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Abstract
Traditional approaches to group decision making (GDM) problems for ranking a 
finite set of alternatives terminate when the experts involved in the GDM process 
reach a consensus. This paper proposes ways for analyzing the final results after 
a consensus has been reached in GDM. Results derived from this last step can be 
used to further enhance the understanding of possible hidden dynamics of the prob-
lem under consideration. The proposed approach for post-consensus analysis is in 
part based on a novel idea, known as preference maps (PMs) introduced recently 
in the literature on how rankings should be described when ties in the rankings 
are allowed. An original contribution of this paper is how to define the difference 
between two PMs. This is achieved by using a metric known as the Marczewski–
Steinhaus distance. Approaches for analyzing the final results of a GDM process 
after consensus has been reached may reveal hidden but crucial insights in the way 
the experts reached the consensus and also new insights related to the alternatives. 
These approaches rely on the concept of differences in the rankings, defined by tra-
ditional means or as the difference between two PMs as defined in this paper. This is 
the second group of original contributions made in this paper. The various issues are 
illustrated with numerical examples and an application inspired from a real-world 
problem described in the literature. The new contributions described in this study 
offer an exciting potential to enrich the group decision making process considerably.
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1 Introduction

Most research on group decision making (GDM) focuses on approaches that can 
guide a group of decision makers (also known as decision experts or just experts) 
to reach a consensus when ranking a finite set of alternatives (Tindale et al. 2003; 
Saaty and Peniwati 2008; Ureña et al. 2019; Pérez et al. 2014). However, no work 
has been done on what happens after a consensus has been reached. The argu-
ment can be made that by studying the decision makers’ individual rankings of 
the alternatives and the consensus reached, one might be able to discover some 
interesting issues related to key aspects of the group’s decision making process. 
In this way one may gain deeper insights of the alternatives and also on the deci-
sion makers themselves. More knowledge on the various dynamics of the particu-
lar decision problem under consideration may ultimately lead to a better under-
standing of the problem and thus of its final conclusions. Thus, doing research 
on this important subject may offer a new, and so far unutilized, opportunity to 
benefit the GDM process in ways not imagined before.

The structure of the decision problem considered in this paper is best described 
as follows. Available is a finite set of the alternatives which have been considered 
in a GDM process. This set of alternatives is denoted as {A1, A2, …, An} where n 
is a positive integer number. These alternatives have been evaluated and ranked 
by some experts denoted as E1, E2, …, Em, where m is a positive integer num-
ber. The experts have evaluated these alternatives by considering some evalua-
tive criteria and using a multi-criteria decision making (MCDM) process such 
as the ones described by Triantaphyllou (2000). Next a GDM approach [such as 
the ones described by Hou and Triantaphyllou (2019), Davis (2014), Dong et al. 
(2015), or Herrera et al. (1996)] was followed and a consensus has been reached 
on the way these alternatives should be ranked. Is this the end of the group deci-
sion making process or is there something more that could be done to gain more 
useful insights? This paper describes how more analysis can be performed at this 
stage to potentially derive some very useful and unexpected results.

This paper is organized as follows. Section  2 describes some relevant devel-
opments from the literature. These are various approaches for determining the 
difference between rankings. Special emphasis is given to a recently developed 
method which can be used when rankings involve ties. That is, when multiple 
ranks are assigned to the same alternative. This method is based on developments 
first introduced by Hou (2015a, b, 2016) and later refined in Hou and Triantaphyl-
lou (2019). They constitute what is referred to preference maps (PMs). Sections 3 
and 4 present two novel definitions and some theoretical results related to PMs. In 
particular, how to analyze the information described in a PM and how to express 
the difference of two PMs. This is achieved by defining the concepts of “expan-
sion of a PM” and then use it to define the “difference between two PMs.” These 
two definitions and the three relevant theorems in Sects. 3 and 4 are some of the 
original contributions of this paper. These concepts, along with the traditional 
ways for defining the difference between two rankings, can be used in Sect.  5 
to demonstrate how the final results of a GDM process can be analyzed after a 
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consensus has been reached. Some illustrative examples are used for this pur-
pose. The proposed approaches for analyzing the final results after a consensus 
has been reached is the second group of original contributions made in this study. 
An example, inspired from a real-life application described in the literature, is 
analyzed in Sect. 6 to further demonstrate the applicability of the new concepts 
and approaches. Finally, the paper ends with Sect. 7 which summarizes the main 
contributions and highlights some areas for possible future research.

2  Some Relevant Developments from the Literature

This section presents some relevant developments from the literature that describe 
how differences in rankings can be quantified. It considers two general settings. In 
the first setting each alternative is assigned to a unique rank. The second setting is 
more general. Now an alternative may be assigned to multiple ranks, which must 
be represented by consecutive positive integers. These two settings are elaborated 
in the following two subsections, respectively.

2.1  When Each Alternative is Assigned to a Unique Rank

This is the most common scenario. There are multiple ways of how one may 
define the difference between two such rankings. Ray and Triantaphyllou (1999) 
describe five different methods for determining the difference of two rankings 
(with no ties). For illustrative purposes, consider the two rankings R1 = (1, 2, 3) 
and R2 = (2, 3, 1). Then these five methods are as follows:

(1) Number of disagreements Difference between R1 and R2 = 3
(2) Weighted number of disagreements Difference between R1 and R2 = 7
(3) Sum-of-squares of differences in rank Difference between R1 and R2 = 6
(4) Normalized sum-of-squares of differences in rank Difference between R1 and R2 = 0.75
(5) Sum of the absolute values of differences in rank Difference between R1 and R2 = 4

For the second method mentioned above the three weights were assumed to 
be as follows: W1 = 3.0, W2 = 2.0, and W3 = 1.0. For the forth method one first 
computes the value as in the third method and then that value is divided by the 
largest possible value when one considers two ranking vectors of size 3 (as is the 
case in the previous example). That value is equal to 8, and hence the correspond-
ing result is equal to 0.75 (= 6/8). Another relevant study is the results reported 
in Ray and Triantaphyllou (1998) which describes the evaluation of rankings by 
considering the possible number of agreements and conflicts. One may easily 
define even more such methods and many more methods exist as this is an open 
problem and cannot be answered exhaustively.
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2.2  When an Alternative May be Assigned to Multiple Ranks

Now it is assumed that the experts’ preferences can be expressed as ties-permitted 
ordinal rankings. Such rankings can be expressed in terms of the so-called preference 
sequence vectors (or PSVs) (Hou 2015a, b, 2016). The term preference sequence vector 
was later changed by Hou and Triantaphyllou (2019) to be called the preference map 
(PM). The notion of the preference map is described next along with some key defini-
tions and related concepts from the literature.

