟⎟⎟⎟⎠

CU =

⎛
⎜⎜⎜⎜⎝

0.1 0.1 0.1 0.1 0.1

0.2 0.2 0.2 0.2 0.2

0.4 0.4 0.4 0.4 0.4

0.05 0.05 0.05 0.05 0.05

0.25 0.25 0.25 0.25 0.25

⎞⎟⎟⎟⎟⎠
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calculated, and the left and right endpoints of these ranges are used to identify 
experts with unacceptable opinions. Obviously, the two most distant experts are a1 
and a5 . Therefore, the largest left endpoint acceptable to experts is l1

5
= o5 − �5 = 6 

and the smallest right endpoint is r1
1
= o1 + �1 = 5 . Since l1

5
= 6 > 5 = r1

1
 , experts a1 

and a5 need to adjust their opinions, otherwise the group consensus cannot be 
reached. Let t = 2 , assuming that the adjusted compromise limits of experts a1 and 
a5 are 𝜀̃1 = 4 and 𝜀̃5 = 4 , respectively, then r2

1
= o1 + 𝜀̃1 = 6, l2

5
= o5 − 𝜀̃5 = 5 . In 

this case, l2
5
= 5 < 6 = r2

1
 is established. By solving the models (3.13)–(3.16), the 

minimum cost of the three robust cost models with directional constraints are 43.7, 
40.27, 39.7, 38.6, respectively. The positive and negative deviation parameters are 
�
+

Box
= �

+

Elli
= �

+

Poly
= �

+

Int-Poly
= (�+

1
,�+

2
,�+

3
,�+

4
,�+

5
) = (3, 1.5, 0.5, 0, 0) and 

�
−
Box

= �
−
Elli

= �
−
Poly

= �
−
Int-Poly

= (�−
1
,�−

2
,�−

3
,�−

4
,�−

5
) = (0, 0, 0, 1, 4) , respectively, 

and the final consensus opinion are oc
Box

= oc
Elli

= oc
Poly

= oc
Int-Poly

= 5.
Let the tolerance range (�1, �2, �3, �4, �5) = (2, 2, 0.5, 2, 1) in Sect. 2.2.3. By solv-

ing the model (3.17)–(3.20), the minimum cost of three robust cost models with 
direction constraints are 18.92, 16.2, 15.2 and 14.6, respectively. The positive and 
negative deviation parameters are �+

Box
= (�+

1
,�+

2
,�+

3
,�+

4
,�+

5
) = (1.2, 0, 0.2, 0, 0) , 

�
−
Box

= (�−
1

,�
−
2

,�
−
3

,�
−
4

,�
−
5

) = (0, 0.3, 0, 2.8, 4.8),   
�
+

Box
= (�+

1

,�
+

2

,�
+

3

,�
+

4

,�
+

5

) = (5.2, 3.7, 1.2, 1.2, 0), 
�
−
Box

= (�−
1

,�
−
2

,�
−
3

,�
−
4

,�
−
5

) = (0, 0, 0, 0, 2.8),  
�
+

Elli
= �

+

Poly
= �

+

Int-Poly
= (�+

1

,�
+

2

,�
+

3

,�
+

4

,�
+

5

) = (0, 0, 0, 0, 0),  
�
−
Elli

= �
−
Poly

= �
−
Int-Poly

= (�−
1

,�
−
2

,�
−
3

,�
−
4

,�
−
5

) = (0, 1.5, 1, 4, 6),  
�
+

Elli
= �

+

Poly
= �

+

Int-Poly
= (�+

1

,�
+

2

,�
+

3

,�
+

4

,�
+

5

) = (4, 2.5, 0, 0, 0),  
�
−
Elli

= �
−
Poly

= �
−
Int-Poly

= (�−
1

,�
−
2

,�
−
3

,�
−
4

,�
−
5

) = (0, 0, 0, 0, 4) . The final consensus 
are oc

Box
= 5.2, oc

Elli
= oc

Poly
= oc

Int-Poly
= 4.

By comparing the results of the above three models under different uncertainty 
sets (Table 1), it can be clearly seen that the minimum cost of the model under the 
Box set is always the largest, while the minimum cost of the model under the Inter-
val-Polyhedron set is always the smallest. Therefore, IPMCCM-DC, �-IPMCCM-
DC, and TB-IPMCCM-DC have the strongest robustness.

4.2 � Sensitivity Analysis

4.2.1 � Effects of Uncertain Level Parameters

When the RO method is used to solve the uncertain problem, the uncertain level 
parameter reflects the uncertainty set’s perturbation of uncertain elements. There-
fore, as an essential parameter, it is worth noting whether the change of uncertain 
level parameter impacts the minimum cost of reaching consensus. In this part, we 
compare the minimum cost from the perspective of the model and uncertainty set.

