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Abstract
Large-group decision making (LGDM) has attracted extensive attention and has been used

to model complex decision problems. It is necessary to implement a consensus reaching

process (CRP) due to the need to obtain a decision that is acceptable to the majority. The

theory of probabilistic linguistic term sets (PLTSs) is very useful in addressing uncertain

information in the decision-making process. In this paper, we develop a hierarchical

punishment-driven consensus model for LGDM problems in the context of probabilistic

linguistic information. The model has three stages. In the first stage, we define probabilistic

linguistic large-group decision making. To improve the performance of PLTSs in the CRP,

we redefine the rules governing their normalization and operations. In the second stage, the

original large group is divided into several small subgroups by hierarchical clustering. In

the third stage, we propose three levels of consensus measures and two adjustment

strategies to refine the scope of measure and adjustment to the matrix element level. Then,

a hierarchical punishment-driven consensus model is established that can provide guidance

for adjustment and soften the human supervision of the CRP. Finally, a case study on

global supplier selection illustrates the utility and applicability of the model, and a com-

parison with other linguistic models reveals its advantages.

Keywords Probabilistic linguistic large-group decision making (PL-LGDM) � Hierarchical
punishment-driven consensus model (HPDCM) � Global supplier selection � Hierarchical
clustering � Hard adjustment � Soft adjustment
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1 Introduction

Economic globalization and fierce market competition are driving companies to seek

overseas suppliers (Awasthi et al. 2018; Kim et al. 2018). Global sourcing benefits com-

panies, but it also increases the risks of supplier selection as the range of alternatives

expands. Supplier selection represents a strategic managerial issue that is closely related to

corporate performance and sustainability (Viswanadham and Samvedi 2013). Such a

complex decision is difficult for a single person or a small organization to reach. In

practice, a special committee (including relevant department heads and experts) or a

special board meeting will be established to conduct in-depth assessments. This configu-

ration is a typical large-group decision-making scenario where multiple decision makers

(DMs) attempt to select a common solution from a set of alternatives. Large-group decision

making (LGDM) has received much attention in the field of decision analysis. Generally, a

GDM problem can be called an LGDM problem when the number of DMs is more than 20

(Ding et al. 2019; Gou et al. 2018). And yet in the studies of Palomares et al. (2014) and

Wu et al. (2018), the illustrative examples included 50 experts. Situations involving large-

scale DMs are considered to present new challenges for the decision process, such as

scalability, constant preference supervision, different behaviors towards consensus, time

cost (Labella et al. 2018; Rodrı́guez et al. 2018; Xu et al. 2019).

The DMs themselves play a central role in solving decision problems, but the form in

which the evaluation information is expressed is also important for the decision output.

Linguistic assessment information can express natural language well, and it has been one

of the most commonly used forms of information expression in modeling realistic deci-

sion-making scenarios (Herrera et al. 1996, 2009; Liu et al. 2016; Merigó and Gil-Lafuente

2013; Zuheros et al. 2018). The characteristics of several existing linguistic models are

described in Table 1. The traditional linguistic assessment information generally allows

Table 1 A review of the characteristics of several existing linguistic models

Linguistic formats Number of
linguistic terms

Probabilistic
information

Sum of
probability
values

Linguistic term set (Herrera et al. 1996) Single N/A N/A

Uncertain linguistic term set (Park et al. 2011) A pair N/A N/A

Multi-granular linguistic term set
(Morente-Molinera et al. 2019)

Single N/A N/A

Hesitant fuzzy linguistic term set
(Rodrı́guez et al. 2012)

Several N/A N/A

Linguistic information based on discrete fuzzy
numbers (Massanet et al. 2014)

Several N/A N/A

Possibility distribution-based HFLTS
(Wu and Xu 2015)

Several Completely
known

1

Granulating linguistic information
(Cabrerizo et al. 2018)

Single N/A N/A

Linguistic distribution assessment (Yu et al. 2018) Several Completely
known

1

Probabilistic linguistic term set (Pang et al. 2016) Several Partially known B 1
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DMs to express their preferences with single linguistic terms. However, sometimes, it is

difficult to depict complex qualitative information only by one linguistic term. For

instance, a DM may evaluate an item as ‘‘very good’’, ‘‘good’’ or ‘‘somewhat good’’ but be

unsure of how good the item is. To address such issues, Rodrı́guez et al. (2012) proposed

the concept of hesitant fuzzy linguistic term sets (HFLTSs). HFLTSs collect all possible

linguistic terms provided by the DMs, and all of these terms are assigned the same

importance. In reality, a DM may have different preferences for multiple linguistic terms

when judging an item. Therefore, Pang et al. (2016) extended the HFLTSs to a more

general concept, named as probabilistic linguistic term sets (PLTSs). The PLTSs enable

DMs to assign different weights to possible linguistic terms. To date, most studies on the

GDM events with probabilistic linguistic information have focused on scenarios involving

small-scale DMs, typically no more than 20. (e.g., Bai et al. 2018; Zhang et al. 2017).

A probabilistic linguistic large-group decision making (PL-LGDM) problem can be

defined as a situation in which a large number of DMs seek to choose a common solution

from a set of alternatives in the context of probabilistic linguistic information. We char-

acterize its features as follows: (1) the number of DMs is large (usually more than 20); (2)

most or all DMs provide their evaluation information by means of PLTSs; and (3)

obtaining a high-consensus output requires the implementation of a consensus reaching

process (CRP). Generally, solving a PL-LGDM problem requires the following four pro-

cesses: the probabilistic linguistic representation of the evaluation information, clustering

process, consensus reaching process and selection process.

To address the scalability issue in LGDM, we assume that among a large number of

DMs, there will be subgroups of them with similar opinions (Rodrı́guez et al. 2018). A

clustering process can be used to divide the large group into several small-scale subgroups

based on opinion similarity. Many clustering methods have been proposed, such as the K-
means algorithm (Wu and Xu 2018), fuzzy c-means algorithm (Bezdek et al. 1984), and

hierarchical clustering algorithm (Dong et al. 2006; Johnson 1967). This study adopts the

hierarchical clustering method to classify large-scale DMs.

The CRP is considered particularly important in LGDM because opinions among a large

number of DMs can easily be controversial. In contrast to the ideal consensus that requires

unanimity, the notion of soft consensus allows differences of opinion within a reasonable

range (Kacprzyk and Fedrizzi 1988). Various consensus models have been proposed to

address GDM problems under different situations. However, research on consensus in the

context of probabilistic linguistic information has just begun. Zhang et al. (2017) designed

a CRP with probabilistic linguistic preference relations. Wu and Liao (2019) proposed a

consensus-based probabilistic linguistic gained and lost dominance score method. We find

that the case studies in the above literature focus on GDM problems composed of three

experts and do not involve large-scale DMs.

Faced with the challenges of classical consensus models for LGDM and the scarcity of

research on consensus in PL-LGDM, this study develops a hierarchical punishment-driven

consensus model and applies it to global supplier selection. The following efforts are made

to address the consensus in PL-LGDM, which can overcome the scalability challenge and

soften the human supervision of the CRP.

1 Problem framework construction: We define probabilistic linguistic large-group

decision making and characterize its constituent elements. We present novel

operational laws to preprocess probabilistic linguistic information.
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2 Clustering process: A hierarchical clustering method is utilized to divide the large

group into several small-scale subgroups. The cluster is regarded as the basic unit in

the decision-making process.

3 Consensus reaching process: A hierarchical punishment-driven consensus model is

employed to manage the differences among the opinions of clusters. According to the

current group consensus index, the model can adopt different strategies to adjust the

clusters’ opinions.

The remainder of this paper is organized as follows: Sect. 2 reviews the basic concepts

of PLTSs and CRPs and formulates a GDM event with PLTSs. In Sect. 3, a PL-LGDM

problem is established and the hierarchical clustering method is used to classify large-scale

DMs. In Sect. 4, a hierarchical punishment-driven consensus model is developed. Sec-

tion 5 applies the proposed model to a case study on global supplier selection. Section 6

presents the comparative analysis and managerial implications. This paper ends with

conclusions in Sect. 7.

2 Preliminaries

In this section, we first review some concepts related to PLTSs and present the construction

of a GDM problem with probabilistic linguistic information. The CRP for LGDM prob-

lems is then described.

2.1 Group Decision Making with Probabilistic Linguistic Information

As an extension of HFLTSs, the concept of PLTSs was originally proposed by Pang et al.

(2016), which enables DMs to express possible linguistic terms with different weights.

Clearly, Pang et al. (2016) defined PLTSs on the basis of an additive linguistic evaluation

scale, while Zhang et al. (2016) used PLTSs based on a subscript-symmetric linguistic

evaluation scale.

