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Abstract
Individual consistency and group consensus are both important when seeking reliable
and satisfying solutions for group decision making (GDM) problems using additive
preference relations (APRs). In this paper, two new algorithms are proposed to facili-
tate the consensus reaching process, the first of which is used to improve the individual
consistency level, and the second of which is designed to assist the group to achieve a
predefined consensus level. Unlike previous GDM studies for consistency and consen-
sus building, the proposed algorithms are essentially heuristic, modify only some of
the elements in APRs to reduce the number of preference modifications in the consis-
tency and consensus process, and havemodified preferences that belong to the original
evaluation scale to make the generated suggestions easier to understand. In particular,
the consensus algorithm ensures that the individual consistency level is still accept-
able when the predefined consensus level is achieved. Finally, classical examples and
simulations are given to demonstrate the effectiveness of the proposed approaches.

Keywords Group decision making · Additive preference relation · Consistency ·
Consensus

1 Introduction

The aim of GDM is to increase the overall satisfaction level of the ultimate decision
for a group of decision makers (DMs) (Cabrerizo et al. 2018; Palomares et al. 2013).
Before making a decision, it is important to determine what methods are to be used

B Zhibin Wu
zhibinwu@scu.edu.cn

1 Uncertainty Decision-Making Laboratory, Business School, Sichuan University, No. 24, South
Section 1, Yihuan Road, Chengdu 610065, Sichuan, People’s Republic of China

2 School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics,
University of Bristol, Bristol BS8 1TH, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10726-019-09636-3&domain=pdf
http://orcid.org/0000-0002-9372-0992


1168 Z. Wu et al.

for the DMs to assess the alternatives. Generally speaking, there have been three
types of preference structures used: preference orderings (Contreras 2010), utility
functions (Gong et al. 2016), and preference relations (also referred to as pairwise
comparison matrices) (Li et al. 2016). Compared with specific preference sequences
and utility values, DMs are more likely to give pairwise comparisons when there are
two alternatives (Cavallo and D’Apuzzo 2009).

Various types of preference relations have been proposed in literature (Orlovsky
1978; Saaty 1980), such as additive preference relations, multiplicative preference
relations, and linguistic preference relations. As additive preference relations (APRs)
have been one of themost commonly used, they have been extensively studied. Further,
for consistency and consensus are the key fundamental issues for effective GDMprob-
lems with additive preference relations (APRs) (Gupta 2018; Wu and Xu 2018b), this
paper develops two new algorithms to solve the recognized consistency and consensus
problems when using classical APRs.

Individual consistency ensures that theDMsare notmaking randomor illogical pair-
wise comparisons as inconsistent preference relations usually result in poor results. To
effectively manage individual consistency with APRs, Herrera-Viedma et al. (2007b)
proposed a GDM problem model in which the DMs were able to express their incom-
plete fuzzy preference relations, and developed an iterative procedure guided by the
additive consistency properties to estimate the missing information in the DM’s pref-
erences. Zhang et al. (2012) developed linear optimization models to address APRs
consistency and consensus issues. Zhang et al. (2018b) proposed three new additive
consistency indexes and a number of mixed 0-1 linear programming models that mini-
mized the total adjustment and the number of elements to be adjusted.Wu et al. (2019)
developed multi-stage optimization models for both individual consistency and group
consensus problems to refine the obtained solutions. Other consistency measures and
associated consistency improvement processes have been also proposed (Alonso et al.
2008; Wan et al. 2018).

Consensus is when a decision group achieves sufficient agreement before the selec-
tion process. Various schemes have been suggested to facilitate consensus (Dong et al.
2019; Hou 2015; Pérez et al. 2014; Rezaei and Ortt 2013). For example, Dong et al.
(2016) proposed a new consensus framework to manage non-cooperative behavior
that had a self-management mechanism that generated dynamic weights for the DMs.
González-Arteaga et al. (2016) constructed a novel consensus measure based on Pear-
son’s correlation coefficient to measure the consistency of the preferences expressed
by the DMs for the alternatives. Li et al. (2019) designed an optimization-based con-
sensus rule to determine the adjustment range for each preference value to ensure
individual consistency. Zhang et al. (2018a) developed a novel consensus reaching
model for large-scale GDM problems with a heterogeneous preference structure that
accounted for individual concerns and satisfaction, and Zhang et al. (2019) proposed a
GDMconsensusmodel based on an optimized heterogeneous preference structure, that
minimized the loss of heterogeneous preference information between the individual
DM preference vectors. Although these previous attempts to manage individual con-
sistency and group consensus have made significant progress, there remain limitations
and unanswered research questions, as follows.
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Direct Iterative Procedures for Consensus Building… 1169

