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Abstract
In group decision making, it is sensible to achive minimum consensus cost (MCC) 
because the consensus reaching process resources are often limited. In this endeav-
our, though, there are still two issues that require paying attention to: (1) the impact 
of decision rules, including decision weights and aggregation functions, on MCC; 
and (2) the impact of non-cooperative behaviors on MCC. Hence, this paper analyti-
cally reveals the decision rules to minimize MCC or maximize MCC. Furthermore, 
detailed simulation experiments show the joint impact of non-cooperative behavior 
and decisions rules on MCC, as well as revealing the effect of the consensus within 
the established MCC target.
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1  Introduction

Group decision-making (GDM) can be viewed as a process where a group of deci-
sion makers express their opinions and aim at achieving a collective solution. Con-
sensus reaching process (CRP) is a key issue in GDM by which decision makers 
are assisted to achieve consensus regarding certain collective solution. Tradition-
ally, “hard” consensus in GDM considers only a lack of consensus state or a state 
of full or unanimous, which is inconvenient and unnecessary in real life (Kacprzyk 
et al. 1997, 2010; Kacprzyk and Zadrożny 2010, 2016). Thus, different consensus 
reaching processes (CRPs) based on a “soft” consensus measure in GDM have been 
proposed, with some excellent reviews on CRP available in (Herrera-Viedma et al. 
2014; Palomares et  al. 2014a). In particular, the minimum consensus cost (MCC) 
and non-cooperative behaviors are becoming hot topics in CRPs.

Generally, preference changing are associated a cost and the resources for con-
sensus building are limited (Ben-Arieh and Easton 2007; Dong et al. 2010, 2015; 
Dong and Xu 2016; Gong et al. 2017, 2019; Tan et al. 2018). Based on these prem-
ises, some CRPs with MCC have been developed (Ben-Arieh and Easton 2007; 
Ben-Arieh et al. 2008; Cheng et al. 2018; Gong et al. 2015a, b; Zhang et al. 2017, 
2019b). Notably, Zhang et al. (2019c) investigated the consensus efficiency of exist-
ing CRPs with MCC and provided detailed simulation experiments based on the 
following comparison criteria: the number of adjusted decision makers; the num-
ber of adjusted alternatives; the number of adjusted preference values; the distance 
between the original and the adjusted preference information; and the number of 
negotiation rounds required to reach consensus.

In GDM problems, decision makers may behave uncooperatively by expressing 
dishonest opinions or refusing to change their opinions to favor their own profit. 
Two mainstream research approaches have been developed in the literature to effec-
tively address non-cooperative behaviors and ensure the quality of the GDM results: 
(1) managing non-cooperative behaviors in the aggregation process or selection pro-
cess in the GDM, which focuses on the influence of the non-cooperative behaviors 
on the aggregation outcome (Dong et al. 2017; Pelta and Yager 2010; Yager 2001, 
2002); (2) managing non-cooperative behaviors in the consensus process of the 
GDM, which mainly analyzes whether a consensus solution can be achieved under 
the presence of non-cooperative behaviors in the CRP (Dong et  al. 2016, 2018b; 
Palomares et al. 2014b; Quesada et al. 2014).

Although numerous studies have been presented to analyze the MCC and non-
cooperative behaviors in CRPs, there still exist two issues that need to be dealt with: 
the impact of the decision rules and of non-cooperative behaviors on MCC.

	 (i)	 Impact of decision rules on MCC. In existing CRP studies, decision rules 
include decision weights and aggregation functions. It is natural that setting 
decision rules will lead to different consensus outcomes and will have an effect 
on the consensus cost. For example, in the selection of outstanding research 
projects, choosing different aggregation functions and decision weights can 
lead to different consensus outcome and cost. However, the existing research 
about MCC is to develop some consensus models under the given decision 
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rules and decision weights, and it is still not clear how decision rules influence 
the minimum cost in reaching consensus in GDM.

	 (ii)	 Impact of non-cooperative behaviors on MCC. Although non-cooperative 
behaviors have been extensively studied, the existing research about non-coop-
erative behaviors focuses on the mangement of non-cooperative behaviors in 
CRPs, and it is still unclear how non-cooperative behaviors influence on the 
MCC in CRPs. Therefore, it is necessary to reveal the internal mechanism of 
the non-cooperative behaviors impact on MCC.

This paper focuses on these two issues and it presents the following research con-
tributions on the impact of decision rules and non-cooperative behaviors on MCC in 
GDM:

	 (i)	 From a theoretical point of view, it is proved that the decision rule that mini-
mizes MCC can be modeled with the ordered weighted average (OWA) with 
decision weigh w = (0.5, 0,… , 0, 0.5)T , while the decision rule that maximizes 
the MCC is modeled with the OWA with decision weight w = (1, 0,… , 0)T or 
w = (0,… , 0, 1)T.