Definition 1 (Pang et al. 2016) Let S ¼ saja ¼ �s; . . .� 1; 0; 1; . . .; sf g (s is a positive

integer) be a linguistic term set; then a PLTS is defined as

L pð Þ ¼ L uð Þ p uð Þ
� ����L uð Þ 2 S; p uð Þ � 0; u ¼ 1; 2; . . .;#L pð Þ;

X#L pð Þ

u¼1

p uð Þ � 1

( )
; ð1Þ

where L uð Þ p uð Þ� �
is a probabilistic linguistic element that includes the linguistic term L uð Þ

and the associated probability p uð Þ, and #L pð Þ is the number of different linguistic terms in

L pð Þ.

A probabilistic linguistic element consists of two parts: a linguistic term and its corre-

sponding probability. Based on this unique construct, a PLTS can be obtained in two ways:

the statistical aggregation of single linguistic terms (see Pang et al. 2016) and the aggre-

gation of multiple PLTSs (see Zhang et al. 2017). Formally, a multicriteria GDM problem

with probabilistic linguistic information includes (1) a set of alternatives

X ¼ x1; x2; . . .; xmf g m� 2ð Þ, which are the possible solutions to the problem; (2) a set of

criteria A ¼ a1; a2; . . .; anf g n� 2ð Þ used to evaluate the alternatives in X; and (3) a set of

DMs E ¼ e1; e2; . . .; eq
� �

q� 2ð Þ who provide judgments on the alternatives. Let Vl ¼

123

1346 S. Yu et al.



vl;ij
� �

m�n
be the individual opinion given by DM el l ¼ 1; 2; . . .; qð Þ, where vl;ij represents

the evaluation of DM el on alternative xi 2 X with respect to criterion aj 2 A. vl;ij can be

either a single linguistic term or a PLTS. The former expression represents a relatively

precise evaluation value, while the latter reflects the DM’s hesitation. To deal with the

above different types of linguistic information, we attach a probability of 1 to the single

linguistic term to convert it to a PLTS. For example, a given linguistic term s3 can be

changed to s3 1ð Þf g. In particular, if all individual opinions are expressed by means of

single linguistic terms, a collective opinion can be obtained as a PLTS by aggregating

linguistic terms (Song and Li 2019). In this study, we focus on a GDM in which most or all

DMs provide evaluation information in the form of PLTSs. This is consistent with the fact

that, due to the complexity of LGDM problems, it is difficult for DMs to express opinions

by only using single linguistic terms.

2.2 Consensus Reaching Process in LGDM Problems

The increasing complexity of current decision-making scenarios requires the participation

of large-scale DMs. Two main differences between classical GDM and LGDM are that (1)

the latter case usually involves a larger number of DMs, and (2) implementing a CRP to

achieve a high-consensus outcome is considered both more necessary and more difficult, as

large-scale DMs tend to be controversial (Labella et al. 2018; Xu et al. 2019).

Consensus can be defined as ‘‘a state of mutual agreement among members of a group,

where all legitimate concerns of individuals have been addressed to the satisfaction of the

group’’ (Saint and Lawson 1994). Obtaining a complete consensus is often unnecessary in

practice and, as a consequence, the notion of soft consensus is introduced, which requires

most (but perhaps not all) of the DMs to agree on the most important alternatives

(Kacprzyk and Fedrizzi 1988; Palomares et al. 2014). Reaching a consensus is an iterative

group discussion process in which some DMs must modify their opinions to bring them

closer to the group opinion (Wu and Xu 2018). Two types of consensus measures have

commonly been used: the first is based on the distance to the group opinion, and the second

is based on the distances between individual opinions (Du et al. 2020; Labella et al. 2018;

Wu and Xu 2016). A general scheme for a CRP is described as follows:

• Problem framework configuration: A GDM problem is established, including a finite

set of alternatives, a set of DMs, and some pre-set important parameters (such as the

consensus threshold).

• Opinion gathering: The opinions provided by DMs are gathered.

• Consensus measure: The group consensus index is calculated based on distance

measures, and it reflects the level of agreement in the group.

• Consensus control: If the obtained consensus index is greater than the consensus

threshold, this indicates that the desired consensus has been achieved and the selection

process is concluded; otherwise, more consensus iterations should be carried out.

• Consensus progress: A procedure is adopted to identify the opinions that contribute less

to the consensus and to guide the opinion adjustment process to increase the consensus

index in the subsequent iterations. Then, another iteration starts by gathering opinions

again.

To overcome the scalability challenge in LGDM problems, we consider that there will

be DMs with similar opinions. In this study, a clustering algorithm is implemented to

divide a large group and to weight subgroups before calculating the consensus measures. A
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hierarchical punishment-driven consensus model is then employed, by which the opinions

of clusters are adjusted in the direction of the increasing consensus index.

3 Hierarchical Clustering Method for PL-LGDM Problems

In Sect. 3.1, we describe the establishment of a PL-LGDM problem and the preprocessing

of decision information. To tackle the scalability challenge in PL-LGDM, Sect. 3.2 adopts

a hierarchical clustering algorithm to classify the large group.

3.1 Problem Framework Configuration and Preprocessing of Decision
Information

We first provide a description of the PL-LGDM scenario studied in this study. Let X ¼
x1; x2; . . .; xmf g be a finite set of alternatives, A ¼ a1; a2; . . .; anf g be a set of criteria,

E ¼ e1; e2; . . .; eq
� �

q� 20ð Þ be a set of DMs, and S be a linguistic term set as before. This

study considers a group to be a large group when the number of DMs exceeds 20. Let

Vl ¼ vl;ij
� �

m�n
be the individual decision matrix provided by DM el l ¼ 1; 2; . . .; qð Þ, where

vl;ij ¼ L
uð Þ
l;ij p

uð Þ
l;ij

� ����L uð Þ
l;ij 2 S; p

uð Þ
l;ij � 0; u ¼ 1; 2; . . .;#vl:ij;

P#vl;ij
u¼1 p

uð Þ
l;ij � 1

n o
. #vl;ij is the

number of different linguistic terms in vl;ij. Generally, there are benefit types and cost types

in the criteria. By using the linguistic negation operator (Xu 2005), we convert the cost

types to benefit types (for convenience, the converted result is still represented by vl;ij) so

that L
uð Þ
l;ij ¼ neg L

uð Þ
l;ij

� �
when aj is a cost criterion.

To obtain the aggregation and distance measure of a PLTS, normalization is necessary.

Generally, discrete linguistic terms are used to evaluate alternatives, while virtual linguistic

terms only appear in operations and rankings (Xu 2009). Intuitively, in CRPs, discrete

linguistic terms enable DMs to better understand the differences between individual

opinions, which is conducive to making more reasonable adjustments. Therefore, we

believe that before the selection process, the normalization and aggregation of PLTSs

should be expressed in terms of discrete linguistic terms associated with probability values.

Here, we redefine the normalization and operational laws of PLTSs. Normalization

includes two steps:

1 Granularity normalization: All PLTSs contain the same linguistic terms;

2 Probability normalization: The sum of the probability values of all linguistic terms in

each PLTS is 1.

Definition 2 (Granularity normalization) Let L pð Þ1 and L pð Þ2 be any two PLTSs, where

L pð Þ1¼ L
uð Þ
1 p

uð Þ
1

� ����u ¼ 1; 2; . . .;#L pð Þ1
n o

and

L pð Þ2¼ L
uð Þ
2 p

uð Þ
2

� ����u ¼ 1; 2; . . .;#L pð Þ2
n o

. If there is a linguistic term L
uð Þ
1 in L pð Þ1 that

does not appear in L pð Þ2, then add L
uð Þ
1 to L pð Þ2. By this way, a new probabilistic linguistic

element is obtained as L
uð Þ
2 p

uð Þ
2

� �
, where L

uð Þ
2 ¼ L

uð Þ
1 and p

uð Þ
2 ¼ 0. Repeat the above steps

until the two PLTSs have the same linguistic terms.
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Definition 3 (Probability normalization) Given any PLTS L pð Þ with
P#L pð Þ

u¼1 p uð Þ\1, the

associated PLTS _L pð Þ is obtained as

_L pð Þ ¼ L uð Þ _p uð Þ
� ����L uð Þ 2 S; u ¼ 1; 2; . . .;#L pð Þ

n o
; ð2Þ

where _p uð Þ ¼ p uð Þ
.P#L pð Þ

u¼1 p uð Þ, u ¼ 1; 2; . . .;#L pð Þ. _L pð Þ is called the normalization form

of L pð Þ.

For simplicity, the normalized PLTS (NPLTS) is still written as L pð Þ. The granularity of

the NPLTS L pð Þ is denoted as ##L pð Þ, where ##L pð Þ�#L pð Þ.