(1) The consistency and consensus improvement strategies in existing approaches can
be categorized into global and local preference modifications. In the global mod-
ifications (Xu et al. 2013; Wu and Xu 2012), as all elements from the original
preference relations are adjusted after the improvement process, persuading the
DMs to change each element of their APRs could result in a significant cost. If the
changes to each element results in a unit cost, to reduce this cost, it is necessary
to change only a few elements in the original preference relations to achieve the
predefined consistency and consensus (Wu et al. 2018a). Further, after the consis-
tency improvement, the modified DM judgements or preferences are continuous
preferences that are no longer equal to any of the original terms from the 0–1 scale.
Therefore, it is difficult for the DMs to accept a continuous preference modifica-
tions that is different from their initial preferences. If all original preferences are
represented by a 0–1 discrete scale, the generated suggestions should also belong
to the same scale, which means that any new approach should aim to change only
a few elements in each decision round, with all obtained suggestions belonging to
the original 0–1 scale.

(2) As individual consistency ensures that the preferences have reasonable pairwise
comparisons, individual consistency improvements have been usually applied
before the consensus reaching process (Chu et al. 2016; Wu and Xu 2012), which
means that the subsequent consensus improvements processes are based on the
assumption that the individual consistencies are acceptable (Xu et al. 2013). How-
ever, it has been found that previously achieved consistencies can be easily lost
during the consensus improvement process (Li et al. 2019), which intuitively
means that without parallel approaches that can jointly control consistency and
consensus building, significant time and costs may be needed for further individ-
ual consistency improvements. While an optimization-based consensus rule has
been developed to guarantee individual consistency when building consensus (Li
et al. 2019), simpler approaches are needed to negate the necessity to repeat the
consistency improvement process.

In this paper, two new algorithms are proposed to facilitate the GDM consensus
reaching process,the first of which improves the individual consistency, and the second
of which assists the group to achieve the predefined consensus level. The contributions
of these proposed algorithms are that only some of the APRs elements are modified;
and all modified preferences belong to the original evaluation scale, which ensures that
the individual consistency is acceptable when the predefined consensus is achieved.
The importance of the contributions should be further explained. The willingness to
modify the individual preferences is clearly a prerequisite in a decisionmaking process
concerning consistency and consensus building. When people make pairwise compar-
isons, their preferences are expected to be rational and reliable. It is imperative to ask
those whose consistency level and/or consensus level are lower than some predefined
thresholds. The proposed algorithms provide the DMs suggestions on how to modify
their preferences when they make decisions. Only a few of the most promising DMs
and alternatives are needed to reconsider. If the DMs use these algorithms and fol-
low the suggested revisions, they are likely to achieve the predefined consistency and
consensus at a reasonable cost. In addition, they could get convincing supports for
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the preference revision process. The proposed algorithms essentially guide the DMs
towards a satisfactory status described by consistency and consensus.

The remainder of this paper is organized as follows. In Sect. 2, an algorithm to
improve the APR is investigated, in Sect. 3, an algorithm is presented to achieve the
consensus process while controlling the individual consistency level for GDMs using
APRs, in Sect. 4 several simulations are given to demonstrate the practicality of the
proposed algorithms, and conclusions are given in Sect. 5.

2 APR Consistency Improvement

In this section, an algorithm to improve the APR individual consistency is presented,
and a classical numerical example is given.