	 (ii)	 From an analytical point of view, Simulation experiments I, II and III are 
designed to show that the non-cooperative behaviors strongly increase the 
MCC. The MCC increases with an increase on the number of decision mak-
ers. This positive relationship is more obvious when decision makers are less 
tolerant to inconsistent views or the non-cooperative behaviors in the group 
are high. We also show non-cooperative behavior is a more determiner factor 
in influencing the MCC than decision rules. Furthermore, the effect of the 
consensus within the established target on MCC is also studied in the simula-
tion experiments.

The rest of this paper is organized as follows: Sect. 2 describes the general CRP 
framework and the minimum-cost consensus model. Section 3 is devoted to the the-
oretical study to reveal of decision rules impact on MCC. Section 4 provides an ana-
lytical study with Simulation experiment I, II and III to further reveals the impact of 
non-cooperative behaviors and decision rules on MCC. Lastly, Sect. 5 concludes the 
paper.

2 � Background

This section briefly describes the general CRP framework and the minimum-cost 
consensus model, which will provide the basis of this study.

2.1 � The General CRP Framework

The general CRP framework is depicted in Fig.  1 (Herrera-Viedma et  al. 2002; 
Zhang et  al. 2011). Once the individual experts provide their opinions, an 
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aggregation function is carried out to derive the collective opinion. Then, the con-
sensus level among the group of decision makers is measured by looking at the dif-
ference between the individual opinions and the collective opinion. If the consensus 
level is lower than an apriority acceptable consensus threshold value, then a feed-
back process is carried out to provide support to the decision makers to adjust their 
individual opinions with the aim of increasing the group consensus. This procedure 
is repeated for a maximum number of consensus rounds or until the group consensus 
level reaches the threshold level, whichever comes first.

2.2 � Minimum‑Cost Consensus Model

In a GDM problem, let D =
{
d1, d2,… , dn

}
 be the set of decision makers, 

W =
(
w1,w2,… ,wn

)T the associated decision makers weights vector, where 
wi ≥ 0(i = 1, 2,… , n) and 

∑n

i=1
wi = 1 ; A =

{
a1, a2,… , an

}
 be the set of indi-

vidual opinions, where ai ∈ [0, 1] represents the decision maker di ’s opinion on an 
alternative.

The minimum-cost consensus model includes three parts:

(1)	 Consensus Measurement Several methods can be used to measure the consensus 
level in a GDM problem (Fedrizzi 1988; Kacprzyk et al. 1992). The most com-
mon is based on the use of a distance based measure, which is the one employed 

Decision makers Individual opinions Temporal 
collective opinion

Is maximum number 
of rounds?

Suggestion to 
adjust individual 

opinions
(Feedback process)

Express/Update 
opionions

Aggregation 
function

No

Yes

Temporal 
collective opinion 
is final collective 

opinion

Is  the consensus 
acceptable?

(Consensus measure)

No Yes

Fig. 1   Framework of the general CRP
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in the minimum-cost consensus model presented in (Chiclana et al. 2013). Let 
the collective opinion be represented by ac . The consensus level of the decision 
maker di can be measured using the value ||ai − ac|| ( i = 1, 2,… , n) . Let � be a 
threshold value (Herrera-Viedma et al. 2002). If 

then all decision makers are considered to have reached an acceptable consen-
sus. Otherwise, the decision makers need to adjust their opinions to increase 
the consensus level.

(2)	 Consensus Cost Let ai ∈ Ā denote the adjusted individual opinion of deci-
sion maker di , and let ac be the adjusted collective opinion. Ben-Arieh and 
Easton (2007) assumed that moving di ’s opinion 1 unit has associated a cost 
ci ∈ [0 , +∞) , and defined the linear consensus cost of moving di ’s opinion from 
ai to ai as ci||ai − ai

|| . Thus, it is natural to minimize the consensus cost, i.e.,

(3)	 Aggregation Function In GDM problems, aggregation functions are used to fuse 
individuals’ opinions to form a collective opinion (Akram et al. 2018, 2019a, 
b, c; Dong et al. 2010; Ogryczak and Śliwiński 2003; Zhang et al. 2019a). The 
weighted average (WA) and ordered weighted average (OWA) operators are 
the most important aggregation functions in GDM problems (Dong et al. 2010; 
Ogryczak and Śliwiński 2003; Zhang et al. 2011), which are defined by Eqs. (3) 
and (4), respectively.

where a(i) is the i th largest element of A =
{
a1, a2,… , an

}
 , and W =

(
w1,w2,… ,wn

)T 
is the associated weight vector.

In minimum-cost consensus model, the WA and OWA operators are employed to 
aggregate individuals’ opinions to obtain the collective decision option ac,i.e.,

Formally, Zhang et  al. (2011) proposed the following minimum-cost consensus 
model with aggregation functions:

(1)||ai − ac|| ≤ �, for all i = 1, 2,… , n,

(2)min
ai

n∑
i=1

ci
||ai − ai

||.