Figure 1 shows the comparison of four uncertainty sets under the same model. 
The left figure depicts the variation of MCCM-DC’s minimum cost with uncer-
tain level parameter under the four uncertainty sets. The medium figure depicts the 
change of �-MCCM-DC, and the figure on the right represents TB-MCCM-DC. As 
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can be seen from Fig.  1, when �,�,� = 0 , the three types of models under the 
four uncertainty sets are converted into nominal models MCCM-DC, �-MCCM-DC, 
and TB-MCCM-DC. Their minimum costs are 32, 36, and 12, respectively. When 
the uncertain level parameter increases, the minimum cost also increases. Obviously, 
when the uncertainty set is selected as Box set, Ellipsoid set, or Polyhedron set, the 
model’s minimum cost increases indefinitely. Moreover, the increase of the mini-
mum cost of the model under Box set is the largest, followed by Ellipsoid set and 
Polyhedron set, and Interval-Polyhedron set is the smallest. This means that their 
conservatism decreases in turn.

However, in the case of Interval-Polyhedron set, the minimum cost increases 
with the increase of �  at first, and the change rate decreases simultaneously. When 
� = 5 , the minimum costs of IPMCCM-DC, �-IPMCCM-DC and TB-IPMCCM-
DC reach the maximum value and maintain the balance in the subsequent changes. 
Their maximum values are 37.45, 39.85, and 16, respectively. In fact, the increase 
of uncertain level parameter is equivalent to the increase of perturbation range of 
uncertain elements, i.e., unit adjustment cost, which means the increase of uncer-
tainty. Consequently, it will inevitably increase the difficulty of reaching consensus, 
resulting in an increase in minimum cost. As for the situation of increasing first and 
then balancing in the Interval-Polyhedron set, the increased interval uncertainty set 
reduces the model’s conservatism to a certain extent. At the same time, its minimum 
cost is always the smallest, so it can be considered that the models under the Inter-
val-Polyhedron set are the most robust.

Table 2 shows the comparison of three models under the same uncertainty set. In 
the single set Box set, Ellipsoid set, and Polyhedron set, MCCM-DC increases the 
most. From the perspective of model structure, MCCM-DC has weaker constraints 
and poor anti-interference ability. This proves to some extent that MCCM-DC is a 
special case of �-MCCM-DC and TB-MCCM-DC. In addition, under the same set, 
the changes in different models are similar. For example, under the Interval-Polyhe-
dron set, the three models show the first increasing and then balancing trend. This 
also explains the similarity of the three models’ change curves in Fig. 1 under differ-
ent uncertainty sets, where the left side is MCCM-DC, the middle side is �-MCCM-
DC, and the right side is TB-MCCM-DC. 

Table 1   The minimum cost of 
the three models under different 
uncertainty sets

Box Ellipsoid Polyhedron Interval-
Polyhe-
dron

MCCM-DC 41.89 38.4 37.59 36.32
�-MCCM-DC 43.7 40.27 39.7 38.6
TB-MCCM-DC 18.92 16.2 15.2 14.6
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4.2.2 � Effects of Model Parameters

1.	 Effects of �

Let �� represents the changes of all experts’ compromise limits in the same direc-
tion, and calculate the minimum costs and consensus opinions ( oc ) of four robust 
models of �-MCCM-DC, respectively. Table 3 shows the effects of the changes of � 
on them, where MC represents the minimum cost.

From Table 3, it is evident that � decreases with the decrease of �� . The mini-
mum costs of the four robust models increase and tend to infinity. They reach the 
equilibrium point of 41.89, 38.4, 37.59, and 36.32 at �� = 0.5 . Their consensus at 
the balance point is 4.5. The consensus opinion decreases with the increase of � and 
reaches the minimum cost balance point. Besides, an interesting finding is that the 

Fig. 1   Comparison of four uncertain sets under the same model

Table 2   Comparison of three models under the same uncertainty set

�∕�∕� 0 1 2 3 4 5 6 7 8 9 10

Box
 MCCM-DC 32 37.45 41.89 46.34 50.78 55.23 58.5 61.72 64.95 68.17 71.39
 �-MCCM-DC 36 39.85 43.7 47.55 51.4 55.25 59.1 61.72 64.95 68.17 71.39
 TB-MCCM-DC 12 16 18.92 20.97 23.03 25.09 27.15 29.21 31.12 33.01 34.9

Ellipsoid
 MCCM-DC 32 35.7 38.4 41.09 43.79 46.46 48.79 50.89 52.89 54.82 56.71
 �-MCCM-DC 36 38.13 40.27 42.4 44.53 46.66 48.8 50.89 52.89 54.82 56.71
 TB-MCCM-DC 12 14.1 16.2 18.27 19.27 21.15 22.47 23.6 24.68 25.77 26.85