Example 1 Given two PLTSs L pð Þ1¼ s�1 0:1ð Þ; s1 0:4ð Þf g and L pð Þ2¼ s0 0:2ð Þ;f
s1 0:3ð Þ; s2 0:5ð Þg, where the linguistic terms of both are drawn from

S1 ¼ s�2; s�1; s0; s1; s2f g, normalization is divided into two steps:

Step 1 Granularity normalization: L pð Þ1¼ s�1 0:1ð Þ; s0 0ð Þ; s1 0:4ð Þ; s2 0ð Þf g and

L pð Þ2¼ s�1 0ð Þ; s0 0:2ð Þ; s1 0:3ð Þ; s2 0:5ð Þf g. Thus, we have ##L pð Þ1¼ ##L pð Þ2
Step 2 Probability normalization: L pð Þ1¼ s�1 0:2ð Þ; s0 0ð Þ; s1 0:8ð Þ; s2 0ð Þf g and

L pð Þ2¼ s�1 0ð Þ; s0 0:2ð Þ; s1 0:3ð Þ; s2 0:5ð Þf g

Next, we describe some basic operations.

Definition 4 Given any two NPLTSs, L pð Þ1¼ L
uð Þ
1 p

uð Þ
1

� ����L uð Þ
1 2 S; u ¼ 1; 2; . . .;

n

##L pð Þ1g and L pð Þ2¼ L
uð Þ
2 p

uð Þ
2

� ����L uð Þ
2 2 S; u ¼ 1; 2; . . .;##L pð Þ2

n o
, 0� k1; k2 � 1.

Then, we have

1 L pð Þ1�L pð Þ2¼ L
uð Þ
3 p

uð Þ
3

� ����L uð Þ
3 2 S; u ¼ 1; 2; . . .;##L pð Þ1

n o
,

2 kL pð Þ1¼ L
uð Þ
1 kp uð Þ

1

� ����u ¼ 1; 2; . . .;##L pð Þ1
n o

,

3 k1L pð Þ1�k2L pð Þ2¼ L
uð Þ
4 p

uð Þ
4

� ����L uð Þ
4 2 S; u ¼ 1; 2; . . .;##L pð Þ1

n o
,

where L
uð Þ
3 ¼ L

uð Þ
1 , p

uð Þ
3 ¼ p

uð Þ
1 þ p

uð Þ
2 � p

uð Þ
1 p

uð Þ
2 , L

uð Þ
4 ¼ L

uð Þ
1 , p

uð Þ
4 ¼ k1p

uð Þ
1 þ

k2p
uð Þ
2 � k1k2p

uð Þ
1 p

uð Þ
2 .

Remark 1 Notice that sometimes the sum of the probability values of the PLTS obtained

by Definition 4 is less than 1. In this case, we need to redo the process of probability

normalization.

Example 2 (Continued with Example 1) Let k1 ¼ 0:4 and k2 ¼ 0:6; then, we have the

following results:

Pang et al. (2016)’s operational law yields:

k1L pð Þ1�k2L pð Þ2 ¼ 0:4 s1 0:8ð Þ; s�1 0ð Þ; s�1 0:2ð Þf g � 0:6 s2 0:5ð Þ; s1 0:3ð Þ; s0 0:2ð Þf g
¼ 0:4� 0:8s1 � 0:6� 0:5s2; 0:4� 0s�1 � 0:6� 0:3s1; 0:4� 0:2s�1 � 0:6� 0:2s0f g
¼ 0:32s1 � 0:3s2; 0s1 � 0:18s1; 0:08s�1 � 0:12s0f g ¼ s0:92; s0:18; s�0:08f g;
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and our operational law yields:

k1L pð Þ1�k2L pð Þ2 ¼ 0:4 s�1 0:2ð Þ; s0 0ð Þ; s1 0:8ð Þ; s2 0ð Þf g � 0:6 s�1 0ð Þ; s0 0:2ð Þ; s1 0:3ð Þ; s2 0:5ð Þf g
¼ s�1 0:0849ð Þ; s0 0:1273ð Þ; s1 0:4694ð Þ; s2 0:3184ð Þf g:

From Example 2, we find that the probabilities of linguistic terms are missing if Pang

et al.’s (2016) operational law is used. In this case, the unique feature of PLTSs compared

with ordinary linguistic term sets disappears. More importantly, the virtual linguistic terms

make it difficult for DMs to understand and determine the adjustments in the CRP. In our

operational law, the ordinary linguistic terms remain unchanged, yet the associated

probabilities always change.

To better apply PLTSs to GDM problems, the following aggregation operators are

defined:

Definition 5 Let L pð Þi¼ L
uð Þ
i p

uð Þ
i

� ����L uð Þ
i 2 S; ki ¼ 1; 2; . . .;##L pð Þi

n o
i ¼ 1; 2; . . .;mð Þ

be a set of m NPLTSs and hi be the weight of L pð Þi, such that hi � 0, i ¼ 1; 2; . . .;m, andPm
i¼1 hi ¼ 1; then, the probabilistic linguistic weighted averaging (PLWA) operator is

defined as

L pð Þ ¼ PLWA L pð Þ1; L pð Þ2; . . .; L pð Þm
� �

¼ h1L pð Þ1�h2L pð Þ2� � � � � hmL pð Þm; ð3Þ

where L pð Þ ¼ L uð Þ p uð Þ� ���L uð Þ ¼ L
uð Þ
1 ; u ¼ 1; 2; . . .;##L pð Þ

n o
, such that

p uð Þ ¼
Xm
i¼1

hip
uð Þ
i �

X
1� i� j�m

hip
uð Þ
i hjp

uð Þ
j

þ
X

1� i� j� l�m

hip
uð Þ
i hjp

uð Þ
j hlp

uð Þ
l þ � � � þ �1ð Þn�1

Ym
i¼1

hip
uð Þ
i :

ð4Þ

Definition 6 Let L pð Þ1 and L pð Þ2 be any two NPLTSs; then, the distance between L pð Þ1
and L pð Þ2 is calculated by

d L pð Þ1; L pð Þ2
� �

¼

P##L pð Þ1
u¼1 I

uð Þ
1

���
��� p uð Þ

1 � p
uð Þ
2

���
���

� �k	 
1=k

##L pð Þ1
; ð5Þ

where k[ 0 and I
uð Þ
1 is the subscript of the linguistic term L

uð Þ
1 . In this study, we adopt the

Euclidean distance, i.e., k ¼ 2.

It is clear that the distance measures have the following properties:

1 0� d L pð Þ1; L pð Þ2
� �

� 1,

2 d L pð Þ1; L pð Þ2
� �

¼ 0, if L pð Þ1¼ L pð Þ2,
3 d L pð Þ1; L pð Þ2

� �
¼ d L pð Þ2; L pð Þ1

� �
.
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3.2 Hierarchical Clustering Algorithm

Clustering is a widely used methodology for analyzing and processing large-scales DMs,

and it is considered to be effective in addressing the scalability challenge in LGDM

problems. In this study, we adopt a hierarchical clustering method to classify the large-

scale DMs into K 1�K� qð Þ subgroups. Hierarchical clustering treats each data object as a
separate cluster and then finds clusters with small distances to merge in each iteration. This

process repeats until a designated number of clusters is reached or there is only one cluster.

The procedure for the hierarchical clustering method is described in Algorithm 1.

Theorem 1 The time complexity of Algorithm 1 is O q3ð Þ.

Proof First, it will take O q2ð Þ time to calculate the distances between each pair of clusters.

Once a new cluster is determined, the distance between the new cluster and each of the

other clusters needs to be calculated. It can be seen that Algorithm 1 must be carried out for

q iterations and that each iteration updates the distances, so the time complexity is the cube

of the number of original clusters, i.e., O q3ð Þ. h

Calculating the weights of the clusters is a necessary step because it is closely related to the

generation of group opinions. Inspired byRodrı́guez et al. (2018), this study takes into account

the size and cohesion. The size refers to the number of DMs in a cluster. Based on themajority

principle, the larger the size of a cluster is, the more weight it should be given. However, the

representation of the size should be adjusted according to the number of DMs involved in the

LGDM problem. Based on computing with words (Quesada et al. 2015), Rodrı́guez et al.

(2018) modeled the size with the fuzzy membership function lsize shown in Fig. 1, where the
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universe of discourse is the number of DMs in a cluster and themembership degree reflects the

cluster’s influence on all the DMs in terms of the number of DMs. The points a and b of the
membership function depend on the numbers of alternatives and DMs in the LGDM scenario.

The highest membership degree is for values above b, the lowest membership degree is for

values below a, and varying importance is assigned between a and b.
The cohesion represents the consensus index of the DMs’ opinions in a cluster. The more

coherent the individual opinions within a cluster are, the more weight we give the cluster.

Definition 7 For cluster ck including nk DMs, the cohesion of the cluster is defined as

cohesion ckð Þ ¼ 1� 1

nk nk � 1ð Þ=2
Xnk�1

h¼1

Xnk
l¼hþ1

d Rl;Rhð Þ; ð7Þ

where el; eh 2 ck. Clearly, 0� cohesion ckð Þ� 1.

By integrating size and cohesion, Rodrı́guez et al. (2018) defined a function to calculate the

weights of clusters, which could be flexibly adapted to a specific LGDM problem.

Definition 8 (Rodrı́guez et al. 2018) Let Yck ¼ y1; y2f g be the values obtained for cohe-

sion and size, respectively, where y1; y2 2 0; 1½ �; then, the fusion value of the cohesion and

size is calculated by

u Yckð Þ ¼ 1þ y2ð Þy1b ; ð8Þ

where the parameter b b[ 0ð Þ is used to adjust the effect of cohesion in calculating the

weight of the cluster.