(3)FWA

(
a1, a2,… , an

)
=

n∑
i=1

wiai,

(4)FOWA

(
a1, a2,… , an

)
=

n∑
i=1

wia(i),

(5)ac = FW

(
a1, a2,… , an

)
.
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In this study, we denote this model as P1. Solving P1 yields the optimal adjusted 
opinions. Similarly, the respective minimum-cost consensus models with aggregation 
functions OWA and WA, denoted models P2 and P3, respectively, are:

3 � Impact of Decision Rules on Minimum Consensus Cost

In a CRP, the aggregation function and its associated decision weight play the role of 
the decision rules. This section reveals the impact of decision rules on MCC.

3.1 � The Decision Rule to Minimize MCC

The solution of the model P4 below will be the optimal adjusted collective opinion that 
minimizes the MCC.

Let model P5 be defined by Eq. (10):

(6)

⎧
⎪⎪⎨⎪⎪⎩

min
ai

n∑
i=1

ci
��ai − ai

��
ac = FW

�
a1, a2,… , an

�
���ai − ac

��� ≤ �, i = 1, 2,… , n

.

(7)

⎧
⎪⎪⎨⎪⎪⎩

min
ai

n∑
i=1

ci
��ai − ai

��
ac = FOWA

�
a1, a2,… , an

�
���ai − ac

��� ≤ �, i = 1, 2,… , n

,

(8)

⎧⎪⎪⎨⎪⎪⎩

min
ai

n∑
i=1

ci
��ai − ai

��
ac = FWA

�
a1, a2,… , an

�
���ai − ac

��� ≤ �, i = 1, 2,… , n

.

(9)

⎧⎪⎨⎪⎩

min
ac

min
ai

n∑
i=1

ci
��ai − ai

��
���ai − ac

��� ≤ �, i = 1, 2,… , n

.
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The following results show that the optimal solution of model P5 is also the optimal 
solution of model P4.

Theorem  1  Let a∗
i
(i = 1, 2,… , n) and ac∗ denote the optimal adjusted individual 

opinions and adjusted collective opinion obtained by solving model P5. Then, {
a∗
1
, a∗

2
,… , a∗

n
, ac∗

}
 is the optimal solution of model P4.

Proof  Let 
{
a1, a2,… , an, a

c

}
 be the optimal solution of model P4, and �4 its feasi-

ble set. Similarly, let 
{
a∗
1
, a∗

2
,… , a∗

n
, ac∗

}
 be the optimal solution of model P5, and 

�5 its feasible set.

Based on the condition |||ai − ac
||| ≤ � (i = 1, 2,… , n) of model P4, then we would get

Also because

Then it will be

Therefore, model P4 is equivalent to Eq. (14)

(10)

⎧
⎪⎪⎨⎪⎪⎩

min
ai

n∑
i=1

ci
��ai − ai

��
ac =

�
min
i

ai +max
i

ai

�
∕2

���ai − ac
��� ≤ �, i = 1, 2,… , n

.

(11)

min
ai

n�
i=1

ci
��ai − ai

�� = min
ac

⎡⎢⎢⎣
�

i∶ai<a
c−𝜀

ci
�
ac − 𝜀 − ai

�
+

�
i∶ai>a

c+𝜀

ci
�
ai − 𝜀 − ac

�⎤⎥⎥⎦

(12)

min
ac

min
ai

n�
i=1

c
i
��ai − a

i
�� = min

ac

min
ac

⎡
⎢⎢⎣

�
i∶ai<a

c−𝜀

c
i

�
ac − 𝜀 − a

i

�
+

�
i∶ai>a

c+𝜀

c
i

�
a
i
− 𝜀 − ac

�⎤⎥⎥⎦

= min
ac

⎡⎢⎢⎣
�

i∶ai<a
c−𝜀

c
i

�
ac − 𝜀 − a

i

�
+

�
i∶ai>a

c+𝜀

c
i

�
a
i
− 𝜀 − ac

�⎤⎥⎥⎦

(13)min
ac

min
ai

n∑
i=1

ci
||ai − ai

|| = min
ai

n∑
i=1

ci
||ai − ai

||.

(14)

⎧⎪⎨⎪⎩

min
ai

n∑
i=1

ci
��ai − ai

��
���ai − ac

��� ≤ �, i = 1, 2,… , n.

.
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Thus, 
{
a1, a2,… , a1, a

c

}
 and �4 also represent the optimal solution and the 

feasible set of Eq. (14). Therefore, 𝛺5 ⊆ 𝛺4 , and we have that:

Moreover, the relationship between ac and ai is:

which satisfies max
i

ai −min
i

ai ≤ 2�.

Furthermore, it is 
||||ai −

[(
max

i
ai +min

i
ai

)
∕2

]|||| ≤ � for all i = 1, 2,… , n . There-

fore, 
{
a1, a2,… , an,

[(
max

i
ai +min

i
ai

)
∕2

]}
∈ Ω5 . Consequently,

From Eqs. (15) and (17), it is:

Thus, 
{
a∗
1
, a∗

2
,… , a∗

n
, ac∗

}
 is the optimal solution to model P4.