Let us denote as [Si]n×1 a column vector of size n × 1 (i.e., with n entries), each entry 
of which is denoted as Si, for i = 1, 2, 3, …, n. This notation is used to formally define 
the concept of a preference sequence vector (PSV) as it was first introduced by Hou 
(2015a, b, 2016). Please note that in the following definitions the term PM is used 
instead of the initial PSV one.

Definition 1 (Hou 2015b) A vector 
[
Si
]
n×1

 is called a preference map (PM) of a ties-
permitted ordinal ranking on the alternative set X = {A1,A2,… ,An} with respect to 
a weak order relation ≼ such that

where Pi = {Aj|Aj ∈ X,Aj ≻ Ai} is the set containing the alternatives that predomi-
nate Ai , and Ti = {Ar | Ar ∈ X, Ai ~ Ar} is the set containing the alternatives that are 
indifferent to Ai , for i = 1, 2, 3, …, n.

We illustrate the PM idea by means of a simple example. Suppose that we have the 
following ties-permitted ordinal ranking: A1 ~ A2 ≻ A3. This ranking implies such prefer-
ences on the alternative set {A1, A2, A3}. In particular, it indicates that alternatives A1 
and A2 are in a tie and should occupy positions 1 and 2; meanwhile, alternative A3 is 
dominated by A1 and A2 hence it is ranked at position 3. We represent these preferences 
in the following PM:

whose entries indicate the alternatives’ possible ranking positions. These positions 
are deduced by using formula (1). For instance, according to the preferences con-
tained in the ranking, the predominating sets of A1 and A3 are:

respectively. Meanwhile, their indifference sets are:

respectively. Therefore, by formula (1) we obtain their corresponding entries in the 
PM as {1, 2} and {3} , which are, in fact, their possible ranking positions which cor-
respond to the ordinal ranking of A1 ~ A2 ≻ A3.

(1)Si = {|Pi| + 1, |Pi| + 2,… , |Pi| + |Ti|},

�
Si
�
3×1

=

⎡⎢⎢⎣

{1, 2}

{1, 2}

{3}

⎤⎥⎥⎦
,

P1 = � and P3 = {A1,A2},

T1 = {A1,A2} and T3 = {A3},
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Currently, the term ‘preference map’ is also used in a different context to 
graphically communicate, based on some statistical analysis, the relationships 
between product characteristics and the consumer preferences in some applica-
tion areas [see e.g. Gere et al. (2014) and Yenket et al. (2011)]. In comparison the 
term ‘preference map’ used in this paper, as defined by Definition 1, is a sequence 
whose entries are sets containing alternatives’ possible ranking positions. We use 
the term “preference map” to represent an ordered partition of an alternative set, 
and vice versa.

The introduction of the PM concept brings a much needed convenience and 
flexibility for describing ranking preferences that are constructed based on weak 
order relations. Moreover, a powerful mathematical definition of consensus can 
now be constructed too as it is shown in the following definition taken from the 
literature.

Definition 2 (Hou 2015b) Let 
[
S
(1)

i

]
n×1

 , 
[
S
(2)

i

]
n×1

 , …, 
[
S
(m)

i

]
n×1

 be PMs. These PMs 

are said to be in consensus if and only if ∀i
�⋂m

k=1
S
(k)

i
≠ �

�
 , or equivalently, 

∀i, j, k
(
S
(j)

i
∩ S

(k)

i
≠ �

)
 . Moreover, the consensus PM is defined by �

S
(c)

i

�
n×1

=
�⋂m

k=1
S
(k)

i

�
n×1

.

The above mathematical definition of consensus based on PMs, is intuitively 
appealing because it reflects two fundamental observations in GDM (Hou and 
Triantaphyllou 2019): (1) Two experts’ preferences may not be identical but they 
may still exhibit a type of consensus; and (2) Consensus may not be transitive 
among experts. For example, as it has been demonstrated in Hou (2015a, b) and 
Hou and Triantaphyllou (2019), suppose that there are three persons, say Rudy, 
Scott and Tracy, and two drinking alternatives, say coffee and tea. We assume that 
these persons’ preferences are as follows: Rudy prefers coffee to tea, Scott pre-
fers both coffee and tea, while Tracy prefers tea to coffee. Evidently, Rudy’s and 
Scott’s preferences exhibit a type of consensus. Meanwhile, Scott’s and Tracy’s 
preferences also exhibit some consensus, while Rudy’s and Tracy’s preferences 
do not exhibit any consensus. This simple example describes some key observa-
tions on consensus in GDM defined as in Definition 2.

Consider the following three PMs assumed to be the judgments of three 
experts when they have reached a consensus (as defined in Definition 2) in a 
GDM process:

These three PMs imply that the consensus PM of the three experts is the PM 
termed as V4 depicted below:

V1 =

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3, 4}

{5}

{3, 4}

⎤
⎥⎥⎥⎥⎦
, V2 =

⎡
⎢⎢⎢⎢⎣

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

⎤
⎥⎥⎥⎥⎦
, V3 =

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3}

{4, 5}

{4, 5}

⎤
⎥⎥⎥⎥⎦
.