The aggregated value u Yckð Þ reflects the relevance of cluster ck. Therefore, the weight

vector of the clusters, h ¼ h1; h2; . . .; hKð ÞT , can be obtained from

hk ¼
u Ykð ÞPK
k¼1 u Ykð Þ

: ð9Þ

Clearly, 0� hk � 1 k ¼ 1; 2; . . .;Kð Þ and
PK

k¼1 hk ¼ 1. By using Eq. (3), the cluster

opinion is obtained; i.e., Gk ¼ gk;ij
� �

m�n
, where gk;ij ¼ PLWAh r1;ij; . . .; rnk ;ij

� �
.

We use the case in Sect. 5 to illustrate the weight calculation. In this study, we consider

10% of DMs to define the point a and the number of DMs divided by the number of

alternatives to define the point b: a ¼ round q � 0:1ð Þ ¼ 2, b ¼ round q=mð Þ ¼ 4, where

round �ð Þ is the round function. Table 2 shows the values of size, membership degree, and

cohesion for each cluster. Figure 2 shows the weights of clusters when different values of

xba0 

µsizeFig. 1 Membership function for
the cluster size
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the parameter b are used to solve Eq. (8). We find that although clusters c2 and c3 have the
same membership degree in terms of size, they are assigned different weights due to the

different values of cohesion among their members. As shown in Fig. 2, when the value of b
increases, the weight of cluster c2 increases more than that of cluster c3. This means that

the parameter b can adjust the degree of the influence of cohesion on the weight.

4 Hierarchical Punishment-Driven Consensus Model in PL-LGDM
Problems

We first describe the consensus measure. Section 4.2 presents punishment-driven con-

sensus iterations. In Sect. 4.3, a hierarchical punishment-driven consensus model is given.

4.1 Consensus Measure

The consensus measure is designed to compute the differences among DMs’ opinions. As

previously discussed, the calculation of the consensus measure can be based on the dis-

tance to the group opinion or the distances among individual opinions. Xu et al. (2019)

gave a detailed comparison of these two measures. The former measure is heavily influ-

enced by the weights of the clusters. In this case, the CRP tends to target the opinions of

low-weight clusters because their opinions contribute less to the group opinion. So that our

model uses the latter measure, which is completely based on the differences among

cluster’s opinions, without considering the influence of the clusters’ weights. We present

the three-level consensus index measure below.

Level 1 Individual consensus index at the matrix element level. The consensus index of a

cluster with respect to the others on alternative xi under criterion aj is

ICItk;ij ¼ 1� 1

K � 1

XK

h¼1;h 6¼k

d gtk;ij; g
t
h;ij

� �
; ð10Þ

where d gtk;ij; g
t
h;ij

� �
is the distance between gtk;ij and gth;ij. Clearly, 0� ICItk;ij � 1. The

greater the value of ICItk;ij is, the higher the consensus index of the matrix element gtk;ij.

Level 2 Individual consensus index at the matrix level. The consensus index of a cluster

opinion with respect to the others is

ICItk ¼
1

m� n

Xm
i¼1

Xn
j¼1

ICItk;ij: ð11Þ

Table 2 The values of size,
membership degree, and cohe-
sion for each cluster

Size Membership degree Cohesion

c1 4 1 0.8427

c2 5 1 0.8446

c3 4 1 0.8173

c4 4 1 0.8196

c5 2 0 0.8286

c6 1 0 1
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Clearly, 0� ICItk � 1. The greater the value of ICItk is, the higher the consensus index of

cluster ck.

Level 3 Consensus index at the group level. The group consensus index is computed by

GCIt ¼ 1

K

XK
k¼1

ICItk: ð12Þ

Clearly, 0�GCIt � 1. The higher the value of GCIt is, the higher the consensus among

the clusters.

Usually, we need to define the consensus threshold (denoted as GCI, where 0�GCI� 1),

which is used to determine whether the CRP can terminate. Calculating the threshold is an

important matter, and many related studies have been published (see Labella et al. 2018;

Xu et al. 2015; Zhang et al. 2017).

Remark 2 The three-level consensus index measure provides inspiration for constructing a

hierarchical consensus model. We can either adjust all elements of the opinion (based on the

individual consensus indexes at the matrix level) in each iteration or adjust only some

elements of the opinion (based on the individual consensus index at thematrix element level).

4.2 Punishment-Driven Consensus Iterations

There are usually two ways to adjust opinions: the cluster opinion that has the largest

distance from the group opinion is adjusted in each iteration (e.g. Wu and Liao 2019); or

the cluster opinions that contribute less to the consensus are adjusted (e.g. Rodrı́guez et al.

2018). The former way sorts the individual consensus indexes and adjusts the opinions of

clusters accordingly until the current group consensus index meets the consensus threshold.

Fig. 2 Weights of the clusters as b varies. Note: set a ¼ 2, b ¼ 4
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Compared with the latter way, the former has the advantage in terms of reducing the

number of adjusted opinions. This paper selects the first method. Since this study takes the

cluster as the basic decision-making unit, the opinions of DMs have been merged into the

opinions of clusters before the CRP begins. This means that the next step for DMs is to

focus on discussing the adjustment of the clusters’ opinions. Suppose cluster c _k has the

lowest consensus index in the t-th iteration, i.e., ICIt_k ¼ min ICItk
� �

. Cluster c _k provides the

adjustment coefficient dt_k 0� dt_k � 1
� �

to make its opinion closer to the others. To provide

guidance to the cluster regarding the adjustment coefficient and soften the human super-

vision of the CRP, we propose the concept of the punishment coefficient, which is the

degree to which a cluster opinion is required to move towards the collective opinion.

Definition 9 Given the consensus threshold GCI and identified cluster consensus index

ICIt_k in the t-th iteration, the punishment coefficient is defined as

pct_k ¼
GCI � ICIt_k

GCI

 !r

; ð13Þ

where r 0�r� 1ð Þ is the power of the punishment coefficient and is used to indicate the

urgency of reaching a consensus. Clearly, 0� pct_k � 1.

Figure 3 shows the distribution of the punishment coefficient for different values of r. We

set r ¼ 1 as the benchmark. We find that the larger the value of r is, the smaller the

punishment coefficient pct_k. r = 0 is an extreme case, indicating that the identified cluster

opinion is completely replaced by the collective opinion. Another important function of the

punishment coefficient is that it can be used as the lower limit of the adjustment coefficient. If

the given adjustment coefficient is less than the punishment coefficient, the cluster is required

to use the punishment coefficient to adjust its opinion; i.e., if dt_k\pct_k, then set d
t
_k
¼ pct_k. This

is why our model is called a punishment-driven consensus model. In this way, the model not

only provides guidance for opinion adjustment, but also designs a semi-automatic mandatory

adjustment mechanism, which can soften the human supervision of the CRP.

Fig. 3 Distribution of the punishment coefficient for different values of r
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Based on the operational laws proposed in this paper, the clusters’ opinions are always

expressed in the form of PLTSs before the selection process begins, which include discrete

linguistic terms and their corresponding probability values. We define the adjusted opinion

of the CRP as follow.

Definition 10 Let Gt
_k
be the identified opinion with the lowest consensus index in the t-th

iteration, dt_k be the given adjustment coefficient, and pct_k be the punishment coefficient. If

GCIt\GCI, then the opinion Gt
_k
should be adjusted as Gtþ1

_k
¼ gtþ1

_k;ij

� �
m�n

, such that

gtþ1
_k;ij

¼
dt_kg

t
c! _k;ij

� 1� dt_k
� �

gt_k;ij dt_k � pct_k

pct_kg
t
c! _k;ij

� 1� pct_k

� �
gt_k;ij dt_k\pct_k

8<
: ; ð14Þ

where gt
c! _k;ij

¼ �K
h¼1;h 6¼ _k

gtk;ij
�hth is the collective opinion used to guide the adjustment of Gt

_k

and �hth is the remaining cluster ch’s weight, which satisfies �hth ¼ hth

.PK
k¼1;k 6¼ _k h

t
k. The

addition operation ‘‘�’’ is interpreted as

L
uð Þ;tþ1
_k;ij

¼
dt_kL

uð Þ;t
c! _k;ij

� 1� dt_k
� �

L
uð Þ;t
_k;ij

dt_k � pct_k

pct_kL
uð Þ;t
c! _k;ij

� 1� pct_k

� �
L

uð Þ;t
_k;ij

dt_k\pct_k

8<
: ; u ¼ 1; . . .;##gt_k;ij; ð15Þ

p
uð Þ;tþ1
_k;ij

¼
dt_kp

uð Þ;t
c! _k;ij

þ 1� dt_k
� �

p
uð Þ;t
_k;ij

dt_k � pct_k

pct_kp
uð Þ;t
c! _k;ij

þ 1� pct_k

� �
p

uð Þ;t
_k;ij

dt_k\pct_k

8<
: ; u ¼ 1; . . .;##gt_k;ij; ð16Þ

where p
uð Þ;t
c! _k;ij

¼
PK

h¼1;h 6¼ _k p
uð Þ;t
h;ij

�hth, L
uð Þ;t
c! _k;ij

¼ L
uð Þ;t
_k;ij

, u ¼ 1; . . .;##gt_k;ij, i ¼ 1; 2; . . .;m,

j ¼ 1; 2; . . .; n.