This completes the proof of Theorem 1.
In the following, we further derive the decision rule between the optimal 

adjusted collective opinion and the optimal individual opinions of model P4. 
Based on Theorem  1, 

{
a∗
1
, a∗

2
,… , a∗

n
, ac∗

}
 is the optimal solution of model P4, 

which still satisfy the functional relationship ac∗ =
(
min
i

a∗
i
+max

i
a∗
i

)
∕2 of 

model P5, i.e. the decision rule that minimizes the MCC of model P4 is:

with decision weight vector

(15)

n∑
i=1

ci
|||ai − ai

||| = min
{a1,a2,…,an,a

c}∈�4

n∑
i=1

ci
||ai − ai

||

≤ min
{a1,a2,…,an,a

c}∈�5

n∑
i=1

ci
||ai − ai

||

=

n∑
i=1

ci
|||ai − a∗

i

|||.

(16)ai =

⎧
⎪⎪⎨⎪⎪⎩

ac − 𝜀, i ∈
�
i ∶ ai ≤ ac − 𝜀

�

ac + 𝜀, i ∈
�
i ∶ ai ≥ ac + 𝜀

�

ai, i ∈
�
i ∶ ac − 𝜀 < ai < ac + 𝜀

� ,

(17)
n∑
i=1

ci
|||ai − ai

||| ≥ min
{a1,a2,…,an,a

c}∈�5

n∑
i=1

ci
||ai − ai

|| =
n∑
i=1

ci
|||ai − a∗

i

|||.

(18)
n∑
i=1

ci
|||ai − ai

||| =
n∑
i=1

ci
|||ai − a∗

i

|||.

(19)ac = FOWA

(
a1, a2,… , an

)
,
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3.2 � The Decision Rule to Maximize MCC

Solving the next model P6 will lead to the optimal adjusted collective opinion that 
maximizes the MCC.

First, we provide the following result regarding the optimal solution of model P6

Lemma 1  Let 
{
o1, o2,… , on, o

c
}
 denote the optimal solution of model P1. Then, it 

is: oc ∈
[
min
i

ai, max
i

ai

]
.

Proof  Since 
{
o1, o2,… , on, o

c
}
 is the optimal solution of model P1. Let {

b1, b2,… , bn, b
c
}
 , 
{
e1, e2,… , en, e

c
}
 , 
{
f1, f2,… , fn, f

c
}
 , and 

{
g1, g2,… , gn, g

c
}
 

denote feasible solutions of model P1, where bc ∈ [0 , min
i

ai

)
 , ec ∈

(
max

i
ai , 1] , 

f c = min
i

ai and gc = max
i

ai and � being a small enough number.

	 (i)	 For bc ∈ [0 , min
i

ai

)
 , then 

	 (ii)	 For ec ∈
(
max

i
ai , 1] , then 

	 (iii)	 For f c = min
i

ai , then 

	 (iv)	 For gc = max
i

ai , then 

Based on Eqs. (22) and (24), it is

(20)OWA_min = (0.5, 0,… , 0, 0.5)T .

(21)

⎧
⎪⎨⎪⎩

max
ac

min
ai

n∑
i=1

ci
��ai − ai

��
���ai − ac

��� ≤ �, i = 1, 2,… , n

.

(22)MCC1 =

n∑
i=1

ci
||ai − bi

|| =
n∑
i=1

ci
(
ai − bi

)
.

(23)MCC2 =

n∑
i=1

ci
||ai − ei

|| =
n∑
i=1

ci
(
ei − ai

)
.

(24)MCC3 =

n∑
i=1

ci
||ai − fi

|| =
n∑
i=1

ci
(
ai − fi

)
.

(25)MCC4 =

n∑
i=1

ci
||ai − gi

|| =
n∑
i=1

ci
(
gi − ai

)
.
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The feasible solutions 
{
b1, b2,… , bn, b

c
}
 and 

{
f1, f2,… , fn, f

c
}
 satisfy the condi-

tion ||b1 − bc|| ≤ � and ||f1 − f c|| ≤ � (i = 1, 2,… , n) of model P1, then fi ≥ f c − � and 
bi ≤ bc + � (for all i = 1, 2,… , n) , hence

When � tends to 0, 
n∑
i=1

ci(f
c − bc − 2�) tends to 

n∑
i=1

ci(f
c − bc) > 0 and therefore it is

Thus, MCC1 > MCC3.
Based on Eqs. (23) and (25), we have

The feasible solutions 
{
e1, e2,… , en, e

c
}
 and 

{
g1, g2,… , gn, g

c
}
 satisfy the condi-

tion ||e1 − ec|| ≤ � and ||g1 − gc|| ≤ � (i = 1, 2,… , n) of model P1,then ei ≥ ec − � and 
gi ≤ gc + � (for all i = 1, 2,… , n) , hence

Taking limits when � tends to 0, we would get that

Thus, MCC2 > MCC4.
Accordingly, it is clear that [0 , min

i
ai

)
∪
(
max

i
ai , 1] is excluded from the range of 

the optimal collective opinion oc of model P1. Therefore, it is concluded that 
oc ∈

[
min
i

ai, max
i

ai

]
.