Polyhedron
 MCCM-DC 32 35.3 37.59 39.89 42.18 44.48 46.77 48.77 49.91 51.04 52.18
 �-MCCM-DC 36 37.85 39.7 41.55 43.4 45.25 47.1 48.77 49.91 51.04 52.18
 TB-MCCM-DC 12 13.6 15.2 16.8 18.4 19.85 21.02 22.19 23.36 24.46 25.4

Int-Poly
 MCCM-DC 32 35.3 37.3 37.4 37.45 37.45 37.45 37.45 37.45 37.45
�-MCCM-DC 36 37.85 38.6 39.1 39.6 39.85 39.85 39.85 39.85 39.85 39.85
 TB-MCCM-DC 12 13.6 14.6 15.4 15.8 16 16 16 16 16 16
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minimum cost equilibrium points of these four robust models are equal to the opti-
mal values of their corresponding robust minimum cost consensus model with direc-
tional constraints. Since the equilibrium point of the minimum cost of �-IPMCCM-
DC is relatively small, it can be considered that �-IPMCCM-DC has the strongest 
robustness.

According to data analysis in Cheng et al. (2018), the equilibrium points of mini-
mum cost and consensus opinion of �-MCCM-DC are 32 and 3.5. Figure 2 depicts 
the minimum cost comparison between �-MCCM-DC and the four robust models. 
As show in Fig. 2, the equilibrium point of the minimum cost of �-IPMCCM-DC is 
closer to the minimum cost of �-MCCM-DC, which further verifies the robustness 
of the robust model under the Interval-Polyhedron set is stronger. In addition, since 
�-MCCM-DC reaches equilibrium at �� = 1.5 , it indicates that the variation range 
of compromise limit parameters in the robust model is small, reducing the effects of 
uncertainty to some extent. 

2.	 Effects of �

Let �� represents the changes of cost-free thresholds of all experts in the same direc-
tion. And then calculates the minimum costs and consensus opinions ( oc ) of four 
robust models of TB-MCCM-DC, respectively. Table  4 shows the effects of the 
changes of � on them.

As show in Table 4 and Fig. 3, with the increase of �� , the four robust models’ 
minimum costs decrease and tend to 0. Through comparison with the data in Cheng 
et al. (2018), it is found that when �� = −2 , the consensus opinions of the robust 
model of Polyhedron set and Interval-Polyhedron set reach 3.5, which is the opti-
mal consensus of MCCM-DC. However, their minimum costs are higher than the 
minimum cost of MCCM-DC, where the optimal value of TB-MCCM-DC is the 
smallest, which differs from the upper bound of the optimal value of TB-MCCM-
DC and is equal to the optimal value of MCCM-DC. In addition, when �� changes, 

Table 3   Four robust models under different ��

�� − 0.75 − 0.5 − 0.25 0 0.25 0.5 0.75 1

�-BMCCM-DC
 MC +∞ 45.51 44.61 43.7 42.8 41.89 41.89 41.89
 oc – 5.5 5.25 5 4.75 4.5 4.5 4.5
�-EMCCM-DC
 MC +∞ 42.58 41.35 40.27 39.29 38.4 38.4 38.4
 oc – 5.5 5.25 5 4.75 4.5 4.5 4.5
�-PMCCM-DC
 MC +∞ 41.81 40.76 39.7 38.65 37.59 37.59 37.59
 oc – 5.5 5.25 5 4.75 4.5 4.5 4.5
�-IPMCCM-DC
 MC +∞ 41.31 39.83 38.6 37.46 36.32 36.32 36.32
 oc – 5.5 5.25 5 4.75 4.5 4.5 4.5
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the upper bound of TB-MCCM-DCs consensus opinion reaches the maximum value 
of expert opinion 9. In the four robust models, the consensus opinions are always 
at the middle level. This means that experts under the robust model can accept a 
more comprehensive cost-free threshold, which can significantly reduce the modera-
tor’s cost to reach consensus. As the minimum cost of TB-IPMCCM-DC is always 
the smallest, the robust model under Interval-Polyhedron set has the most effective 
robustness.

4.2.3 � Comparison Between the Original Model and the Robust Model

In order to detect whether it is meaningful to deal with uncertain factors by using the 
RO method, this section compares the original model with the corresponding robust 
model.