2.1 Consistency Control

Definitions for APR and its associated consistency can be found in previous studies
(Herrera-Viedma et al. 2004, 2007a; Wu et al. 2018a). For a finite set of alternatives
X = {x1, x2, . . . , xn}, an APR about X is denoted by B = (bi j )n×n ⊂ X × X ,
bi j ∈ [0, 1], in which the elements bi j of B have additive reciprocity, bi j + b ji =
1, i, j = 1, 2, . . . , n. It should be noted that two discrete scales have been most
commonly used for APRs (Wu et al. 2018a), the numerical scale for which are based
on [0, 1],

S[0,1] = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1},

and a numerical scale based on [0.1, 0.9] which excludes the two extreme end points,

S[0.1,0.9] = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

The terms in S[0,1] and S[0.1,0.9] are called discrete preferences in the original scale.
When the preference representation structure is a preference relation, it is necessary

to measure the consistency of the preference relation to ensure the intrinsic logic in the
individual pairwise comparisons. One of the most frequently used APR consistency
definitions has been additive transitivity. Let B = (bi j )n×n ⊂ X × X be an APR.
Then B is additively consistent if (Herrera-Viedma et al. 2004)

bi j = bik + bkj − 0.5, ∀i, j, k = 1, 2, . . . , n. (1)

Correspondingly, a consistency index to measure the consistency level of B is defined
as (Herrera-Viedma et al. 2007a; Wu et al. 2018a):

C I (B) = 1 − 4

n(n − 1)(n − 2)

n−2∑

i=1

n−1∑

j=i+1

n∑

k= j+1

|bi j + b jk − bik − 0.5|. (2)
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For a predefined threshold C I , if C I (B) ≥ C I , then B is said to have acceptable
consistency. It is obvious that when C I (B) = 1 (2) holds. A bigger C I (B), indicates
that B is more consistent.

As real-world decision-making environments are often complex, it is difficult to
obtain an APR B that has perfect consistency C I (B) = 1. When the consistency level
of a given APR is not satisfactory, individuals are asked to modify their preferences to
obtain better consistency and improve the reliability of their judgements. To improve
the consistency of B, the basic idea is to determine the position at which the individual
needs to modify their preferences.

Let B = (bi j )n×n be an APR andC = (ci j )n×n be a consistent APR corresponding
to B. C is used to determine the position that has the largest influence on C I (B).
Different approaches can be used to obtain C (Wu et al. 2018a); however, to minimize
the deviations between B and C , the following optimization model is constructed,

min d(B,C) = 1
n×(n−1)

n∑
i=1

n∑
j=1, j �=i

|bi j − ci j |

s.t .

⎧
⎨

⎩

ci j ≥ 0, i, j = 1, 2, · · · , n,

ci j + c ji = 1, i, j = 1, 2, · · · , n,

ci j + c jk − cik = 0.5, i, j, k = 1, 2, · · · , n.

(3)

By solving model (3), a perfectly consistent APR C is obtained. Based on B =
(bi j )n×n and C = (ci j )n×n , a deviation matrix D = (di j )n×n is then defined, the
elements in which represent the absolute value for the difference between bi j and ci j .
where

di j = |bi j − ci j |.

The following algorithm is presented to improve the consistency level of B.

Algorithm 1
Input: A given APR B = (bi j )n×n , the consistency threshold C I , and the number of
maximum iterations rmax .
Output: Modified APR B = (bi j )n×n , C I (B), and the iterations r and the success
flag value f lag.

Step 1 Set r = 1, B1 = (bi j,1)n×n , B0 = B, and calculate the consistency of B1 .
If C I (B1) ≥ C I , go to Step 6; otherwise go to Step 2.

Step 2Compute the perfectly consistent APRC that corresponds to B1 using model
(3).

Step 3 Compute the consistency level for Br = (bi j,r )n×n , C I (Br ),

C I (Br ) = 1 − 4

n(n − 1)(n − 2)

n−2∑

i=1

n−1∑

j=i+1

n∑

k= j+1

|bi j,r + b jk,r − bik,r − 0.5|. (4)

If C I (Br ) ≥ C I , or r ≥ rmax go to Step 6; otherwise go on to Step 4. Note that
when r = 1, C I (Br ) has been calculated.
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Step 4 Calculate the deviation matrix Dr = (di j,r )n×n , where di j,r = |bi j,r − ci j |.
Step 5 Determine which elements in Br need to be changed and how to change

them. The maximum element for Dr is used to determine the elements to be changed.
If di∗, j∗ = max{di j,r |i < j}, then the element for Br at positions (i∗, j∗) and ( j∗, i∗)
should be modified. It should be noted that if more than one position is identified in
Step 5, either the preferences for all these positions are changed in the same round,
or one of the positions is randomly chosen. In this paper, if more than one position
is identified, the position with the minimum summation of row number and column
number is selected. The guidance rule is described in the following.