276 E. Triantaphyllou et al.

1 3

The above PM termed as V4 can be derived as the intersection of the previous 
three PMs which express the judgments of the three experts. For instance, the third 
entry of V4 is the element {3} which is derived as follows:

A similar interpretation holds for the rest of the entries of V4.
The problem examined in this paper is described next. Given are the individual 

final ranking decisions produced by a group of experts after they have reached a 
consensus (defined as in Definition 2 or otherwise). The individual ranking deci-
sions and the consensus are described by PMs. They can be rankings where ties are 
permitted (in which case the concept of PM as described above needs to be used) 
or they can be of the traditional type with no ties. Furthermore, the consensus PM 
may or may not be the result of performing the intersection operation on the PMs 
that described the experts’ final ranking decisions. Given the above PMs the main 
question examined in this paper is described as follows: What more can be inferred 
about the experts involved and the alternatives at the end of the formal GDM pro-
cess that could potentially lead to a better understanding of the GDM process and 
the derived consensus? Before this question is addressed, the concept of PM is ana-
lyzed to facilitate a better understanding of how the difference between two PMs can 
be quantified.

3  Analyzing a Preference Map (PM)

Sections 3 and 4 introduce a number of original concepts related to group decision 
making and especially when conducting a post-consensus analysis by using PMs. To 
help fix ideas, consider the previous PM termed as V1 (i.e., the final ranking as pro-
posed by expert E1) which is repeated here for convenience:

The above PM implies that the following nine rankings (also PMs) are in consen-
sus with V1 (this includes V1 itself). These nine PMs are derived by expanding the 
entries of V1 and then considering all possible combinations. As V1 has two entries 
equal to {1, 2} and {3, 4} (each appearing twice in V1), it follows that this expansion 
has the nine members which are exhaustively enumerated next.

V4 =

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3}

{5}

{4}

⎤
⎥⎥⎥⎥⎦
.

{3, 4} ∩ {1, 2, 3} ∩ {3} = {3}.

V1 =

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3, 4}

{5}

{3, 4}

⎤
⎥⎥⎥⎥⎦
.
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We will call this set of nine members (i.e., the PMs following the arrow after 
V1) the expansion of PM V1. Obviously, the expansion of the PM termed as V4 in 
Sect. 2.2, is the intersection of the expansions of the PMs termed as V1, V2, and V3 in 
Sect. 2.2. Formally, we define the notion of PM expansion as follows:

Definition 3 Let vector V be a PM. Then its expansion, denoted as EXPANSION 
(V), is the following set of all PM vectors Vi, where Vi denotes a ranking which is not 
in conflict with the rankings implied by V. That is, the following is true:

The set of PMs defined as the expansion of a PM V has some interesting proper-
ties. Suppose that the vector V can be defined as the intersection of m PMs denoted 
as Vj, for j = 1, 2, 3, …, m. Then the following theorem follows directly from the 
previous definition:

Theorem  1 Let V =
⋂j=m

j=1
Vj . Then the following relation is true: EXPANSION 

(V) = 
⋂j=m

j=1
 EXPANSION (Vj).

Let V be a PM. Next define as UNIQUE (V) the ordered list of all the unique 
members of V. For instance, UNIQUE (V1) = (U1, U2, U3) = ({1, 2}, {3, 4}, {5}). 
That is, U1 = {1, 2}, U2 = {3, 4}, and U3 = {5}. This definition can be used next to 
compute the size (cardinality) of the EXPANSION (V) set of the PM termed as V. 
The following theorem is based on a result reported in Maassen and Bezembinder 
(2002). According to that result if we have a finite set of m alternatives, then the 
total number of weak orders on m alternatives is as follows:

where S(m, k) , a Stirling number of the second kind, indicates the number of parti-
tions of a set of m elements into k nonempty subsets. When this result is used in 
conjunction with the previous definition of the UNIQUE (V) ordered list, then the 
following theorem follows:

V1 =

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3, 4}

{5}

{3, 4}

⎤
⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎣

{1}

{2}

{3}

{5}

{4}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{2}

{1}

{3}

{5}

{4}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{1}

{2}

{4}

{5}

{3}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{2}

{1}

{4}

{5}

{3}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3}

{5}

{4}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{4}

{5}

{3}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{1}

{2}

{3, 4}

{5}

{3, 4}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{2}

{1}

{3, 4}

{5}

{3, 4}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3, 4}

{5}

{3, 4}

⎤
⎥⎥⎥⎥⎦
.

EXPANSION (V) = {V
i
}, where V

i
is a PM and the ranking implied

by V
i
is not in conflict with the ranking implied by V .

Wm =

m∑
k=1

k!S(m, k) =

m∑
k=1

k∑
i=0

(−1)i
(
k

i

)
(k − i)m,
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Theorem 2 Let V be a PM and the members of the corresponding UNIQUE (V) set 
be U1, U2, U3, …, Ut. Then the size of the set EXPANSION (V) is equal to ∏t

j=1

�∑�Uj�
k=1

k!S
����Uj

���, k
��

 , where |Uj|, for j = 1, 2, 3, …, t, are the sizes of the mem-
bers of the set UNIQUE (V), and S(m, k) is a Stirling number of the second kind.

When this theorem is applied to the vector V1 it turns out that the set EXPANSION 
(V1) has nine members.

4  Assessing the Difference Between Two PMs

Suppose that given are two PMs. For instance, let us consider V1 and V3 as defined in 
Sect. 2.2. How can one best describe their difference? In other words, how similar or 
dissimilar are the two experts who submitted the rankings implied by these two PMs? 
These two experts are in consensus but still their final decisions are described by two 
distinct PMs. The answer to this question will be determined by using the notion of 
the corresponding EXPANSION (V) sets. If these two sets are identical, then we can 
say that the two PMs are identical too in the way they ranked the alternatives. There-
fore, it is reasonable to express the difference of the two PMs in terms of how different 
the corresponding EXPANSION sets are. This is achieved by introducing the following 
definition.