Fig. 2   The comparison of �
-MCCM-DC and four robust 
models

Table 4   Four robust models under different ��

�� -2 − 1.5 − 1 − 0.5 0 0.5 1 1.5 2 2.5

TB-BMCCM-DC
 MC 55.21 43.51 32.09 23.89 18.92 13.94 9.29 4.65 0 0
 oc 5.65 5.5 5 4.9 5.2 5.5 5.67 5.83 6 5.78

TB-EMCCM-DC
 MC 50.1 40.22 29.44 20.9 16.2 12.15 8.1 4.05 0 0
 oc 4.97 4.99 5 4.5 4 4.5 5 5.5 6 5.86

TB-PMCCM-DC
 MC 49.58 39.18 28.78 20.14 15.2 11.4 7.6 3.8 0 0
 oc 3.5 4 4.5 4.5 4 4.5 5 5.5 6 5.81

TB-IPMCCM-DC
 MC 47.62 37.67 27.72 19.42 14.6 10.95 7.3 3.65 0 0
 oc 3.5 4 4.5 4.5 4 4.5 5 5.5 6 5.73
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Experts usually make decisions based on their personal experience, and their 
opinions are often subjective. Some experts are risk-averse when making deci-
sions, and their opinions will be relatively conservative (or pessimistic). While 
other experts consider that the risk and opportunity coexist, they belong to the 
risk appetite type, so their opinions will be relatively optimistic. Consequently, 
the consensus opinion of GDM under certain conditions may be too optimistic 
or too pessimistic; indeed, such a result is not ideal.

Tables  5, 6 and 7 exhibit the comparisons between the three types of mod-
els and their corresponding robust models. The optimal solution of the origi-
nal model is always smaller than that of the robust model. This shows that the 
original model does not consider the effects of uncertain factors and obtains 
an overly optimistic decision, thus obtaining a relatively small consensus cost. 
However, when the final decision is too optimistic, it may not, in the current pre-
dicament, as the design problem of new product size, be able to satisfy market 
demand, or raise processing costs. This will inevitably bring some or even irrep-
arable losses to enterprises. However, in the robust model, considering the data’s 
uncertainty, although the final total cost increases, the risk of decision-making 
can be reduced to a certain extent.

In addition, the pessimistic coefficients of the four robust models of MCCM-
DC are 0.3091, 0.2000, 0.1747, and 0.1350, respectively. The pessimistic coef-
ficients of the four robust models of �-MCCM-DC are 0.2139, 0.1194, 0.1028, 
and 0.0722, respectively. The pessimistic coefficients of the four robust models 
of TB-MCCM-DC are 0.5767, 0.3500, 0.2667, and 0.2167, respectively. For the 
pessimistic coefficient 𝜌(0 < 𝜌 < 1) , � = 0 means that the expert’s decision is too 
optimistic, and � = 1 means the expert’s decision is too pessimistic. 0 < 𝜌 < 1 
indicates that the state of the expert’s decision-making is between too optimis-
tic and too pessimistic. The larger the � , the more pessimistic the experts are. 
Therefore, the larger the robust model’s pessimistic coefficient is, the more opti-
mistic the consensus reached under the original model is, and the moderator will 
lose more resources due to the effects of uncertain factors. As the pessimistic 

Fig. 3   The comparison of 
TB-MCCM-DC and four robust 
models
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coefficients of the three robust models under the Interval-Polyhedron set are 
relatively small, it means that IPMCCM-DC, �-IPMCCM-DC, and TB-IPM-
CCM-DC have the strongest robustness. At this time, the consensus costs are 
36.62, 38.6, and 14.6, respectively, and the consensus opinions are 4.5, 5, and 4, 
respectively.

5 � Data‑Driven Robust Consensus Models with Asymmetric Costs

Big data usage has received significant attention from researchers with the explo-
sive development of big data and open data. In the third section, we present and 
use the RO method for a series of robust, asymmetrical-cost consensus models. 
However, the traditional RO method usually achieves experience based uncer-
tainty sets, making the results too conservative. In contrast, the data-driven RO 
method uses historical data to construct the uncertainty set. This does not need 
to know the probability distribution of the uncertain parameters, only needs 

Table 5   Comparison of MDDM-DC and its robust model

MCCM-DC BMCCM-DC EMCCM-DC PMCCM-DC IPMCCM-DC

MC 32 41.89 38.4 37.59 36.32
o
c 3.5 4.5 4.5 4.5 4.5

Pessimistic 
coefficient

0.0000 0.3091 0.2000 0.1747 0.1350

Table 6   Comparison of �-MDDM-DC and its robust model

�-MCCM-DC �-BMCCM-DC �-EMCCM-DC �-PMCCM-DC �-IPMCCM-DC

MC 36 43.7 40.3 39.7 38.6
o
c 5 5 5 5 5

Pessimistic 
coefficient

0.0000 0.2139 0.1194 0.1028 0.0722

Table 7   Comparison of TB-MDDM-DC and its robust model

TB-MCCM-DC TB-BMCCM-
DC

TB-EMCCM-
DC

TB-PMCCM-
DC

TB-IPMCCM-
DC

MC 12 18.92 16.2 15.2 14.6
o
c 4 5.2 4 4 4

Pessimistic 
coefficient

0.0000 0.5767 0.3500 0.2667 0.2167
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sufficient historical data. Moreover, with the growing amount of historical data, 
uncertainty sets can better contain all the possibilities of uncertain parameters, 
which enhances the rationality and economy of uncertainty sets of the tradi-
tional RO method. This section deals more closely with the four uncertainty sets 
of data-driven solutions, using DEEPCOOL’s price observation data for the new 
radiator, calculating the various robust solutions and measuring the different 
companies’ performance to study truly valuable uncertainty sets.