4.3 Hierarchical Punishment-Driven Consensus Iterations

In Sect. 4.1, we divide the consensus measures into three levels. The group consensus

index is used to determine whether the current consensus satisfies the threshold. The other

consensus indexes can be used to determine which clusters’ opinions or matrix elements

need to be adjusted. Different matrix elements in a cluster opinion usually have different

consensus indexes. Therefore, it is reasonable to use different adjustment coefficients (or

punishment coefficients).

Definition 11 For the consensus threshold GCI and the identified cluster c _k in the t-th

iteration, the punishment coefficient at the matrix element level is defined as

pct_k;ij ¼
GCI � ICIt_k;ij

GCI

 !r

ICIt_k;ij\GCI

0 ICIt_k;ij �GCI

8>><
>>:

: ð17Þ
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Let r be the same as in Definition 9. Clearly, 0� pct_k;ij � 1, i ¼ 1; 2; . . .;m,

j ¼ 1; 2; . . .; n.

Based on Eq. (14), we use the following formula to adjust the matrix elements in the

opinion Gt
_k
:

gtþ1
_k;ij

¼
dt_k;ijg

t
c! _k;ij

� 1� dt_k;ij

� �
gt_k;ij dt_k;ij � pct_k;ij

pct_k;ijg
t
c! _k;ij

� 1� pct_k;ij

� �
gt_k;ij dt_k;ij\pct_k;ij

8<
: ; ð18Þ

where dt_k;ij 0� dt_k;ij � 1
� �

is the adjustment coefficient given by cluster c _k that is used to

modify the probability value of the matrix element of position i; jð Þ in Gt
_k
.

In general, although the identified cluster has the lowest consensus index at the indi-

vidual matrix level, it does not necessarily indicate that the consensus indexes of all

elements in the cluster opinion do not satisfy the threshold. Using the same coefficient to

adjust all the matrix elements may result in adjusting elements that should not be adjusted,

or should not be adjusted by such a large amount, which will result in opinion distortion.

We consider opinion distortion to have two parts: the adjustment amount of the opinion

and the proportions of the adjusted matrix elements in the opinion. The latter part reflects

the number of matrix elements that were adjusted but should not have been.

Definition 12 Based on Eq. (5), the adjustment amount of the identified opinion Gt
_k
after

the t-th iteration is calculated by

AA
tþ1
_k ¼ d Gtþ1

_k
;Gt

_k

� �
: ð19Þ

Clearly, 0�AA
tþ1
_k � 1. A larger value of AA

tþ1
_k indicates a greater adjustment in going

from Gt
_k
to Gtþ1

_k
.

Definition 13 Let IX Gt
_k
;Gtþ1

_k

� �
be the number of matrix elements that have been adjusted

in the t-th iteration. The proportion of adjusted matrix elements is obtained by

cAAtþ1
_k

¼
IX Gt

_k
;Gtþ1

_k

� �

m� n
: ð20Þ

Definition 14 Given the adjustment amount and the proportion of adjusted matrix ele-

ments, the distortion degree of the opinion Gt
_k
is defined as

DDtþ1
_k

¼
AA

tþ1
_k þ cAAtþ1

_k

2
: ð21Þ

Clearly, 0�DDtþ1
_k

� 1. A larger value of DDtþ1
_k

represents a higher distortion degree in

going from Gt
_k
to Gtþ1

_k
.
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We propose the soft adjustment strategy, which allows different punishment coefficients to

be used to adjust the matrix elements. Conversely, hard adjustment strategy requires that

all matrix elements be adjusted with the same coefficient. Employing hard adjustment

often leads to adjusting a larger number of matrix elements than employing soft adjustment

in each consensus iteration. However, when the CRP begins, there are usually a large

number of matrix elements in the identified opinion whose consensus indexes do not meet

the requirements. Too much time will be spent reviewing the consensus index for each

element and providing the adjustment coefficient if soft adjustment is used. Therefore, we

consider that the hard adjustment strategy can be adopted first to improve the consensus

indexes at different levels. When the group consensus index approaches the consensus

threshold closely, the soft adjustment strategy is used to balance the relationship between

opinion distortion and consensus improvement. To determine which adjustment strategy to

adopt, we introduce a new parameter, the attainment rate of the consensus index, denoted

as ARoCI 0�ARoCI� 1ð Þ. This parameter elevates the punishment-driven consensus

model to a hierarchical consensus model.

Definition 15 Given the group consensus index GCIt and consensus threshold GCI, the
attainment rate of the consensus index is defined as

ARoCIt ¼ GCIt

GCI
: ð22Þ

Clearly, GCI0
�
GCI�ARoCIt � 1. ARoCIt reflects the percentage of the current con-

sensus index that satisfies the consensus threshold. The higher the group consensus index,

the greater the value of ARoCIt. DMs often set the threshold ARoCI 2 GCI0
�
GCI; 1

� 
for

ARoCIt.

The essential difference between hard adjustment and soft adjustment is whether a matrix

element that satisfies the consensus threshold should be adjusted when the consensus index

at the matrix level does not meet the consensus threshold. We define the following rule.

Definition 16 Let IX Gt
_k

� �
be the number of matrix elements that contribute less to the

consensus. When the conditions ARoCIt �ARoCI and IX Gt
_k

� �.
m� n� IX are met, the

soft adjustment strategy is adopted; otherwise, the hard adjustment strategy is used.

IX 0� IX� 1
� �

is the threshold of IX Gt
_k

� �.
m� n.

If ARoCIt �ARoCI and IX Gt
_k

� �.
m� n� IX, this indicates that the group consensus

index is high enough, and the number of elements in the identified opinion that need to be

adjusted drops significantly. In this case, the soft adjustment strategy is used. Clearly, when

we set ARoCI ¼ 1 or IX ¼ 0, the hard adjustment strategy will be used throughout the

CRP. By combining the hard adjustment and soft adjustment, the hierarchical punishment-

driven consensus model (HPDCM) is obtained. Algorithm 2 presents the implementation

process for the model.
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5 Case Study

In this section, we apply the HPDCM to a PL-LGDM problem concerning global supplier

selection.

5.1 Problem Description

ABC, an electronics manufacturer located in Quanzhou, China, is reassessing the

suppliers it currently works with. Considering the rising cost of domestic labor and the

policy advantages of the Belt and Road cooperation initiative, the company has decided

to select a material supplier located along this route and add it to the supplier list. Five

alternatives X ¼ x1; x2; x3; x4; x5f g have been preselected for further evaluation, and

their geographical locations are Alma-Ata, Ho Chi Minh City, Manila, Calcutta and

Minsk, as shown in Fig. 4. A special committee of 20 relevant department heads and

experts is formed to evaluate the alternative suppliers. Drawing from the research

(Awasthi et al. 2018; Reefke and Sundaram 2018; Viswanadham and Samvedi 2013;

Yücenur et al. 2011) and business practices, three comprehensive criteria are used:

commercial factors (c1), such as quality, price, quantity and delivery time; sustainability

dimensions (c2), including economic, environmental, and social bottom lines; and

global risks (c3), such as currency fluctuations, political instability, terrorism, and

cultural incompatibility. The weight vector of the criteria is set as x ¼ 0:4; 0:3; 0:3ð ÞT .
The DMs provide their evaluations by means of PLTSs, in which the linguistic eval-

uation scale

S ¼ s�3 ¼ Extremely poor; s�2 ¼ Poor; s�1 ¼ Somewhat poor; s0 ¼ Neutral;
s1 ¼ Somewhat good; s2 ¼ Good; s3 ¼ Extremely good

� �

is used. The original individual opinions are given in Online Resource.

Fig. 4 Geographical distribution of preselected suppliers along the Belt and Road. Note: The original source
of this map is http://www.sohu.com/a/111613685_472018
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5.2 Decision Process

Here, the HPDCM is used to manage the processes of consensus and selection. The

following steps are involved. To save space, only the main results are listed. A detailed

textual description of the decision process is given in Online Resource.

Input: The initial individual opinions V0
l l ¼ 1; 2; . . .; 20ð Þ, the weight vector of the

criteria x, the consensus threshold GCI ¼ 0:88, and other parameters

ARoCI ¼ 0:95, IX ¼ 1, and r ¼ 1=3
Output: The final ranking of the alternatives

Process 1 Preprocessing of the decision information.