Definition 4 Let X and Y be two PMs. Then their relative difference, denoted as 
DIFFERENCE (X, Y), is defined as follows:

To appreciate the intuition of the previous definition, consider the following issues. 
If the previous quantity DIFFERENCE (X, Y) is equal to 0, the implication is that the 
two PMs X and Y are identical. This follows from the fact that the set of the numerator 
and the set of the dominator of the fraction involved in the previous formula will be of 
equal size. On the other hand, if the two PMs do not have any elements in common, 
then their intersection will be equal to the empty set and thus the quantity DIFFER-
ENCE (X, Y) will be equal to 1. In other words, the values the quantity DIFFERENCE 
(X, Y) takes have as range the interval [0, 1] (i.e., including 0 and 1). Obviously, if 
the two PMs correspond to a situation where the experts have reached a consensus 
as described in Definition 2, then the value of the difference will never be equal to 1 
(as the intersection of the corresponding EXPANSION sets will never be equal to the 
empty set). Since the denominator of the previous ratio will never be the empty set, the 
previous ratio can always be defined.

As an illustrative example, let us consider the case of the PMs V1 and V3 defined 
in Sect. 2. That is, we need to compute the value of DIFFERENCE (V1, V3). The set 
EXPANSION (V1) was given in Sect. 3. The case of EXPANSION (V3) is described 
next.

DIFFERENCE (X, Y) = 1 −
|EXPANSION (X) ∩ EXPANSION (Y)|
|EXPANSION (X) ∪ EXPANSION (Y)|
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Given the above analysis, it turns out that the intersection of the two sets 
EXPANSION (V1) and EXPANSION (V3) is equal to the set S1:

Therefore, its size is equal to 3 and this is the value of the numerator of the 
expression in Definition 4. Working similarly, it can be easily verified that the 
size of the union of these two EXPANSION sets is equal to 15. This is the value 
of the dominator of the expression in Definition 4. Hence, the value of DIFFER-
ENCE (V1, V3) is equal to: 1 − (3/15) = 12/15 = 0.800.

More specifically, suppose that X, Y and Z are any three PMs. Then the fol-
lowing properties follow easily from Definition 4:

(1) DIFFERENCE (X, Y) ≥ 0 (non-negativity property)
(2) DIFFERENCE (X, Y) = 0, if and only if X = Y (non-degeneracy property)
(3) DIFFERENCE (X, Y) = DIFFERENCE (Y, X) (symmetry property)
(4) DIFFERENCE (X, Y) + DIFFERENCE (Y, Z) ≥ DIFFERENCE (triangle property)

The above relationships are true because the concept of DIFFERENCE (X, Y), 
as defined in Definition 4, is consistent with the well-known Marczewski–Stein-
haus distance (Marczewski and Steinhaus 1958). Therefore, DIFFERENCE (X, 
Y) is a metric measurement. The Marczewski–Steinhaus distance has received 
considerable attention in the literature [see, for instance, the work by Karoński 
and Palka (1977), and Heine (1973)]. Applications of this distance include areas 
in the fields of biology (Dunn 2000), transportation (Kubiak 2007), ecology 
(Safford and Harrison 2001), computer vision and pattern recognition (Gard-
ner et al. 2014), and microbiology (Engel et al. 2012), among many other areas. 
More recent references to this important distance measure can be found in 
(Ricotta and Podani 2017; Yao and Deng 2014).

The following Theorem 3 states a useful property when one PM is a subset 
of another PM. Its proof follows directly from Definition 4. It is based on the 

V3 =

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3}

{4, 5}

{4, 5}

⎤
⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎣

{1}

{2}

{3}

{5}

{4}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{2}

{1}

{3}

{5}

{4}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{1}

{2}

{3}

{4}

{5}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{2}

{1}

{3}

{4}

{5}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3}

{5}

{4}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{1, 2}

{1, 2}

{3}

{4}

{5}

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

{1}

{2}
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fact that if a set Y is a subset of another set X (i.e., Y ⊆ X), then Y ∩ X = Y and Y 
∪ X = X. This theorem is useful if one wishes to compute the quantity DIFFER-
ENCE (X, Y) when EXPANSION (Y) ⊆ EXPANSION (X), as is the case when Y 
is a consensus ranking according to Definition 2 and X is a ranking proposed by 
any of the GDM experts.

Theorem  3 Let X, Y be two PMs defined on the same alternatives space and 
EXPANSION (Y) ⊆ EXPANSION (X). Then the following relation is always true:

5  Some Applications of the Proposed Difference Measurement

The difference measure DIFFERENCE (X, Y) (regardless of which way was used 
to define it) offers some novel and highly exciting opportunities for gaining a deep 
understanding of key issues involved in a GDM process, after consensus has been 
reached and when ties in the rankings of alternatives are permitted.

If the rankings do not have ties, then any of the methods described in Sect. 2.1 
may be applicable or any other method from the literature that expresses the differ-
ence of two rankings may be applicable. The following three applications illustrate 
the kind of analyses one may seek to perform after a consensus ranking has some-
how been reached as part of the GDM process.

5.1  Application #1: Grouping the Experts Based on Their Final Recommendations 
When All the Alternatives are Considered

Suppose that m experts have been involved in ranking a set of n alternatives and 
a consensus has been reached by using the concept of PM vectors for expressing 
individual expert judgments. Next, it is proposed that one compares in a pairwise 
manner the final recommendations made by these m experts and also the consen-
sus ranking. That is, one computes all possible DIFFERENCE (Vi, Vj) quantities by 
using Definition 4, where Vi and Vj are the final recommendations of Experts Ei and 
Ej, respectively, and also the consensus ranking. As one has m + 1 entities to com-
pare, there are ((m + 1) × m)/2 comparisons to be considered. If ties in the ranks are 
not permitted, then the function DIFFERENCE (Vi, Vj) can be replaced by any other 
function that expresses the difference between two rankings (such as the ones men-
tioned in Sect. 2.1).

These values can be used to explore any potential clusters that may be identifi-
able based on these difference measures. Such clusters can be identified by applying 
some of the well-known clustering methods such as the ones described by Tan et al. 