5.1 � Uncertainty Set Based on Data‑Driven

In the discussion in Sect. 3, we assume that the unit adjustment costs cU
i

 and cD
i
 in 

the model (2.3) are uncertain. On the contrary, in this section, we assume that the 
unit adjustment costs’ observation sets M1 and M2 can be obtained, where 
M1 = {cU

i1
,… , cU

iM
},M2 = {cD

i1
,… , cD

iM
} and cU

ij
, cD

ij
∈ R, j = 1,… ,M . In other 

words, M1 and M2 are the raw data that we can get. Meanwhile, let cU
i

 and cD
i
 

respectively represent the average values of {cU
i1
,… , cU

iM
} and {cD

i1
,… , cD

iM
} , i.e. 

ĉU
i
=

1

M

∑
j∈[M] c

U
ij
, ĉD

i
=

1

M

∑
j∈[M] c

D
ij
 , where [M] = {1,… ,M} . Due to the limited 

space, we will only show the deformation of cU
ij

 under different uncertainty sets, and 
the deformation of cD

ij
 can be obtained by the same method. Therefore, we need to 

find a consensus opinion that minimizes the worst-case costs over all the costs in 
uncertainty set Z . This is the robust minimum cost consensus problem:

Next, we introduce several methods for generating Z (Chassein et al. 2019), where 
each set has a scaling parameter to control its size. 

1.	 Interval uncertainty

We set cU
i
= minj∈[M] c

U
ij
, c̄U

i
= maxj∈[M] c

U
ij

 , for some � ≥ 0 , there is 

Z
U
Int

= ×i∈[m] [ĉ
U
i
+ 𝜆(cU

i
− ĉU

i
), ĉU

i
+ 𝜆(c̄U

i
− ĉU

i
)] , where × is the Cartesian product 

and [m] = {1,… ,m} . Notice that max
c
U

i
∈ZU

Int
,cD
i
∈ZD

Int

∑m

i=1
(cU

i
�
−
i
+ c

D

i
�
+

i
) =

∑
i∈[m]

((ĉU
i
+ 𝜆(cU

i
− ĉ

U

i
))𝜑−

i
+ (ĉD

i
+ 𝜆(cD

i
− ĉ

D

i
))𝜑+

i
) . Thus, the robust problem obtained is

min

{
max

cU
i
∈ZU ,cD

i
∈ZD

m∑
i=1

(cU
i
�
−
i
+ cD

i
�
+

i
)∶

oc ∈ O, oc + �
+

i
− �

−
i
= oi,�

+

i
,�−

i
≥ 0, i = 1, 2,… ,m

}

min
∑
i∈[m]

((ĉU
i
+ 𝜆(cU

i
− ĉU

i
))𝜑−

i
+ (ĉD

i
+ 𝜆(cD

i
− ĉD

i
))𝜑+

i
)

s.t. oc ∈ O

oc + 𝜑
+

i
− 𝜑

−
i
= oi, i ∈ [m]

𝜑
+

i
,𝜑−

i
≥ 0, i ∈ [m]
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2.	 Ellipsoidal uncertainty

Ellipsoid uncertainty set were derived from the observation that the iso-density locus of 
the multivariate normal distribution is an ellipse. Therefore, it is usually created using 
the maximum likelihood fit of a normal distribution. According to the theory of mathe-
matical statistics, the best fit of a multivariate normal distribution N(�U ,�U) of data 
point {cU

i1
,… , cU

iM
} is given by 𝜇U = ĉU

i
,𝛴U =

1

M

∑
j∈[M] (c

U
ij
− 𝜇

U)(cU
ij
− 𝜇

U)
T . We 

set an ellipsoid of the form ZU
Elli

= {cU∶ (cU
i
− ĉU

i
)
T
𝛴

−1(cU
i
− ĉU

i
) ≤ 𝜆} with the scal-

ing parameter � ≥ 0 and it is centered on ĉU
i

 . Thus, the robust problem obtained is

3.	 Polyhedral uncertainty

A polyhedron defined using linear equations and inequalities is equivalent to a convex 
hull. We set ZU

Poly
= M1 , where the problem is equivalent to using the convex hull of 

the raw data, i.e. ZU
Poly

= conv({cU
i1
,… , cU

iM
}) . In order to scale the set, for a given 

� ≥ 0 , ĉU
i
+ 𝜆(cU

ij
− ĉU

i
) is used instead of the original point cU

ij
 , and take convex hull of 

the scaled data points. Thus, the robust problem obtained is

4.	 Interval-Polyhedral uncertainty

This approach is a variant of interval uncertainty. And to reduce the con-
servatism of this method, it is assumed that only � ∈ {0,… ,m} val-
ues can be higher than the midpoint ĉU

i
 at the same time. We set 

Z
U
Int-Poly

= {cU∶ cU
i
= ĉU

i
+ (c̄U

i
− ĉU

i
)𝛼i, i ∈ [m], 0 ≤ 𝛼 ≤ 1,

∑
i∈[m] 𝛼i ≤ 𝜆} , where 

the scaling parameter � controls the size of the set ZU
Int-Poly

 . Through the duality of the 
internal maximization problem, we get the robust problem:

min
∑
i∈[m]