This completes the proof of Lemma 1.

Theorem 2  Let 
{
p1, p2,… , pn, p

c
}
 denote the optimal solution of model P6. Then, 

it is: 

(26)MCC1 −MCC3 =

n∑
i=1

ci
(
ai − bi

)
−

n∑
i=1

ci
(
ai − fi

)
=

n∑
i=1

ci
(
fi − bi

)
.

(27)MCC1 −MCC3 =

n∑
i=1

ci
(
fi − bi

)
≥

n∑
i=1

ci(f
c − bc − 2�).

(28)MCC1 −MCC3 > 0.

(29)MCC2 −MCC4 =

n∑
i=1

ci
(
ei − ai

)
−

n∑
i=1

ci
(
gi − ai

)
=

n∑
i=1

ci
(
ei − gi

)
.

(30)MCC2 −MCC4 =

n∑
i=1

ci
(
ei − gi

)
≥

n∑
i=1

ci
(
ei − gi − 2�

)
.

(31)MCC2 −MCC4 ≥

n∑
i=1

ci
(
ei − gi

)
> 0.

(32)pc =

⎧⎪⎨⎪⎩

max
i

pi, 2
n∑
i=1

ciai −
�
min
i

ai +max
i

ai

� n∑
i=1

ci < 0

min
i

pi, 2
n∑
i=1

ciai −
�
min
i

ai +max
i

ai

� n∑
i=1

ci > 0

.
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Proof  The process of proving Theorem 2 is divided into two steps.

Step 1 Proof pc ∈
[
min
i

ai, max
i

ai

]
.

The aim of solving model P1 is to obtain the optimal solution under the fixed deci-
sion rule, while solving model P6 aims at obtaining the optimal adjusted collective 
opinion that maximizes the MCC, which equals to finding the optimal decision rule 
that maximizes the MCC based on the Eq. (5).

The MCC obtained with model P1 with this optimal decision rule is the largest of all 
MCC obtained with model P1 with any decision rule. Obviously, Lemma 1 still applies 
to model P6 because the optimal solution 

{
p1, p2,… , pn, p

c
}
 of model P6 is also the 

optimal solution of model P1 with this optimal decision rule. Hence, it is concluded 
that pc ∈

[
min
i

ai, max
i

ai

]
.

Step 2 Proof pc → min
i

pi or max
i

pi.
Let 

{
h1, h2,… , hn, h

c
}
 , 
{
f1, f2,… , fn, f

c
}
 , and 

{
g1, g2,… , gn, g

c
}
 denote feasible 

solutions of model P6, where hc ∈
(
min
i

ai, max
i

ai

)
 , f c = min

i
ai and gc = max

i
ai and 

� is a small enough number.

	 (i)	 For hc ∈
(
min
i

ai, max
i

ai

)
 , it is 

	 (ii)	 For f c = min
i

ai , it is 

	 (iii)	 For gc = max
i

ai , it is

Based on Eqs. (33) and (34), it is

(33)MCC1 =

n∑
i=1

ci
||ai − hi

|| =
∑

i∶hi≥ai

ci
(
hi − ai

)
+

∑
i∶hi<ai

ci
(
ai − hi

)
.

(34)

MCC2 =

n∑
i=1

ci
||ai − fi

|| =
n∑
i=1

ci
(
ai − fi

)
=

∑
i∶hi≥ai

ci
(
ai − fi

)
+

∑
i∶hi<ai

ci
(
ai − fi

)
.

(35)MCC
3
=

n∑
i=1

ci
||ai − gi

|| =
n∑
i=1

ci
(
gi − ai

)
=

∑
i∶hi≥ai

ci
(
gi − ai

)
+

∑
i∶hi<ai

ci
(
gi − ai

)

(36)

MCC2 −MCC1 =
∑

i∶hi≥ai

ci
(
2ai − fi − hi

)
+

∑
i∶hi<ai

ci
(
hi − fi

)

≥

∑
i∶hi≥ai

ci
(
2hi − fi − hi

)
+

∑
i∶hi<ai

ci
(
hi − fi

)

≥

∑
i∶hi≥ai

ci
(
hi − fi

)
+

∑
i∶hi<ai

ci
(
hi − fi

)

≥

n∑
i=1

ci
(
hi − fi

)
.