Let Os = {0, 0.1, . . . , 0.5, . . . , 0.9, 1} be a discrete numerical scale used by partic-
ipants to express their preferences, with the lth element of Os being denoted as Os(l).
There are 11 elements in Os each of which corresponds to a position in the position
set Ps = {1, 2, . . . , 10, 11}. Let Bl

r = (bli j,r )n×n , where

bli j,r =

⎧
⎪⎨

⎪⎩

bi j,r−1, i �= i∗, j �= j∗,
Os(l), i = i∗, j = j∗,
1/Os(l), i = i∗, j = j∗.

(5)

Let Posi∗ j∗ = {l|C I (Bl
r ) > C I (Br )} and P1i∗ j∗ = {l|C I (Bl

r ) ≥ C I }. Then there
are two possible cases.

Case 1: Posi∗ j∗ �= ∅, which implies that in this round, the individual consistency
level can be improved. There are still two cases needing to be discussed.

(I) P1i∗ j∗ �= ∅, which indicates that the predefined consistency level can be achieved
by selecting some l. In this case, an appropriate index li∗ j∗ is used to find the
modified element in this round. To preserve as much of the initial information as
possible, the modified element should be Os(li∗ j∗). It follows that

li∗ j∗ = argmin
l

{d(Bl
r , B)|l ∈ P1i∗ j∗}, (6)

where

d(Bl
r , B) = 2

n × (n − 1)

n−1∑

i=1

n∑

j=i+1

|bli j,r − bi j |. (7)

Through the reciprocal property, the element at position ( j∗, i∗) is changed to
1 − Os(li∗ j∗).

(II) P1i∗ j∗ = ∅, that is, {l|C I (Br ) < C I (Bl
r ) < C I } �= ∅, which indicates that

there is no l such that C I (Bl
r ) ≥ C I but the individual consistency level can be

improved. In this case, the modified element at position (i∗, j∗) is also denoted
as Os(li∗ j∗), and we have

li∗ j∗ = argmax
l

{C I (Bl
r )|l ∈ Posi∗ j∗}. (8)
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Similarly, the element at position ( j∗, i∗) is replaced by 1−Os(li∗ j∗). Note that,
if more than one number in Posi∗ j∗ meets the above condition, the one which is
closest to the original preference should be selected.

In both cases, the modified preference relations in this round are denoted as Br+1 =
(bi j,r+1)n×n , where

bi j,r+1 =
⎧
⎨

⎩

bi j,r , i �= i∗, j �= j∗,
Os(li∗ j∗), i = i∗, j = j∗,
1 − Os(li∗ j∗), i = j∗, j = i∗.

(9)

Let r = r + 1. If Case 1(I) is met, set flag = 1 and go to Step 6; otherwise go to Step
3.

Case 2: Posi∗ j∗ = ∅, which means that the selected position (i∗, j∗) is failed. Sort
the elements in {di j,r > 0|i < j} from the biggest to the smallest. Let D1 be the
sorted set of these elements. Further, let SP be the set of positions, each of which
corresponding one element in D1. Sequentially choose the other positions in SP and
go to the beginning of Step 5. If all the positions have been examined but the given
APR does not achieve the predefined consistency level, let f lag = 0. and go to Step
6.

Step 6 Let B = Br . Output B, C I (B), r , and f lag.
Step 7 End.

The steps of Algorithm 1 are clarified by further interpretations. Step 1 determines
the consistency level of the original APR and if the original APR does or does not
meets the consistency requirements. Step 2 is used to obtain the consistent APR that is
associated with the initial APR. Step 3 calculates the current consistency level when
r ≥ 2 and checks whether the termination condition is satisfied. Steps 4 and 5 provide
reasonable feedback strategy suggestions, with the deviation matrix obtained in Step
4 being used to identify the positions that need revising, and Step 5 giving accurate
advice on what is needed to revise the preferences over the identified positions.

2.2 Numerical Example and Comparisons

Example 1 To demonstrate Algorithm 1, a classical example that has been given in
several papers is employed. An APR over four alternatives {x1, x2, x3, x4} is given as
(Chiclana et al. 1998; Ma et al. 2006),

B =

⎛

⎜⎜⎝

0.5 0.1 0.6 0.7
0.9 0.5 0.8 0.4
0.4 0.2 0.5 0.9
0.3 0.6 0.1 0.5

⎞

⎟⎟⎠ .