(ĉU
i
𝜑
−
i
+ ĉD

i
𝜑
+

i
) + u

s.t. 𝜆((𝜑−
i
)
T
𝛴𝜑

−
i
+ (𝜑+

i
)
T
𝛴𝜑

+

i
) ≤ u2, i ∈ [m]

oc ∈ O

oc + 𝜑
+

i
− 𝜑

−
i
= oi, i ∈ [m]

𝜑
+

i
,𝜑−

i
≥ 0, i ∈ [m]

min u

s.t.
∑
i∈[m]

∑
j∈[M]

(cU
ij
�
−
i
+ cD

ij
�
+

i
) ≤ u, i ∈ [m]

oc ∈ O

oc + �
+

i
− �

−
i
= oi, i ∈ [m]

�
+

i
,�−

i
≥ 0, i ∈ [m]



1423

1 3

Consensus Modeling with Asymmetric Cost Based on Data‑Driven…

The robust problems of �-MCCM-DC and TB-MCCM-DC under four uncer-
tainty sets can be obtained in the Appendix.

5.2 � Case Study

5.2.1 � Case Background and Data Collection

With the increasing complexity of the market environment, organizations are facing 
increasingly fierce competition. New products are the core for enterprises to form 
differentiated competition. Enterprises must design and develop new products based 
on market demand in order to sustain their competitive advantages. Where there is 
an opportunity, there is a risk. New product pricing is an essential aspect of enter-
prise pricing. Therefore, whether the pricing of new products is reasonable or not is 
related to whether the new products can enter and occupy the market smoothly, and 
is also related to the fate of enterprises. This needs to be considered repeatedly by 
business leaders. Therefore, there are many decision problems in the pricing process 
of new products. In this process, experts from various fields will make group deci-
sions on pricing new products and reach a consensus to achieve optimal economic 
benefits.

DEEPCOOL launched a series of new radiators in 2019. We obtained the pricing 
information of the MACUBE 550 by querying the official website and consulting 
the company’s customer service. Enterprises to achieve better economic benefits do 
not make final decisions randomly but to organize several meetings to decide on the 
best price possible. New product pricing usually adopts skimming pricing, penetra-
tion pricing, and satisfaction pricing. In the seven pricing conferences on MACUBE 
550, the sales department and the operation department suggested a low profit and 
high turnover to open up the product sales and expand the market share at a lower 
price, giving slightly lower prices according to the penetration pricing method. Pro-
duction department, marketing department and research and development depart-
ment through evaluating and quantifying the new radiator’s benefits to consumers 
(such as the radiator of the ventilation rate, shape, and consumers to the brand rela-
tionship, etc.). To determine the upper and lower price’s effectiveness, they usually 
adopt a satisfactory pricing method to make their own decisions between high and 
low prices, that is the average price. However, the brand management department 
tends to make high profits at high prices before competitors enter the market, and 
quickly recover investment to reduce operational risks before the novelty of products 

min
�
i∈[m]

(ĉU
i
𝜑
−
i
+ ĉD

i
𝜑
+

i
) + 𝜆u + ‖v‖1

s.t. (c̄U
i
− ĉU

i
)𝜑−

i
+ (c̄D

i
− ĉD

i
)𝜑+

i
≤ u + vi, i ∈ [m]

oc ∈ O

oc + 𝜑
+

i
− 𝜑

−
i
= oi, i ∈ [m]

𝜑
+

i
,𝜑−

i
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decreases. Therefore, they will use a skimming pricing method to give the price. We 
will label the experts in these six departments as e1, e2, e3, e4, e5 and e6 , respectively.

Everyone expects their personal views are taken seriously. The chairman, as 
the moderator, needs to pay some resources (for example, if the price of the prod-
uct is too high, the difficulty of the sales department’s work will increase with the 
increase of the price, then the chairman needs to give a certain reward to motivate 
the enthusiasm of the staff in the sales department) to coordinate the opinions of all 
parties and reach the optimal opinions. For each expert, if his optimal price is too 
high, there may be no market for the product at this price, and the enterprise will 
face unpredictable risks. On the contrary, if his optimal price is too low, the enter-
prise will need to bear the pressure brought by the massive development cost. It is 
obvious that the unit adjustment costs of experts in these two directions are asym-
metric. This means that the chairman’s resources (time, money, etc.) are asymmet-
ric in both directions. Table 8 shows the pricing data of e1, e2, e3, e4, e5, e6 that we 
observed in the seven meetings, in which oi(i = 1,… , 6)(unit∶ hundred RMB) repre-
sents the prices given by the six experts, cU

i
(i = 1,… , 6)(unit∶ thousand RMB) and 

cD
i
(i = 1,… , 6)(unit∶ thousand RMB) represent their upward and downward unit 

adjustment costs, respectively.