1250	 W. Xu et al.

1 3

The feasible solutions 
{
h1, h2,… , hn, h

c
}
 and 

{
f1, f2,… , fn, f

c
}
 satisfy the con-

ditions ||h1 − hc|| ≤ � and ||f1 − f c|| ≤ � (i = 1, 2,… , n) of model P6,then hi ≥ hc − � 
and fi ≤ f c + � (for all i = 1, 2,… , n) . Taking limits when � tends to 0, we would 
get that

Based on Eqs. (33) and (35), it is

The feasible solutions 
{
h1, h2,… , hn, h

c
}
 and 

{
g1, g2,… , gn, g

c
}
 satisfy the con-

ditions ||h1 − hc|| ≤ � and ||g1 − gc|| ≤ � (i = 1, 2,… , n) of model P6,then hi ≤ hc + � 
and gi ≥ gc − � (for all i = 1, 2,… , n) . Similarly, it would be

From Eqs.  (37) and (39), it can be concluded that MCC2 > MCC1 and 
MCC3 > MCC1 when � is a small enough number, i.e. the closer pc is to min

i
ai or 

max
i

ai , the larger the MCC is. Because pc ∈
[
min
i

pi, max
i

pi

]
 , this conclusion is 

guaranteed in the limit case, i.e. pc = min
i

pi when pc → min
i

ai and pc = max
i

pi 
when pc → max

i
ai . Therefore, we have

Taking limits when ε tends to 0, we would get that

This completes the proof of Theorem 2.
Based on the Theorem 2, the decision rule that maximizes the MCC of model P6 

is

(37)MCC2 −MCC1 ≥

n∑
i=1

ci(h
c − f c) > 0.

(38)

MCC3 −MCC1 =
∑

i∶hi≥ai

ci
(
gi − hi

)
+

∑
i∶hi<ai

ci
(
gi + hi − 2ai

)

≥

∑
i∶hi≥ai

ci
(
gi − hi

)
+

∑
i∶hi<ai

ci
(
gi + hi − 2hi

)

≥

∑
i∶hi≥ai

ci
(
gi − hi

)
+

∑
i∶hi<ai

ci
(
gi − hi

)

≥

n∑
i=1

ci
(
gi − hi

)
.

(39)MCC3 −MCC1 ≥

n∑
i=1

ci(g
c − hc) > 0.

(40)pc =

{
max

i
pi, MCC3 > MCC2

min
i

pi, MCC3 < MCC2

(41)pc =

⎧⎪⎨⎪⎩

max
i

pi, 2
n∑
i=1

ciai −
�
min
i

ai +max
i

ai

� n∑
i=1

ci < 0

min
i

pi, 2
n∑
i=1

ciai −
�
min
i

ai +max
i

ai

� n∑
i=1

ci > 0
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with the following associated decision weight vector

4 � Simulation Analysis

In this section, we further reveal the impact of non-cooperative behaviors and deci-
sion rules on MCC via Simulation experiments I, II and III. In the minimum-cost 
consensus model, ci denotes the cost of moving di ’s opinion 1 unit, and in this study 
we argue that it can represent the non-cooperative behavior coefficient of decision 
maker di because larger ci values mean less cooperation to reach consensus. Thus, 
C =

{
c1, c2,… , cn

}
 is considered to be the set of non-cooperative behavior coeffi-

cients. Meanwhile, we argue that the decision rules consist of the aggregation func-
tions and the associated decision weights.

4.1 � Simulation Experiment I: Impact of Non‑cooperative Behaviors on MCC

The basic idea of Simulation experiment I is to randomly generate original individ-
ual opinions and values of ci (i = 1, 2,… , n) . Particularly, ci is randomly generated 
based on the normal distribution N

(
�c, �

2
c

)
 subject to the constraint ci > 0 , where 

�c and �2
c
 approximately measure the expectation and variance of di ’s non-coopera-

tive behavior coefficient, respectively. Thus, we study the impact of non-cooperative 
behaviors on MCC through �c and �2

c
 . Simulation experiment I can be formally pre-

sented as follows.
Simulation experiment I
Input The number of decision makers n , the expectation of di ’s non-cooperative 

behavior coefficient �c , the variance of di ’s non-cooperative behavior coefficient �2
c
 , 

the established threshold value ε and decision weight w =
(
w1,w2,… ,wn

)T.
Output The minimum consensus cost, MCC.
Step 1 Let A =

{
a1, a2,… , an

}
 be the original individual opinions set in model 

P2, where ai (i = 1, 2,… , n) is randomly selected using the uniform distribution on 
[0, 1].

Step 2 Let C =
{
c1, c2,… , cn

}
 be the set of non-cooperative behavior coefficients 

in model P2, where ci(i = 1, 2,… , n) is randomly generated based on N
(
�c, �

2
c

)
 sub-

ject to the constraint ci > 0.