DIFFERENCE (X, Y) = 1 −
|EXPANSION (X) ∩ EXPANSION (Y)|
|EXPANSION (X) ∪ EXPANSION (Y)|

= 1 −
|EXPANSION (Y)|
|EXPANSION (X)| =

|EXPANSION (X)| − |EXPANSION (Y)|
|EXPANSION (X)|
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(2013), Larose and Larose (2014), and Witten et al. (2016). The general idea when 
identifying clusters, is that members within the same cluster to be similar to each 
other in some way, while members across different clusters to be dissimilar. A key 
issue here is the number of clusters. Usually, this is explored in an ad-hoc manner. 
Clustering is by nature an open-ended issue and thus there are multiple clustering 
approaches. In this application we used a simple approach as it is explained next.

Once clusters are determined an immediate result is to identify subsets of experts 
that provably ranked the n alternatives in a highly similar manner. Such clustering 
knowledge may offer new opportunities on the way the alternatives are ranked by 
next identifying reasons why the experts within clusters assessed them the way they 
did.

The above concepts are applied to all possible pairs when the final recommenda-
tions of the three experts in the illustrative example described in Sect. 2.2 are used 
along with the consensus ranking. The case of DIFFERENCE (V1, V3) was calcu-
lated in the previous section. Table 1 presents the numerical results of all possible 
pairwise comparisons when the three experts are considered. The same table also 
considers the consensus decision as described in Sect. 2.2 (i.e., the one described by 
the PM termed V4).

If we consider the case of having two clusters, then Experts E2 and E3 are (rela-
tively speaking) the closest ones with each other as their DIFFERENCE (V2, V3) 
value is the smallest one (equal to 0.769) among all the non-diagonal values in 
Table 1. Expert E1 is rather distinct than either E2 or E3. Thus, one cluster is com-
prised of Experts E2 and E3, while the second cluster of Expert E1. Another scenario 
is to have three clusters (with one expert on each) or a single cluster (with all the 
experts together). The derived consensus decision is also quite distinct than the final 
ranking recommendations made by each one of the three experts of this illustrative 
example. This indicates that each expert had to compromise quite a bit in order for a 
consensus to be reached. In summary, this kind of results can only be derived if one 
follows an analytical approach based on the concept of difference between two rank-
ings as demonstrated in this application.

5.2  Application #2: Grouping the Experts Based on their Final Recommendations 
When a Single or a Subset of the Alternatives are Considered

This application is similar to the previous one, but now the interest is narrower as it 
focuses on a single alternative or a non-empty subset of the set of the alternatives. 
For illustrative purposes consider only alternative A4 and again the two experts E1 

Table 1  All possible pairwise 
comparisons among all the 
experts and the consensus 
decision when all the 
alternatives are considered 
simultaneously

Expert E1 Expert E2 Expert E3 Consensus

Expert E1 0 0.933 0.800 0.667
Expert E2 0.933 0 0.769 0.923
Expert E3 0.800 0.769 0 0.667
Consensus 0.667 0.923 0.667 0
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and E3 whose EXPANSION sets were determined earlier. The only difference now 
is the way the intersection and union operations are defined in a modified version of 
Definition 4. In this illustrative example alternative A4 has been ranked by Expert 
E1 as {5} (i.e., as having rank value equal to 5) and by Expert E3 as {4, 5} (see 
also the two corresponding PMs in Sect.  2.2). Thus, the intersection returns only 
the set {{5}} while the union operation returns the set {{4}, {5}, {4, 5}}. Hence, 
a modified version of Definition 4 would result in the following calculations for the 
adjusted quantity (where “(V1, V3)/A4” indicates the pair of experts E1 and E3 when 
it is examined in terms of the way they ranked alternative A4): DIFFERENCE ((V1, 
V3)/A4) = 1 – (1/3) = 0.667.

Next, all ((m + 1) × m)/2 pairwise comparisons can be calculated similarly to the 
previous illustrative example and again the m experts can be clustered as in the first 
application. However, now the focus is limited to a single alternative (i.e., to alterna-
tive A4) or a non-empty subset of the alternatives. This approach may reveal hidden 
aspects of the way the m experts pursued the rankings of single alternatives or sub-
groups of them. As was the case with the previous application, if ties in the rank-
ings are not permitted, then the difference function described in Definition 4 can be 
replaced by other definitions of ranking difference (such as the ones mentioned in 
Sect. 2.1).

5.3  Application #3: Analysis of Individual Alternatives by Using the Final 
Recommendations of the Experts

This type of analysis focuses directly on the alternatives, one at a time. It expands 
on the previous ideas regarding ways for assessing the differences between pairs 
of experts. Given an alternative, say A1 of the illustrative example presented in 
Sect. 2.2, a ratio is formed as follows. The numerator is the size of the set formed as 
the modified intersection of the rankings made by all the experts (when represented 
as PMs) and then expanding it. For this case the intersection is the set {1, 2} and 
thus it expands into the set {{1}, {2}, {1, 2}}. Since this set has three members the 
numerator of the ratio is the number 3. The dominator is determined by first forming 

Table 2  Calculation results for the five alternatives for the illustrative example

Alternative Relevant sets Size of sets Ratio Final value

For intersection For union

A1 {{1}, {2}, {1, 2}} {{1}, {2}, {1, 2}, {2, 3}, {3}, {1, 
2, 3}}

3 and 6 3/6 0.500

A2 {{1}, {2}, {1, 2}} {{1}, {2}, {1, 2}, {2, 3}, {3}, {1, 
2, 3}}

3 and 6 3/6 0.500

A3 {{3}} {{3}, {4}, {3, 4}, {1}, {2}, {1, 2}, 
{2, 3}, {1, 2, 3}}

1 and 8 1/8 0.125

A4 {{5}} {{4}, {5}, {4, 5}} 1 and 3 1/3 0.333
A5 {{4}} {{3}, {4}, {3, 4}, {5}, {4, 5}} 1 and 5 1/5 0.200
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the modified union of the sets that correspond to all the ranking decisions made by 
the experts (expressed as PMs). This is the set {{1, 2}, {1, 2, 3}} which expands to 
the following set {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}. This set has six members 
(please note that the entry {1,3} is ignored as it cannot be in a PM due to the fact 
the integers 1 and 3 are not consecutive). Therefore, the dominator of the ratio is the 
number 6. As result of the previous analysis, the value for this ratio for alternative A1 
is equal to 3/6 = 0.500.