Setting C I = 0.9, Algorithm 1 is used to examine and improve the consistency
level of B.
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Round 1
The individual consistency measure from Wu et al. (2018a) is used, and we have

C I (B1) = C I (B) = 0.6667, As C I (B1) < C I , the consistent APR C is calculated
and then Step 4 in Algorithm 1 is applied, from which the deviation matrix D1 is
obtained;

D1 =

⎛

⎜⎜⎝

0 0.1531 0.0469 0
0.1531 0 0 0.5469
0.0469 0 0 0.2531

0.5469 0.2531 0.0001

⎞

⎟⎟⎠

As (i∗, j∗) = (2, 4) and

C I (Bl
1) = {0.5333, 0.5667, 0.6000, 0.6333, 0.6667, 0.7000, 0.7333, 0.7667,

0.8000, 0.8333, 0.8667},

P1i∗ j∗ = P124 = ∅ and Case 1(II) for Step 5 applies. Therefore, themodified element
at position (2, 4) should be 1 and the modified matrix, denoted as B2, is given as,

B2 =

⎛

⎜⎜⎝

0.5 0.1 0.6 0.7
0.9 0.5 0.8 1
0.4 0.2 0.5 0.9
0.3 0 0.1 0.5

⎞

⎟⎟⎠

The difference between B and B2 over the upper triangular part has been underlined.
Due to C I (B2) = 0.8667 < 0.9, a second round is needed.

Round 2
As it is found that (i∗, j∗) = (3, 4) and

C I (Bl
2) = {0.7333, 0.7667, 0.8000, 0.8333, 0.8667, 0.9000, 0.9333, 0.9333,

0.9000, 0.8667, 0.8333},

the new element for position (3,4) needs to be selected from {0.5, 0.6, 0.7, 0.8}, and
the modified element at position (3, 4) should choose 0.8. The modified APR, denoted
as B3, is given as

B3 =

⎛

⎜⎜⎝

0.5 0.1 0.6 0.7
0.9 0.5 0.8 1
0.4 0.2 0.5 0.8
0.3 0 0.2 0.5

⎞

⎟⎟⎠

Because C I (B3) = 0.9 ≥ C I , Algorithm 1 is terminated and we have B = B3.
According to B3, only two elements in the upper triangular part of B need to be
modified.
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Table 1 Comparisons for Example 1

Method NOC(B, B) AOC(B, B)

Proposed method 2 0.7

Method in Ma et al. (2006) 6 0.8980

Method in Zhang et al. (2012) and Li et al. (2019) 4 0.7

The characteristics of the proposed algorithm are highlighted through a comparison
with two classical methods (Ma et al. 2006; Zhang et al. 2012). First, in the iteration-
based approach (Ma et al. 2006), when Δt = 0.01 is set, the revised APR is,

B =

⎛

⎜⎜⎝

0.5000 0.2616 0.5102 0.6282
0.7384 0.5000 0.6922 0.6694
0.4898 0.3078 0.5000 0.7024
0.3718 0.3306 0.2976 0.5000

⎞

⎟⎟⎠ .

Using the optimization-based method (Zhang et al. 2012), the modified APR is

B =

⎛

⎜⎜⎝

0.5000 0.2059 0.5453 0.7000
0.7941 0.5000 0.8000 0.7522
0.4547 0.2000 0.5000 0.7127
0.3000 0.2478 0.2873 0.5000

⎞

⎟⎟⎠ .

The distance between B and the modified APR B is a commonly used criterion for
comparing different approaches. ForAPRs, the distance between B and B is defined by
Eq. (7). This distance measures the amount of change and therefore is further denoted
as AOC(B, B). Another criterion is the number of changes needed, which is defined
by

NOC(B, B) =
n−1∑

i=1

n∑

j=i+1

δi j , (10)

where δi j = 1 if |bi j − bi j | �= 0, and δi j = 0 if |bi j − bi j | = 0.
The comparison results are shown in Table 1. The consistency improvement model

used inLi et al. (2019)was the same as inZhang et al. (2012); therefore, the comparison
results for these two papers are on the same line. Note also that as the APR has a
reciprocal property, the two changes in the revised APR are two times the number of
changes in the upper triangular part. However, only counting the number of changes
in the upper triangular part does not influence the comparison.