(42)ac = FOWA

(
a1, a2,… , an

)
,

(43)OWA_max =

⎧⎪⎨⎪⎩

(1, 0,… , 0)T , 2
n∑
i=1

ciai −
�
min
i

ai +max
i

ai

� n∑
i=1

ci < 0

(0,… , 0, 1)T , 2
n∑
i=1

ciai −
�
min
i

ai +max
i

ai

� n∑
i=1

ci > 0

.
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Step 3 Compute the MCC based on model P2.
Without loss of generality, in the simulation we consider two decision rules:

We set different values for n , � , �c , �2
c
 and run Simulation experiment I 10,000 

times to calculate the average of the MCC values, which is shown in Figs. 2 and 3.
From Figs. 2 and 3, we draw the following observations:

(1)	 Fig. 2 shows that the MCC increases as �cand �2
c
 increase under different param-

eters. This implies that the non-cooperative behaviors in the group, defined by 
�c and �2

c
 , strongly increase the MCC, which translates in an increase in the 

difficulty when reaching consensus in GDM.
(2)	 Fig. 3 shows that the MCC increases as n increases under different parameters, 

being this increment more significant the smaller � values or the larger �2
c
 values 

are, respectively. This agrees with the real increase of difficulty in reaching con-
sensus the larger the group experts. Meanwhile, the number of decision makers 
will have a stronger impact on the consensus reaching in GDM when decision 

OWA1 = (1∕n,… , 1∕n)T and OWA2 = (0, 1∕(n − 2),… , 1∕(n − 2), 0)T .

Fig. 2   Effects of �
c
 and �2

c
 on the MCC under different parameters
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makers are less tolerant to inconsistent views, defined by � , or the larger the 
non-cooperative behaviors in the group are, than otherwise.

4.2 � Simulation Experiment II: The Joint Impact of Non‑cooperative Behaviors 
and Decisions Rules on MCC

Let C =
{
c1, c2,… , cn

}
 be the set of non-cooperative behavior coefficients, 

defined by unit cost; S(C) =
∑n

i=1
ci the sum of the non-cooperative behavior coef-

ficients; and D(C) =
�∑n

i=1

�
ci − S(C)∕n

�2�
∕n the variance of the non-cooperative 

behavior coefficients. Let wi = wi∕
∑n

j=1
wj (i = 1, 2,… , n) and wi be randomly 

generated using normal distribution N
(
0.2, �2

w

)
 subject to the constraint wi > 0 . 

Then, �2
w
 approximately measures the variance of decision weights.

The basic idea of Simulation experiment II is to randomly generate original 
individual opinions, and the values of wi (i = 1, 2,… , n) . Then, we investigate the 

Fig. 3   Effects of � and n on the MCC under different parameters
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joint impact of non-cooperative behaviors and decisions rules on MCC through C 
and �2

w
 . Simulation experiment II can be formally presented as follows.

Simulation experiment II
Input The number of decision makers n , the variance of decision weights �2

w
 , 

the established threshold value ε and the non-cooperative behavior coefficients set 
C =

{
c1, c2,… , cn

}
.

Output The minimum consensus cost, MCC.
Step 1 Let A =

{
a1, a2,… , an

}
 be the original individual opinions set of model 

P2 (or model P3), where ai (i = 1, 2,… , n) is randomly selected using the uniform 
distribution on [0, 1]..

Step 2 Let W =
(
w1,w2,… ,wn

)T be decision weight of model P2 (or model P3), 
where wi = wi∕

∑n

j=1
wj (i = 1, 2,… , n) , and wi is randomly generated using normal 

distribution N
(
0.2, �2

w

)
 subject to the constraint wi > 0.

Step 3 Compute the MCC based on model P2 (or model P3).
In order to reflect the impact of D(C) on MCC, we consider eight non-coopera-

tive behavior coefficients sets:

with same sum S
(
Ck

)
= 15 (k = 1, 2,… , 8) but different variance values:

We set different �2
w
 values and run Simulation experiment II 10,000 times to cal-

culate the average of the MCC values, which are shown in Figs. 4 and 5.
From Figs. 4 and 5, we draw the following observations:

(1)	 Fig. 4 shows that the MCC obtained with model P2 is larger than the one obtained 
with model P3 under different parameters, which means that it is more difficult 
to reach consensus using OWA than using WA under the same decision weight.

(2)	 In Fig.  5a, S 
(
Ck

)
= 15(k = 1, 2, 3, 4, 5) , D

(
C
1

)
< D

(
C
2

)
< D

(
C
3

)
< D

(
C
4

)
< D

(
C
5

)
 ; and in Fig. 5b, S

(
Ck

)
= 15 (k = 2, 3, 4, 6, 8) , D

(
C
2

)
= D

(
C
6

)
< D

(
C
3

)
= D

(
C
7

)
< D

(
C
4

)
= D

(
C
8

)
 . Figure 5a shows that the MCC, obtained with 

model P2 and P3, slightly fluctuate around the same fixed value as �2
w
 increases 

under the same D(C) and S(C) values. Figure 5b shows that larger D(C) values 
lead to lower MCC under the same S(C) values. This implies that decision rules, 
defined by decision weights and the aggregation functions, are insensitive to the 
MCC, while C , defined by D(C) and S(C) , is a main determinant in influencing 
the MCC.