Normalize the individual opinions. Here, we just give the normalized opinion of cluster

c1:

R0
1 ¼

s�3 0ð Þ; s�2 0ð Þ; s�1 0ð Þ; s0 0:5ð Þ;
s1 0ð Þ; s2 0:4ð Þ; s3 0:1ð Þ

� �
s�3 0ð Þ; s�2 1ð Þ; s�1 0ð Þ; s0 0ð Þ;
s1 0ð Þ; s2 0ð Þ; s3 0ð Þ

� �
s�3 0ð Þ; s�2 0ð Þ; s�1 0:1ð Þ; s0 0ð Þ;
s1 0ð Þ; s2 0:9ð Þ; s3 0ð Þ

� �

s�3 0ð Þ; s�2 0ð Þ; s�1 0:5ð Þ; s0 0ð Þ;
s1 0ð Þ; s2 0:5ð Þ; s3 0ð Þ

� �
s�3 0ð Þ; s�2 0ð Þ; s�1 0ð Þ; s0 0:4ð Þ;
s1 0:6ð Þ; s2 0ð Þ; s3 0ð Þ

� �
s�3 0ð Þ; s�2 0ð Þ; s�1 0:5ð Þ; s0 0ð Þ;
s1 0:5ð Þ; s2 0ð Þ; s3 0ð Þ

� �

s�3 0ð Þ; s�2 0ð Þ; s�1 0:3ð Þ; s0 0ð Þ;
s1 0:7ð Þ; s2 0ð Þ; s3 0ð Þ

� �
s�3 0ð Þ; s�2 0:2ð Þ; s�1 0:3ð Þ; s0 0ð Þ;
s1 0:5ð Þ; s2 0ð Þ; s3 0ð Þ

� �
s�3 0ð Þ; s�2 0ð Þ; s�1 0:7ð Þ; s0 0ð Þ;
s1 0:3ð Þ; s2 0ð Þ; s3 0ð Þ

� �

s�3 0ð Þ; s�2 0ð Þ; s�1 0:2ð Þ; s0 0:8ð Þ;
s1 0ð Þ; s2 0ð Þ; s3 0ð Þ

� �
s�3 0ð Þ; s�2 0ð Þ; s�1 0ð Þ; s0 0ð Þ;
s1 1ð Þ; s2 0ð Þ; s3 0ð Þ

� �
s�3 0ð Þ; s�2 0ð Þ; s�1 0:6ð Þ; s0 0ð Þ;
s1 0:4ð Þ; s2 0ð Þ; s3 0ð Þ

� �

s�3 0ð Þ; s�2 0ð Þ; s�1 0:5ð Þ; s0 0ð Þ;
s1 0:5ð Þ; s2 0ð Þ; s3 0ð Þ

� �
s�3 0ð Þ; s�2 0:2ð Þ; s�1 0ð Þ; s0 0:8ð Þ;
s1 0ð Þ; s2 0ð Þ; s3 0ð Þ

� �
s�3 0ð Þ; s�2 0ð Þ; s�1 0ð Þ; s0 0ð Þ;
s1 0ð Þ; s2 1ð Þ; s3 0ð Þ

� �

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

Process 2 Clustering process.

Use Algorithm 1 to divide the large group into six clusters by setting the minimum

distance to 0.23, as shown in Fig. 5. As previously discussed, we set b ¼ 1,

a ¼ round q � 0:1ð Þ ¼ 2, and b ¼ round q=mð Þ ¼ 4. Table 3 presents the clustering results.

Process 3 Consensus reaching process.

Use the HPDCM to manage opinion differences. Table 4 shows the consensus itera-

tions.

In conclusion, after three consensus iterations (including one hard adjustment and two

soft adjustments), the group consensus index satisfies the consensus threshold. Let t	 ¼ 3,

and the final opinions of the clusters can be obtained as G3
k k ¼ 1; 2; . . .; 6ð Þ.

Process 4 Selection process.

Step 4.1 Aggregate all the clusters’ opinions to obtain the group opinion via Eq. (3):

Rc ¼

s�3 0:1715ð Þ; s�2 0:148ð Þ; s�1 0:2116ð Þ; s0 0:0937ð Þ;
s1 0:168ð Þ; s2 0:1334ð Þ; s3 0:0739ð Þ

� �
s�3 0:0461ð Þ; s�2 0:2101ð Þ; s�1 0:2349ð Þ; s0 0:1238ð Þ;
s1 0:2604ð Þ; s2 0:0547ð Þ; s3 0:0701ð Þ

� �
s�3 0:086ð Þ; s�2 0:2399ð Þ; s�1 0:1439ð Þ; s0 0:269ð Þ;
s1 0:1584ð Þ; s2 0:1028ð Þ; s3 0ð Þ

� �

s�3 0:0406ð Þ; s�2 0:0515ð Þ; s�1 0:1458ð Þ; s0 0:2173ð Þ;
s1 0:1082ð Þ; s2 0:2195ð Þ; s3 0:2172ð Þ

� �
s�3 0ð Þ; s�2 0:0504ð Þ; s�1 0:1659ð Þ; s0 0:2464ð Þ;
s1 0:2903ð Þ; s2 0:2094ð Þ; s3 0:0375ð Þ

� �
s�3 0:0226ð Þ; s�2 0:1518ð Þ; s�1 0:1864ð Þ; s0 0:307ð Þ;
s1 0:1746ð Þ; s2 0:0961ð Þ; s3 0:0615ð Þ

� �

s�3 0:045ð Þ; s�2 0:0311ð Þ; s�1 0:3031ð Þ; s0 0:1539ð Þ;
s1 0:2198ð Þ; s2 0:0711ð Þ; s3 0:1761ð Þ

� �
s�3 0:0926ð Þ; s�2 0:0839ð Þ; s�1 0:187ð Þ; s0 0:3122ð Þ;
s1 0:1895ð Þ; s2 0:1129ð Þ; s3 0:0219ð Þ

� �
s�3 0:0057ð Þ; s�2 0:062ð Þ; s�1 0:2705ð Þ; s0 0:2153ð Þ;
s1 0:2141ð Þ; s2 0:1555ð Þ; s3 0:0768ð Þ

� �

s�3 0:0216ð Þ; s�2 0:1011ð Þ; s�1 0:157ð Þ; s0 0:2611ð Þ;
s1 0:0519ð Þ; s2 0:4072ð Þ; s3 0ð Þ

� �
s�3 0:196ð Þ; s�2 0:0667ð Þ; s�1 0:3346ð Þ; s0 0:0992ð Þ;
s1 0:1843ð Þ; s2 0:0692ð Þ; s3 0:0501ð Þ

� �
s�3 0:0242ð Þ; s�2 0:1133ð Þ; s�1 0:1819ð Þ; s0 0:2911ð Þ;
s1 0:178ð Þ; s2 0:1897ð Þ; s3 0:022ð Þ

� �

s�3 0:0856ð Þ; s�2 0:1248ð Þ; s�1 0:1129ð Þ; s0 0:1323ð Þ;
s1 0:2006ð Þ; s2 0:2018ð Þ; s3 0:142ð Þ

� �
s�3 0:1194ð Þ; s�2 0:1515ð Þ; s�1 0:1622ð Þ; s0 0:1663ð Þ;
s1 0:1912ð Þ; s2 0:1152ð Þ; s3 0:0943ð Þ

� �
s�3 0ð Þ; s�2 0:1183ð Þ; s�1 0:1965ð Þ; s0 0:2072ð Þ;
s1 0:1236ð Þ; s2 0:2806ð Þ; s3 0:0738ð Þ

� �

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
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Fig. 5 Visual clustering processes using Algorithm 1

Table 3 Clustering results by using Algorithm 1

ck nk el h0k ck nk el h0k

c1 4 e2, e17, e7, e19 0.1967 c2 5 e1, e5, e8, e10, e20 0.197

c3 4 e3, e6, e14, e15 0.1933 c4 4 e4, e9, e11, e13 0.1936

c5 2 e12, e16 0.1097 c6 1 e18 0.1097

Table 4 Consensus iterations using the HPDCM

t GCI
before
CRP

Identified
opinion

Hard/soft
adjustment

Given adjustment
coefficient (matrix)

Punishment coefficient
(matrix)

GCI
after
CRP

1 0.8305 G0
6

Hard 0.5 0.47 0.8576

2 0.8576 G1
5

Soft 0:2 0:2 0:1
0:2 0 0:2
0:1 0:3 0:1
0:2 0:1 0:1
0:1 0:3 0:2

0
BBBB@

1
CCCCA

0:3282 0:2036 0

0:466 0 0:5939
0:1966 0 0:1609
0:3662 0:4083 0

0:1684 0:7025 0:3788

0
BBBB@

1
CCCCA

0.8741

3 0.8741 G2
4

Soft 0:2 0:5 0

0:2 0:2 0

0:2 0:2 0:2
0 0 0:1
0:2 0:2 0:4

0
BBBB@

1
CCCCA

0:2027 0:5443 0

0:3314 0 0

0:3739 0:0929 0:2729
0 0 0:4173
0:2449 0:222 0:37

0
BBBB@

1
CCCCA

0.8829
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Step 4.2 Calculate the overall criterion values Z xið Þ i ¼ 1; 2; . . .;mð Þ based on Eq. (3),

as follows:

Z x1ð Þ ¼ s�3 0:1051ð Þ; s�2 0:182ð Þ; s�1 0:1858ð Þ; s0 0:148ð Þ; s1 0:181ð Þ; s2 0:0976ð Þ; s3 0:0499ð Þf g;
Z x2ð Þ ¼ s�3 0:0229ð Þ; s�2 0:0793ð Þ; s�1 0:1552ð Þ; s0 0:2322ð Þ; s1 0:1726ð Þ; s2 0:1697ð Þ; s3 0:1138ð Þf g;
Z x3ð Þ ¼ s�3 0:0469ð Þ; s�2 0:0552ð Þ; s�1 0:2376ð Þ; s0 0:2046ð Þ; s1 0:1949ð Þ; s2 0:1052ð Þ; s3 0:0978ð Þf g;
Z x4ð Þ ¼ s�3 0:0737ð Þ; s�2 0:0916ð Þ; s�1 0:2031ð Þ; s0 0:2068ð Þ; s1 0:1244ð Þ; s2 0:2267ð Þ; s3 0:0215ð Þf g;
Z x5ð Þ ¼ s�3 0:688ð Þ; s�2 0:1253ð Þ; s�1 0:1452ð Þ; s0 0:1561ð Þ; s1 0:1651ð Þ; s2 0:1871ð Þ; s3 0:1037ð Þf g

Step 4.3 Based on the score function of PLTSs proposed by Pang et al. (2016), we can

calculate the scores of the overall criterion values:

E Z x1ð Þð Þ ¼ s�0:3392, E Z x2ð Þð Þ ¼ s0:4709, E Z x3ð Þð Þ ¼ s0:21, E Z x4ð Þð Þ ¼ s0:035,
E Z x5ð Þð Þ ¼ s0:2482
Therefore, the ranking is x2 
 x5 
 x3 
 x4 
 x1, and the best solution is x2.
That is, the DMs are more likely to include the supplier in Ho Chi Minh City

on the supplier list.

6 Comparative Analysis and Discussion

We discuss some additional important issues about the HPDCM in Sect. 6.1, including a

comparison of hard adjustment and soft adjustment and the determination of relevant

parameters. Our proposal is compared with other linguistic models in Sect. 6.2. Section 6.3

presents the managerial implications involved in the practical application of the proposed

model. Note that the data used in the comparative analysis and discussion originate from

the case study in Sect. 5.

6.1 Further Discussion of the Hierarchical Punishment-Driven Consensus Model

This section analyzes two important issues regarding the HPDCM: the comparison

between hard adjustment and soft adjustment and the calculation of the threshold for the

attainment rate of the consensus index.

6.1.1 Hard Adjustment and Soft Adjustment

To eliminate DMs’ subjective attitudes towards adjustment, we adopt the punishment

coefficient in implementing the CRP. Figure 6 shows the consensus results obtained by

hard adjustment and soft adjustment. First, regardless of which type of adjustment strategy

is utilized, the group consensus index continues to rise as the number of consensus iter-

ations increases. This indicates that the two adjustment strategies are effective in pro-

moting consensus improvement. However, different adjustment strategies lead to different

degrees of opinion distortion. For example, as shown in Fig. 6, the distortion degree is

0.5464 when using hard adjustment after the first iteration, while the soft adjustment results
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in only a 0.4813 distortion degree. This is because adopting a hard adjustment strategy

causes some matrix elements that should not have been adjusted to be adjusted.

Although, as noted above, soft adjustment performs better than hard adjustment in terms

of opinion distortion, this does not mean that soft adjustment can completely replace hard

adjustment. Hard adjustment requires only one adjustment coefficient, which is easy to

obtain, especially when no punishment coefficient is used as a reference. The hard

adjustment may lead to undue distortion, because even if a certain matrix element already

satisfies the consensus threshold, it will still be adjusted. Soft adjustment refines the

adjustment range to the matrix element level, which helps reduce unnecessary distortion.

However, for the DMs, too much time is spent providing adjustment coefficients according

to the different consensus indexes of matrix elements. We conclude that hard adjustment is

better suited to situations where (1) the decision process has just begun, (2) the identified

matrix is low-dimensional, or (3) the decision is time-critical. When the group consensus

index has increased significantly and most elements in the identified opinion have already

met the consensus threshold, soft adjustment takes precedence.

6.1.2 Determination of the Relevant Parameters

In this section, we discuss how to assign the following two parameters: the threshold of the

attainment rate of the consensus index ARoCI and the power of the punishment coefficient

r.
The attainment rate of the consensus index plays a decisive role in whether to adopt

hard adjustment or soft adjustment. A high threshold can delay the use of soft adjustment

strategy, which may increase opinion distortion. A low threshold will lead to premature use

of soft adjustment strategy; this may make it difficult for the cluster to provide the

adjustment coefficient at the matrix element level because there may be multiple elements

in the identified opinion that need to be adjusted. We suggest that determining the

threshold should follow two principles:

Fig. 6 Consensus results obtained by hard adjustment and soft adjustment. Note: GCI and DD represent the
group consensus index and the distortion degree, respectively
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1 Computer software is used to simulate the CRP so as to provide reference for practical

operation.

2 There are two factors to consider: the number of consensus iterations and the degree of

opinion distortion.

Assume that the following requirements are met: the maximum number of iterations is 5

and the opinion distortion is no more than 0.5 in each iteration. We implement punishment-

driven consensus iterations using MATLAB software. Figure 7 shows the simulation

results of the number of iterations and the distortion degree when r increases from 0 to 0.5.

When a ¼ 0:5, the number of iterations reaches 8 by using the hard adjustment strategy (or

6 by using the soft adjustment strategy). According to the function characteristic of pun-

ishment coefficient, the setting a[ 0:5 will lead to a greater number of iterations.

Therefore, Fig. 7 only depicts the simulation results under the condition of r 2 0; 0:5½ �. We

find that as r increases, the number of iterations and the total distortion degree increase, but

from the overall trend, the average distortion degree decreases. The average distortion

degree is defined as the total distortion degree divided by the number of iterations.

Determining the parameter r includes the following steps.

Step 1 Observe the simulation of the number of iterations and determine the membership

interval of r

If adopting the hard adjustment strategy, then we can set r 2 0; 0:4½ �; If adopting the

soft adjustment strategy, then we can set r 2 0; 0:5½ Þ. By taking the intersection of the

above two intervals, the membership interval is temporarily determined as r 2 0; 0:4½ �.

Step 2 Modify the temporary interval based on the simulation of opinion distortion

From Fig. 7, the average distortion will always be greater than 0.5 if the hard adjust-

ment strategy is adopted, while the opposite result will be obtained if the soft adjustment

strategy is adopted. Therefore, r should be assigned a larger value so that the average

Fig. 7 Consensus results when r increases from 0 to 0.5. Note: TDD represents the total distortion degree,
which is calculated by

P
t DD

t
k . ADD is the average distortion degree, which is calculated by 1=t

P
t DD

t
k
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distortion is as small as possible. Based on the obtained membership interval, we can set

r ¼ 0:4. In this case, the soft adjustment strategy must be adopted at least once.

Without loss of generality, we assume that the hard adjustment strategy is allowed to be

used once. In fact, this case can only happen at the beginning of the CRP. Figure 8 shows

the changes of some parameters in the CRP when setting r ¼ 0:4. From Fig. 8, the fol-

lowing results can be obtained ARoCI0 ¼ 0:9437, ARoCI1 ¼ 0:9698, and

IX G1
_k

� �.
m 	 n ¼ 0:7333. To ensure that the hard adjustment strategy is adopted in the

first iteration, we set ARoCI[ARoCI0. In the second iteration the soft adjustment strategy

can be adopted when setting ARoCI�ARoCI1 ¼ 0:9698 and IX� 0:7333. In conclusion,

we have that ARoCI 2 0:9437; 0:9698ð � and IX� 0:7333. Specifically, the parameters can

be set as ARoCI ¼ 0:95 and IX ¼ 1.

6.2 Comparison to Other Linguistic Models

This section presents a comparison of our proposal with Pang et al.’s (2016) research and

HFLTSs in the decision-making process.

An HFLTS represents hesitation among multiple linguistic terms but cannot reflect the

importance of these linguistic terms. In the kind of case we are considering, if the decision

information is expressed by HFLTSs, this can be interpreted as indicating that all possible

linguistic terms in an HFLTS have the same importance degree. Accordingly, an HFLTS

can be written in the form of a PLTS, in which all the linguistic terms have the same

possibility. For instance, if the opinion v01;13 ¼ s�1 0:1ð Þ; s2 0:9ð Þf g is represented using an

HFLTS, it is changed to s�1 0:5ð Þ; s2 0:5ð Þf g.
On the other hand, since the concept of PLTSs was proposed by Pang et al. (2016),

research on aggregation and distance measurement for PLTSs has attracted much attention.