When a similar analysis is performed with regard to alternatives A2, A3, A4, and 
A5, the corresponding ratios are equal to 3/6 = 0.500, 1/8 = 0.125, 1/3 = 0.333, and 
1/5 = 0.200, respectively. Obviously, the value of the above ratios is at most equal 
to 1 (when all the experts agree with each other) and it is strictly greater than 0 
(because we have a consensus reached (according to Definition 2), and thus the 
intersection set is never empty). The above results for the illustrative example are 
summarized in Table 2. If we do not use the approach based on PMs (i.e., when ties 
in the ranks are allowed), then the same approach can still be applied, but it is pos-
sible for some ratios to be equal to 0 (if not all the experts agree with the ranking of 
an alternative).

The results (final ratio values) can be clustered by using the methods described in 
the previous application. For this particular illustrative application, from the last col-
umn (entitled “Final Value”) of the results in Table 2 one may observe that alterna-
tives A1, A2, and perhaps A4 can be viewed as belonging to the same group (cluster), 
while the remaining two alternatives (e.g., alternatives A3 and A5) seem to belong to 
a different group. The high values (e.g., 0.500, 0.500, and 0.333, respectively) for 
alternatives A1, A2, and A4, relatively speaking, are closer to the maximum value of 
1. This indicates that the group of the three experts ranked these three alternatives 
with higher consistency with each other when compared to the way they ranked 
the other two alternatives (i.e., A3 and A5). Perhaps the latter two alternatives are 
more complex in nature than the former three ones. This suggests that some addi-
tional evaluative criteria on the way to evaluate the alternatives and more delibera-
tions might shed more light into the nature of the GDM process of this illustrative 
example.

In an ideal situation all five alternatives should result in values which would be 
very close to the maximum possible value of 1. On the contrary, if the values are 
very close to the minimum possible value of 0, the opposite is true. That is, now the 
implication is that the experts involved may have reached a consensus on how the 
alternatives should be ranked, but the way they reached their individual final ranking 
decisions is significantly different from each other.

The results of the previous analysis can be very sensitive to the ranking decision 
of a single expert. This happens because a single ranking decision may impact the 
composition of the union set (which is used to compute the value of the dominator) 
in a significant manner. A similar situation may also occur for the intersection set. 
This is more likely to occur with large groups of experts. Thus, a complementary 
approach to the previous idea is to follow a more traditional method based on some 
simple statistical concepts.

To help fix ideas let us consider again alternative A1. There are three ranking 
decisions regarding this alternative (see also Sect. 2). They are as follows: {1, 2}, 
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{1, 2, 3}, and {1, 2}, as made by expert E1, E2, and E3, respectively. Each rank-
ing decision has a starting (smallest) rank and an ending (largest) rank (in general, 
these two ranks may be identical or different). The starting rank by each expert is 
equal to {1}, {1} and {1} (i.e., they are the same). The ending rank is equal to {2}, 
{3}, and {2}, respectively. The average of the starting rank is equal to 1.000, with a 
standard deviation equal to 0.000 (as all three numbers are identical). For the end-
ing rank the average is equal to 2.333 with standard deviation equal to 0.222. We 
define as “length” the difference between the ending rank from the starting rank for 
each expert when a particular alternative is considered. Thus, the three lengths are 
equal to 1, 2, and 1, for expert E1, E2, and E3, respectively for alternative A1. The 
average of these values is equal to 1.333 while their standard deviation is equal to 
0.222. Table 3 presents these results along with the results for all the alternatives 
which have been computed in a similar manner. Regarding Table 3, of interest is the 
observation that the average length of the ranking decisions (i.e., the 5-th column) is 
equal to 1 for alternatives A3 and A5, while it is significantly different than 1 for the 
rest. That is, the spread of the rankings for these two alternatives was smaller when 
compared to that for the other three alternatives.

A comparison between the results in Tables 2 and 3 shows that both tables seem 
to suggest that alternatives A1, A2, and A4 can be grouped together while alternatives 
A3 and A5 form a second group as it was explained earlier. However, the results in 
Table 3 are more compact and easier to interpret. It is suggested that, in general, 
these two analytical approaches should be followed together in a complementary 
manner.

Table 3  A statistical analysis of the ranking decisions for the five alternatives for the illustrative example

Alternative Starting rank Ending rank Length of ranking deci-
sions

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev.

A1 1 0 2.333 0.222 1.333 0.222
A2 1 0 2.333 0.222 1.333 0.222
A3 2.333 0.889 3.333 0.222 1 0.667
A4 4.333 0.222 5 0 0.667 0.222
A5 3.667 0.222 4.667 0.222 1 0

Table 4  Data used for the 
illustrative example [Adapted 
from Boroushaki and 
Malczewski (2010)]

Alternatives Experts (decision makers) Con-
sensus 
solutionE1 E2 E3 E4 E5 E6

A1 2 2 1 1 1 1 1
A2 4 3 3 2 4 4 3
A3 3 5 4 2 5 5 5
A4 1 4 2 2 3 3 4
A5 5 1 2 1 2 2 2
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6  An Illustrative Example Based on a Real‑World GDM Application

This section examines an illustrative example taken from the literature (Boroushaki 
and Malczewski 2010). The real-world problem was to select the best location for 
a new major parking facility for the city of Canmore, Alberta, Canada. The actual 
application used a computer software package (ParticipatoryGIS.com) which was 
created for that purpose to collect input from the public and then analyze it. Those 
authors do not provide the raw data for the actual problem as the size of that data set 
is huge (58 decision makers were used for that purpose), but instead they describe a 
small scale version but still similar in nature problem for illustrative purposes. Thus, 
in this section we will use the same small version data set to demonstrate some of 
the previous concepts and approaches.