C1 = {3, 3, 3, 3, 3},C2 = {5, 4, 3, 2, 1},C3 = {1, 2, 7, 3, 2},C4 = {8, 5, 2, 0, 0}

C5 = {10, 2, 1, 1, 1},C6 = {1, 2, 3, 4, 5},C7 = {7, 3, 2, 1, 2}C8 = {0, 0, 8, 5, 2},

D
(
C1

)
= 0,D

(
C2

)
= 2,D

(
C3

)
= 4.4,D

(
C4

)
= 9.6

D
(
C5

)
= 12.4,D

(
C6

)
= 2,D

(
C7

)
= 4.4,D

(
C8

)
= 9.6.
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4.3 � Simulation Experiment III: The Impact of the Consensus Within 
the Established Target on MCC

This section illustrates the relation between MCC and building a consensus opinion 
ac within a desired range  [a, b].We firstly consider the following minimum-cost con-
sensus model P7,

Fig. 4   The differences of models P2 (OWA) and P3 (WA) on MCC with n = 5 and � = 0.05

Fig. 5   The joint impact of �2

w
 and D(C) on MCC
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The basic idea of Simulation experiment III is to randomly generate original indi-
vidual opinions, and the values of ci (i = 1, 2,… , n) to investigate the effect of the 
consensus, within the established target, on MCC through �c , �2

c
 , and [a, b] . Simula-

tion experiment III can be formally presented as follows.
Simulation experiment III
Input The number of decision makers n , the expectation of di ’s non-cooperative 

behavior coefficient �c , the variance of di ’s non-cooperative behavior coefficient �2
c
 , the 

established threshold value ε , decision weight w =
(
w1,w2,… ,wn

)T and the estab-
lished collective solution target range [a, b].

Output The minimum consensus cost, MCC.
Step 1 Let A =

{
a1, a2,… , an

}
 be the original individual opinions set in model P7, 

where ai (i = 1, 2,… , n) is randomly selected using the uniform distribution on [0, 1].

(17)

⎧
⎪⎪⎨⎪⎪⎩

min
ai

n∑
i=1

ci
��ai − ai

��
ac = FOWA

�
a1, a2,… , an

�
���ai − ac

��� ≤ �, i = 1, 2,… , n

a ≤ ac ≤ b

,

Fig. 6   Effects of [a, b] and �2

c
 on the MCC under different parameters
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Step 2 Let C =
{
c1, c2,… , cn

}
 be the set of non-cooperative behavior coefficients 

in model P7, where ci(i = 1, 2,… , n) is randomly generated using normal distribution 
N
(
�c, �

2
c

)
 subject to the constraint ci > 0.

Step 3 Compute the MCC based on model P7.
Without loss of generality, in the simulation we consider two decision rules as 

follow:

We set different values for n , � , �c , �2
c
 , [a, b] and run Simulation experiment III 

10,000 times to calculate the average of the MCC values, which is shown in Figs. 6 and 
7.

From Figs. 6 and 7, we draw the following observations:

(1)	 Likewise to the observations previously drawn from Figs. 2 and 3, Figs. 6 and 7 
also show that the MCC increases as �cand �2

c
 increase under different param-

eters.
(2)	 Figs. 6 and 7 show that the MCC increases when the established collective solu-

tion target range moves up from [0.5, 0.6] to [0.9, 1] through [0.6, 0.7] , [0.7, 0.8] , 
[0.8, 0.9] ,which means that it is more difficult to achieve an extreme collective 

OWA1 = (1∕n,… , 1∕n)T and OWA2 = (0, 1∕(n − 2),… , 1∕(n − 2), 0)T .

Fig. 7   Effects of [a, b] and �
c
 on the MCC under different parameters
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consensus opinion. Meanwhile, this inference is more obvious under larger non-
cooperative behaviors in the group, defined by �c and �2

c
.

5 � Conclusion

This paper studied the impact of decision rules and non-cooperative behaviors 
on MCC in GDM. Theoretically, the decision rule that minimizes or maximizes 
MCC was derived. Furthermore, the joint impact of non-cooperative behaviors 
and decision rules on MCC were analyzed via simulation experiments.

In general, a preference adjustment has associated a cost and the consensus 
reaching resources are limited, which implies that the results obtained in this 
paper can provide new perspectives to understand how decision rules and non-
cooperative behaviors influence the consensus cost.

Meanwhile, social network and opinion dynamics are becoming new tools to 
model CRP (Dong et al. 2018a; Gong et al. 2020), and we argue that it will be 
promising to investigate the consensus with minimum cost in social network and 
opinion dynamics contexts. In particular, it is very necessary to investigate the 
impact of decision rules and non-cooperative behaviors on MCC in social net-
work and opinion dynamics contexts.
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