5.2.2 � Comparison of Results Under Uniform Scaling Parameters

Obviously, the size of each uncertainty set will be affected by the scaling param-
eters. Similar to the analysis in Sect. 4, we compare the trends of the four proposed 
uncertainty sets under the same scaling parameters. Here we set the scaling param-
eter � from 0 to 6 with a step of 0.2 to observe the change of the minimum cost in a 
more detailed way. Figure 4 shows the minimum cost change curve with the scaling 
parameters under the four uncertainty sets. Comparing the results of the traditional 
RO in Fig. 1, the results of the Polyhedron uncertainty sets here are very close to 
those of the Interval uncertainty sets, and the results of the Ellipsoid uncertainty sets 
are better than those of the traditional method. In addition, we still believe that the 
Interval-Polyhedron set has the strongest robustness due to the upward first and then 
stable curve trend.

Table 8   Pricing data of six department experts

o
i
(i = 1,… , 6) c

U

i
(i = 1,… , 6) c

D

i
(i = 1,… , 6)

e
1

(3.59, 4.79, 5.59, 4.3, 3.8, 3, 2.86) (9, 8.5, 6, 5.7, 6.9, 8.4, 7.1) (1.7, 2.9, 2.3, 2, 3.1, 2.4, 3.3)
e
2

(4, 4.25, 3.99, 3.5, 4.09, 4.8, 4) (5, 3.4, 3.5, 2.7, 5, 5.4, 4.6) (3.4, 4, 2.9, 1.8, 1.2, 1.1, 2.2)
e
3

(5, 5.5, 4.95, 6.78, 6.09, 5.18, 4.65) (3, 2.6, 2.8, 3.7, 2.9, 3.2, 4) (1.3, 2, 2.8, 2.1, 1.9, 1.5, 2.4)
e
4

(7, 6.5, 5.99, 6.25, 5.79, 5.17, 6) (1, 0.8, 1.5, 3, 2.4, 1.8, 2) (4.8, 5, 3.5, 2, 3.2, 2.4, 1.9)
e
5

(8, 7.65, 6.95, 7.9, 8.5, 7, 6.85) (5, 5.6, 6.1, 4.7, 3.5, 4.2, 6) (1, 1.6, 2.3, 3, 2.7, 1.9, 1.1)
e
6

(9.99, 10.5, 9.75, 10.99, 10.25, 9.5
, 8.95)

(9, 8.3, 9.5, 7.9, 8.5, 7.8, 8.8) (3.3, 2, 2.2, 2.8, 1.9, 1.7, 2.6)
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5.2.3 � Evaluation of the Quality of Robust Solutions

In Sect. 5.2.2, we compare the minimum costs of the three models under different 
uncertainty sets, and conclude that the Interval-Polyhedron set has the strongest 
robustness. At the same time, it is essential to evaluate the quality of robust solu-
tions. In order to evaluate the performance of robust solutions under all uncertainty 
sets, the following two performance criteria are used: 

1.	 The average objective value for all DMs and all scenarios 

2.	 The average of the worst-case objective value for each DM 

And there are still many other criterion for evaluating quality. Here we also set 
the scaling parameter � is changed from 0 to 6with a step of 0.2. Meanwhile, 
we calculate the solution under the average scenario ĉU

i
, ĉD

i
 . Obviously, when the 

scaling parameter is small enough, this is a special case for all uncertainty sets.
The trade-off between Average and Max objective values is shown in Fig. 5. 

And the results of 30 scaling parameters belonging to the same uncertainty set 
of the same model are connected by a line. It can be seen from the Fig. 5 that the 
solutions calculated using the Interval uncertainty set and the Polyhedron uncer-
tainty set are always very close. Moreover, no matter whether the robustness per-
formance is good or bad, the average performance will remain stable, so they 
tend to focus on the good average performance. On the other hand, the Ellipsoid 
uncertainty set shows a broad prospect in these two criteria, and the three mod-
els show the trend of increasing (or decreasing) in both average performance and 
robust performance. For the Interval-Polyhedron uncertainty set, since average 
performance tends to decrease when robust performance increases to a certain 
extent, it performs worse for large scaling values and does not exhibit the desired 
trade-off property. So even though we concluded in the previous section that the 

Average =
1

m

∑
i∈[m]

(
1

M

∑
j∈[M]

(cU
ij
�
−
i
+ cD

ij
�
+

i
)

)

Max =
1

m

∑
i∈[m]

(
max
j∈[M]

(cU
ij
�
−
i
+ cD

ij
�
+

i
)

)

Fig. 4   Comparison of four uncertainty sets under the same model
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Interval-Polyhedron uncertainty set has strong robustness, it does not perform as 
well as the Ellipsoid uncertainty set in weighing average performance and robust 
performance. Therefore, we can select different uncertainty sets according to dif-
ferent needs. Note that the proposed data-driven optimization method can also be 
applied to other GDM problems, such as vehicle platoon coordination, medical 
diagnostics, and new projects involving multiple stakeholders. The research on 
these applications will also become our future research direction.