The small version data set is summarized in Table 4. The integer numbers in 
this table represent ranks. This table corresponds to Table 1 of the original pub-
lication (Boroushaki and Malczewski 2010). These data describe how a sample 
of five candidate locations (indicated as alternative A1, A2, …, A5) were ranked 
by six experts (indicated as expert E1, E2, …, E6). Some criteria relevant to this 
location problem were used by these experts. Somehow a consensus solution was 
reached and it is presented in the last column of Table 4.

The implied rankings by the six experts and that of the consensus solution are 
depicted next. One may observe that ties are allowed in the original data. Table 5 
is derived from Table  4 and presents the PMs of the rankings made by the six 
experts plus the PM of the consensus ranking.

The Rankings by the Six Experts and the Consensus Solution are as follows:

Expert E1: A4 ≻ A1 ≻ A3 ≻ A2 ≻ A5

Expert E2: A5 ≻ A1 ≻ A2 ≻ A4 ≻ A3

Expert E3: A1 ≻ A4 ∼ A5 ≻ A2 ≻ A3

Expert E4: A1 ∼ A5 ≻ A2 ∼ A3 ∼ A4

Expert E5: A1 ≻ A5 ≻ A4 ≻ A2 ≻ A3

Expert E6: A1 ≻ A5 ≻ A4 ≻ A2 ≻ A3

Consensus: A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3

The intersection between almost any pair of the PMs depicted in Table 5 is the 
empty set. For instance, the intersection of the PMs derived from the rankings by 

Table 5  The preference maps 
(PMs) that correspond to the 
rankings depicted in Table 4

Alternatives Experts (decision makers) Con-
sensus 
solutionE1 E2 E3 E4 E5 E6

A1 {2} {2} {1} {1, 2} {1} {1} {1}
A2 {4} {3} {4} {3, 4, 5} {4} {4} {3}
A3 {3} {5} {5} {3, 4, 5} {5} {5} {5}
A4 {1} {4} {2, 3} {3, 4, 5} {3} {3} {4}
A5 {5} {1} {2, 3} {1, 2} {2} {2} {2}
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experts E1 and E3 is the empty set. Therefore, the distance between most of the 
pairs of experts will be equal to the maximum value (i.e., 1.00) and thus would 
be meaningless. However, this particular application possesses a special charac-
teristic: it aims at finding the best location for a parking facility. In other words, 
one is interested to identify the alternative with the top (i.e., #1) rank. Thus, it 
makes sense to focus the analysis on the alternative(s) which have received many 
top ranks. For the current application, this is the subset of alternatives A1 and A5 
(see also Table 5). When the rankings (PMs) of the six experts and the consensus 
solution are considered in terms of only these two alternatives (i.e., A1 and A5) 
some interesting observations can be derived.

For instance, let us consider the pair of experts E3 and E4. The PMs of experts 
E3 and E4 in terms of only these two alternatives, denoted as  PM3 and  PM4, respec-
tively, are as follows (see also Table 5):

However, it can be observed now that the previous entity denoted as “PM3” does 
not strictly satisfy Definition 1 because {2, 3} cannot be a legitimate ranking set as 
now we have just two alternatives. Thus, we call such entities “partial preference 
maps” (PPMs). The previous operations on union and intersection can be performed 
as usually.

Therefore, the previous two entities will be called  PPM3 and  PPM4, respectively. 
When the function DIFFERENCE is applied on this pair of PPMs the following 
result is derived:

In a similar manner, any pair of PPMs can be analyzed.
In Boroushaki and Malczewski (2010) the authors computed the proximity (dis-

tance) of two rankings based on a method originally proposed in Herrera-Viedma 
et al. (2002). That approach is based on the absolute value of the difference of the 

PM3 =

[
{1}

{2, 3}

]
, PM4 =

[
{1, 2}

{1, 2}

]
,

DIFFERENCE
(
PPM3, PPM4

)
= 0.800.

Table 6  All pairwise differences between the PMs depicted in Table 5 (only the upper triangular entries 
are shown for simplicity)

Experts (decision makers) Experts (decision makers) Con-
sensus 
solutionE1 E2 E3 E4 E5 E6

E1 0 1 1 1 1 1 1
E2 0 1 0.667 1 1 1
E3 0 0.800 0.667 0.667 0.667
E4 0 0.667 0.667 0.667
E5 0 0 0
E6 0 0
Consensus solution 0
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ranks of the alternatives, taken one at a time. That is, a method similar (but not iden-
tical) to method 5 presented in Sect. 2.1. Such approach, however, fails to compute 
the essence of PMs when ties are present. That is, the proposed approach based on 
Definition 4 (in Sect. 4) is more appropriate.

Table 6 presents all the pairwise differences derived when one considers the PMs 
shown in Table 5 but only in terms of the two alternatives A1 and A5 (i.e., to consider 
the PPMs as defined above). As this table (matrix) is a symmetric one, only the 
entries in the upper-right half of it are shown for simplicity of the presentation. The 
data in Table 6 are next used to explore any relationships that may exist among the 

E5 E6 E0

E3

E1

E4

E2

▀▀ ▀   ▀

▀

▀

▀

Fig. 1  Clusters defined among the experts and the consensus solution (each denoted by the small solid 
rectangle symbol) which are derived by analyzing the data in Table 6

Table 7  Clustering schemes 
forming as the difference 
threshold value changes

Difference threshold value Clustering scheme

0 Cluster #1: {E5, E6, E0}
Cluster #2: {E3}
Cluster #3: {E4}
Cluster #4: {E2}
Cluster #5: {E1}

0.667 Cluster #1: {E5, E6, E0, E3}
Cluster #2: {E5, E6, E0, E4}
Cluster #3: {E2, E4}
Cluster #4: {E1}

0.800 Cluster #1: {E5, E6, E0, E3, E4}
Cluster #2: {E2, E4}
Cluster #3: {E1}

1 Cluster #1: {E1, E2, E3, E4, E5, E6, E0}
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experts involved in this GDM process. These relationships can be explored by fol-
lowing a clustering approach as follows (see also Fig. 1). The same results are also 
presented in tabular form in Table 7.