In this section, we compare our proposal with Pang et al.’s (2016) model in terms of the

Fig. 8 Changes in some parameters in the CRP. Note: Set r ¼ 0:4. IX represents the proportion of adjusted
matrix elements in the identified opinion. ARoCI is the attainment rate of the consensus index
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effect that processing PLTSs has on the decision results. In general, there are two models

for addressing PLTSs: (1) Probability values are incorporated into the linguistic terms in

the process of information aggregation (see Pang et al. (2016)). In this model, the

Fig. 9 Visualization of the clustering process when taking different approaches to decision information
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probabilities of linguistic terms are not reflected in the result, and the original discrete

linguistic terms are transformed into virtual ones. (2) Similar to our proposal, before

entering the selection process, the information aggregation only involves operations on

probability values corresponding to the same linguistic terms and does not merge proba-

bility values and linguistic terms.

To ensure comparability, we set the same number of clusters, i.e., K ¼ 6. From the

visual clustering processes shown in Figs. 5 and 9, the most significant differences are the

order in which new clusters are formed and the distances between DMs. Table 5 depicts

the results of the first three clusters formed by using different linguistic models. Our

proposal differs from the other two models in forming the second and third clusters. This is

due to the distance measure. As d R0
5;R

0
8

� �
[ d R0

4;R
0
9

� �
in our proposal, the second cluster

is composed of e4; e9; however, in the other two models, since d R0
5;R

0
8

� �
\d R0

4;R
0
9

� �
, DMs

e5; e8 form the second cluster. It is important to note that if HFLTSs are used, the distance

between R0
2 and R2

17 is 0, which is different from the result obtained by using our proposal

or Pang et al.’s (2016) model. This is due to the fact that HFLTSs do not reflect the weights

of the linguistic terms.

Owing to different clustering results, the quantitative comparison of the CRP seems

unfair. Nonetheless, we consider that it is difficult for DMs to understand the meaning of

Table 5 Clustering results of the first three clusters formed by using different linguistic models

Linguistic model First three clusters formed Distances between the DMs in each cluster

Pang et al. (2016) e2; e17f g, e5; e8f g, e4; e9f g 0.0229, 0.0341, 0.0421

The HFLTSs e2; e17f g, e5; e8f g, e4; e9f g 0, 0.0191, 0.0222

Our proposal e2; e17f g, e4; e9f g, e5; e8f g 0.0132, 0.0191, 0.027

Fig. 10 Initial rankings of the alternatives obtained by using different linguistic models
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virtual linguistic terms, as opposed to the discrete linguistic terms with corresponding

probabilities. Additionally, the alternative rankings prior to the CRP are depicted in

Fig. 10. All three linguistic models yield the same optimal solution (i.e., x2) and the same

ranking (i.e., x2 
 x5 
 x3 
 x4 
 x1). However, there are large differences in the scores of
the alternatives, although this does not affect the selection of the best alternative.

Above all, our proposal overcomes the shortcomings of the other two models in pro-

cessing linguistic information. Unlike HFLTSs, which represent hesitations regarding

multiple linguistic terms, our proposal based on PLTSs considers the importance of the

linguistic terms, which is more in line with actual circumstances. On the other hand, using

Pang et al.’s (2016) model to handle PLTSs leads to the probabilities of linguistic terms not

being reflected in the result. In this way, the unique feature of PLTSs compared with

ordinary linguistic term sets is lost. Furthermore, according to the statement ‘‘the ordinal

discrete linguistic terms are used to evaluate alternatives, while the virtual linguistic terms

can only appear in the operation and ranking’’ (Xu 2009), virtual linguistic terms should be

avoided in the CRP. Therefore, our proposal insists on preserving the original discrete

linguistic term structure of PLTSs in the processes of clustering, aggregating and con-

sensus reaching, and only after beginning the selection process are virtual linguistic terms

introduced to calculate the scores of PLTSs.

6.3 Managerial Implications

The proposed HPDCM can be applied to the practical case of supplier selection in the

manufacturing and service industries, and the following important issues are raised:

1 Supplier selection is a strategic and complex decision with risks that is closely related

to the survival and sustainable development of enterprises. It is therefore necessary to

measure the group consensus index and make any useful adjustments to ensure that the

result is accepted by the majority. This arrangement can reduce the risks and losses of

decision-making errors, but more importantly, only when a result is approved by the

majority can it obtain the maximum practical support from the majority of

departments.

2 The increase in the consensus index is due to some DMs adjusting their own views,

whether voluntarily or involuntarily. In this way, the adjusted opinion may be

somewhat distorted from the original opinion. Therefore, it is important to measure the

degree of opinion distortion and use it as an indicator to evaluate the performance of

the CRP. In business practice, some DMs insist on their opinions and are unwilling to

compromise for the sake of consensus. Even if the adjustments are forced by the

punishment-driven consensus model, the reasonableness of the adjusted opinion needs

to be examined. The distortion degree is an important index to test rationality. If the

distortion of a DM’s opinion is high in an iteration (close to 1), the DM’s original

opinion is likely to deviate significantly from the majority opinion.

7 Conclusions

In this paper, a hierarchical punishment-driven consensus model for probabilistic linguistic

large-group decision-making was developed, and an application of the model to global

supplier selection was presented. The obtained results show that the new model can
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overcome the scalability challenge and soften the human supervision of the CRP. The

major contributions of this study are as follows:

1 The PL-LGDM was defined, and its characteristics were detailed. To improve the

performance of PLTSs in the CRP, the rules governing their normalization and

operations were redefined.

2 A hierarchical punishment-driven consensus model for PL-LGDM was developed,

including hard adjustment and soft adjustment, which aimed to reduce the distortion of

opinions with the goal of achieving a consensus within a specified number of

iterations. Before the CRP begins, the large group was classified into several subgroups

by hierarchical clustering, and the opinions of clusters were generated. This operation

can overcome the scalability challenge when the number of DMs involved is

sufficiently large. When the necessary parameters are set, the model can automatically

provide guidance for the adjustment of opinions, thereby reducing the human

supervision cost of the CRP.

3 The model was applied to a case study of global supplier selection, and the application

implications were discussed.

It is worth noting that there are always social relationships between DMs (Ding et al.

2019; Wu et al. 2018). The influence of social relationships on the CRP should be con-

sidered. As further research, we will study the theoretical framework of consensus building

in LGDM problems in the context of social networks.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant
Number 71901151); the Major Project for National Natural Science Foundation of China (Grant Numbers
71991461, 91846301); the Natural Science Foundation of SZU (Grant Number 2019025); and the Special
Fund Project of Scientific and Technological Innovation Cultivation for Guangdong University Students in
2019 (Grant Number pdjh2019b0025).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Awasthi A, Govindan K, Gold S (2018) Multi-tier sustainable global supplier selection using a fuzzy AHP-
VIKOR based approach. Int J Prod Econ 195:106–117

Bai CZ, Zhang R, Shen S, Huang CF, Fan X (2018) Interval-valued probabilistic linguistic term sets in
multi-criteria group decision making. Int J Intell Syst 33(6):1301–1321

Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci
10(2–3):191–203

Cabrerizo FJ, Morente-Molinera JA, Pedrycz W, Taghavi A, Herrera-Viedma E (2018) Granulating lin-
guistic information in decision making under consensus and consistency. Expert Syst Appl 99:83–92

Ding RX, Wang XQ, Shang K, Herrera F (2019) Social network analysis-based conflict relationship
investigation and conflict degree-based consensus reaching process for large scale decision making
using sparse representation. Inf Fusion 50:251–272

Dong Y, Zhuang Y, Chen K, Tai X (2006) A hierarchical clustering algorithm based on fuzzy graph
connectedness. Fuzzy Sets Syst 157(13):1760–1774

123

1370 S. Yu et al.



Du ZJ, Yu SM, Xu XH (2020) Managing noncooperative behaviors in large-scale group decision-making:
integration of independent and supervised consensus-reaching models. Inf Sci. https://doi.org/10.1016/
j.ins.2020.03.100

Gou X, Xu Z, Herrera F (2018) Consensus reaching process for large-scale group decision making with
double hierarchy hesitant fuzzy linguistic preference relations. Knowl Based Syst 157:20–33

Herrera F, Herrera-Viedma E, Verdegay JL (1996) A linguistic decision process in group decision making.
Group Decis Negot 5(2):165–176

Herrera F, Alonso S, Chiclana F, Herrera-Viedma E (2009) Computing with words in decision making:
foundations, trends and prospects. Fuzzy Optim Decis Mak 8(4):337–364

Johnson S (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254
Kacprzyk J, Fedrizzi M (1988) A ‘soft’measure of consensus in the setting of partial (fuzzy) preferences.

Eur J Oper Res 34(3):316–325
Kim B, Park KS, Jung SY, Park SH (2018) Offshoring and outsourcing in a global supply chain: impact of

the arm’s length regulation on transfer pricing. Eur J Oper Res 266(1):88–98
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