6 � Conclusion

In this paper, the RO method is used to deal with the uncertainty in the asymmetric 
cost consensus problem. The uncertain parameters that make changes in the upward 
and downward unit adjustment costs fluctuate in different uncertainty sets. For the 
MCCM-DC, �-MCCM-DC and TB-MCCM-DC models, twelve robust asymmetric 
cost consensus models are established based on the uncertainty sets. Then, taking 
the new product design problem as an example, the proposed RO models are solved 
using the YALMIP toolbox. And the results are interpreted in terms of uncertain 
level parameters, compromise limit parameters, and cost-free threshold parameters. 
Three original models are also compared with their respective robust models. The 
following meaningful conclusions can be drawn through comparative analysis. 

Fig. 5   Performance comparison under Average and Max
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1.	 When the value of the uncertain level parameter increases, the perturbation range 
of the uncertain parameter increases, and the uncertainty of the problem increases, 
the robustness of the optimization problem is, therefore, worse. Meanwhile, due 
to the cost of the problem increasing first and then balancing, the composite set 
Interval-Polyhedron set is more robust than the single uncertainty sets (Box set, 
Ellipsoid set and Polyhedron set).

2.	 When the compromise limit decreases, the corresponding robust model’s mini-
mum cost increases and tends to infinity. In addition, �-IPMCCM-DC and TB-
IPMCM-DC reached equilibrium before the deterministic models, and their total 
costs are the smallest, indicating that the Interval-Polyhedron set has the strongest 
robustness. As the cost-free threshold increases, the minimum cost of the corre-
sponding robust model decreases and tends to zero. The experts under the robust 
model can accept a larger cost-free threshold.

3.	 In the worst case, the optimal solution obtained by the robust cost consensus 
model is greater than the optimal solution obtained by the original model. This 
means the original model does not consider uncertainty, leading to excessively 
optimistic results. Since the pessimistic coefficients of the three robust models 
under the Interval-Polyhedron set are relatively small, the Interval-Polyhedron 
set has the strongest robustness.

Finally, this paper further introduces the data-driven RO method to reduce the 
conservatism of the traditional RO method. The pricing information of DEEP-
COOL’s new product, MACUBE 550, is used to construct the uncertainty set of 
MCCM. By using different indicators to measure the model applicability of these 
sets, it is concluded that Ellipsoid uncertainty sets can better trade-off the average 
performance and the robust performance. In addition, note that the conclusions 
here are only in the context of the available data. For the MCC problem, the per-
formance of the uncertainty set in other data sets requires further study.

At the same time, this study also has some limitations: 

1.	 In many decision-making scenarios, there is usually a social network relationship 
between DMs (Lu et al. 2020). Therefore, it is necessary to establish a MCCM 
based on the social network environment.

2.	 In some consensus decision-making issues, the opinions of DMs are also uncer-
tain. Numerous studies have used fuzzy preferences to describe this uncertainty. 
Therefore, it is also vital to use the RO method to describe the preference infor-
mation of DMs.

3.	 This paper only considers the result of perturbation of unit adjustment cost in 
two directions under the same uncertainty set, but the DM’s unit adjustment cost 
in different directions may be affected by different factors, so it is significant to 
consider different uncertainty sets in two directions separately. In addition to 
the application in the development of new products, the proposed robust cost-
consensus problem and a data-driven robust cost-consensus problem can also be 
employed to many other areas of GDM, such as new projects involving multiple 
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stakeholders, sourcing/supplier selection in supply chain management, and vehi-
cle platoon coordination, etc.
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Appendix

For �-MCCM-DC, i.e., model (2.5), its robust minimum cost consensus problem is:

Then, its corresponding four uncertainty sets are as follows:

•	 Interval uncertainty 

•	 Ellipsoidal uncertainty 

min
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•	 Polyhedral uncertainty 

•	 Interval-Polyhedral uncertainty 

For TB-MCCM-DC, i.e., model (2.8), its robust minimum cost consensus problem is:

Then, its corresponding four uncertainty sets are as follows:

•	 Interval uncertainty 
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•	 Ellipsoidal uncertainty 

•	 Polyhedral uncertainty 

•	 Interval-Polyhedral uncertainty 
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