The data in Table 6 suggest that the two experts E5 and E6, along with the con-
sensus solution are identical (their pairwise differences are equal to 0) when one 
focuses on the rankings of the two best alternatives (i.e., A1 and A5). This is why the 
experts E5 and E6 and the consensus ranking (denoted as E0 in Fig. 1 and Table 7) 
are the only members of the inner most cluster in Fig. 1 (see also Table 7).

Next we can observe that if one expands the notion of belonging to the same 
cluster (i.e., the distance threshold increases from 0 to 0.667), then experts E2 and E4 
form a single cluster. At the same time, expert E3 can form a cluster with E5, E6 and 
E0, and another cluster is formed by E4 and E5, E6 and E0. However, experts E3 and 
E4 cannot be placed yet inside the same cluster. For this to happen, one needs to fur-
ther relax the notion of belonging to the same cluster by considering difference val-
ues less than or equal to the threshold value 0.800 (see also Table 6). Now, E3, E4, 
E5, E6, and E0 are all members of the same cluster. However, expert E1 is still con-
sidered very different than the rest to be placed within the same cluster, while expert 
E2 forms a cluster only with expert E4. In order for one to also include experts E1 
and E2 in the same cluster, then the threshold distance needs to be expanded to the 
highest value (i.e., to become equal to 1). In this way everybody would be included 
in a single cluster (see also Fig. 1 and Table 7). However, such scenario might be 
practically meaningless.

In summary, the previous clustering analysis reveals that experts E5 and E6 are 
practically of the same ranking preferences in terms of the top two alternatives 
which coincides with the consensus ranking. The next closest way experts can be 
considered as similar is when one considers experts E3 and E4 as indicated in Fig. 1 
(or Table 7) and so on.

The previous results cannot be attained unless one follows the analytical proce-
dures described in this study. Depending on the nature of the application at hand, the 
definition of difference between two rankings may change. However, one would still 
have to compute all possible pairwise differences and then examine how clusters 
among the experts may form. These clusters have the potential to uncover action-
able new knowledge pertinent to the group decision making process and the current 
application. The proposed methods are very versatile and can be adapted to different 
problem settings. Current GDM methods do not offer this kind of post-consensus 
exploration.

7  Concluding Remarks

Smart decision making always requires to have a feedback mechanism at each stage 
of the decision making process. This is true in group decision making too. When a 
consensus has been reached after (possibly) a laborious decision making process, 
this should not be treated as the end of the process. A feedback step that further 
analyzes the final results may offer the last opportunity to uncover some hidden but 
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nevertheless critical dynamics of the problem under consideration or even of the 
experts themselves.

The proposed methodology analyzes differences among pairs of experts when all 
the alternatives are considered simultaneously and also when a single alternative or 
subsets of alternatives are considered. A way to analyze the decisions made regard-
ing each alternative is presented as well. The results of such analyses, after a con-
sensus has been reached, may shed light to aspects of the problem or the experts that 
cannot be explored unless a consensus has first been reached and comprehensive 
analyses like the ones proposed in this paper are undertaken.

In summary, this paper made original contributions in two fronts. First, it con-
tributed on how to define the concept of difference when rankings are allowed 
to include ties. That is, when one alternative can be assigned to multiple (but 
consecutive) ranks. This type of rankings can capture more realistically the way 
decision makers express ranking preferences. This issue has not been explored 
adequately so far and this study offers some exciting new developments. The sec-
ond group of original contributions is on ways for analyzing the final results of a 
GDM process after a consensus has been reached. It provides the means to infer 
potentially useful new knowledge regarding the group of experts and the alterna-
tives that were evaluated during the GDM process.

These analyses are proposed to be done post-consensus. The original GDM 
problem may need to be re-examined if new insights uncover important reasons 
to do so, especially if certain patterns seem to hold true over time when multi-
ple GDM sessions with the same group of experts are considered. For instance, 
if it is discovered that very often the same subgroup of experts make decisions 
in an identical or semi-identical manner with each other. Such finding may be 
considered as an actionable insight. The proposed methodology can be executed 
automatically and be presented to the experts and/or to any other relevant stake-
holder in an intuitive manner. This is a novel aspect of this study and has not been 
explored in other studies to have results to compare with.

Future research may focus on how to explore other ways for defining the dif-
ference between two rankings, especially when ties are permitted. For instance, 
consider the following three PPMs:

According to Definition 4 in Sect. 4, the difference between  PPM1 and  PPM0 is 
equal to 1, and the same is true for the difference between  PPM2 and  PPM0. How-
ever, one may argue that  PPM1 is closer to  PPM0 than  PPM2 is to  PPM0. This is 
not captured by this definition. Thus, in the future the concept of PM (or PPM) 
difference may need to be enhanced to be able to capture such issues.

Another possible extension for the future might be to consider the various 
stages the GDM process may have to go through during a single session. Usu-
ally, consensus is not reached in a single stage and the process may have to go 
through a sequence of iterations (stages) for this to happen. Information gath-
ered during each stage and also across different GDM sessions (with the same 

PPM1 =

[
{2}

{3}

]
, PPM2 =

[
{4}

{5}

]
, PPM0 =

[
{1, 2}

{1, 2}

]
,
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or similar groups of experts) may be analyzed in a similar manner. Such data, 
however, may offer more ways for exploring the dynamics of the GDM processes 
and the experts involved with them. As a final note we state that the results of this 
study have been used in Triantaphyllou et al. (2020) as the foundation for a post-
consensus analysis that considers multiple GDM sessions, each session having a 
number of stages. That study considers some graph theoretic formulations and 
then it employs an association rules mining approach to derive potentially impor-
tant relations in the way experts make decisions during GDM processes.
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