Compared with existing methods, the proposed algorithm was observed to have
the following characteristics: (1) fewer elements needed to be changed to achieve the
same consistency level; and (2) all modified elements belonged to the original discrete
scale. Neither of the other two methods simultaneously had these two characteristics.
Nonetheless, these features need to be interpreted with caution. Using the proposed
method, it is suggested that the preference for position (2,4) change from 0.4 to 1 and

123



1176 Z. Wu et al.

the preference for position (3,4) change from 0.9 to 0.8, which indicates that there
is a likely trade-off between the number of modifications and the amount of change
required; that is less modifications maymean that some elements need to be drastically
modified, such as the case from 0.4 to 1. Although the other two methods had more
elements that needed to be modified, the extent of the changes were not so drastic.
It must be noted that in practice, the revised APR from the algorithm is used as a
reference for the DM to consider the inconsistencies and therefore it is up to the DM
to decide on whether the trade-offs between the different objectives are acceptable.
In some cases, the DMs may prefer a smaller number of modifications on the pairs,
which could result in the greatest consistency improvements, however, in other cases,
the DMs may consider that more but smaller modifications are more acceptable.

3 APR Consensus Improvement

The consensus process is dynamic and involves several rounds of discussion and
revision on the individual APRs until the desired group agreement is attained (Wu
and Xu 2012). When consensus schemes are applied, the DMs need to participate in
the discussions to find a consensus solution. The process of reaching consensus has
been widely studied and several real world consensus-building applications proposed
(Kim 2008; Parreiras et al. 2012). In this section, an algorithm to improve the group
consensus for APRs is presented, and a classical numerical example is given.

3.1 Consensus Measure

Let E = {eh |h = 1, 2, . . . ,m} be a set of DMs, and eh denote the hth DM. Suppose
λ = (λ1, λ2, . . . , λm)T is a weight vector for E , where

∑m
h=1 λh = 1 and λh ∈

[0, 1]. Let Bh = (ai j )n×n(h = 1, 2, . . . ,m) be m APRs over a set of alternatives
X = {x1, x2, . . . , xn}. Suppose Bc is the group APR, Bc = (bci j )n×n , and

bci j =
m∑

h=1

λh × bhi j . (11)

Then the group consensus index for Bh is defined as follows (Wu and Xu 2012),

GC I (Bh) = 1−d(Bh, Bc) = 1− 2

n × (n − 1)

n−1∑

i=1

n∑

j=i+1

|bhi j − bci j |, h = 1, 2, . . . ,m.

(12)
A largerGC I value indicates a higher degree of consensus, and the smaller the value

of GC I , the greater the differences between the individual DM opinions in the group.
If GC I (Bh) = 1, then the hth DM is in full consensus with the group preference.
However, perfect consensus is difficult to achieve in practice.Depending on the actual
situation, the DMs establish a threshold GC I . If GC I (Bh) ≥ GC I , h = 1, 2, . . . ,m,
an acceptable level of consensus is achieved. Otherwise, another discussion round
starts with feedback to bring the individual APRs closer together.
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3.2 Consensus Reaching Process

In this subsection, the complete procedure for the achievement of a predefined con-
sensus level is given, an essential step in which is the feedback, which seeks to give the
DMs reasonable advice when they have no ideas as to how to change their preferences.
An algorithm is proposed to elucidate the consensus reaching process.

Algorithm 2
Input: Individual APRs {B1, B2, . . . , Bm}, the weight vector λ = (λ1, λ2, . . . , λm)T ,
the predefined threshold C I , GC I , and the maximum iterations rmax .
Output: Modified APRs {B1, B2, . . . , Bm}, GC I (Bh), C I (Bh), h = 1, 2, . . . ,m,
the number of iterations r , and the success flag value f lag.

Step 1 Set r = 1, Bh,1 = (bhi j,1)n×n , Bh,1 = Bh . Use Algorithm 1 to ensure each

Bh,r has an acceptable individual consistency with C I , with the modified preference
relations being still denoted as Bh,r .

Step 2 Calculate the group preference relation Bc
r = (bci j,r )n×n .

Step 3 Compute the consistency index C I (Bh,r ) and the group consensus index
GC I (Bh,r ), if
C I (Bh,r ) ≥ C I ∧ GC I (Bh,r ) ≥ GC I , h = 1, 2, . . . ,m or r ≥ rmax , go to step 6;
otherwise continue to the next Step.

Step 4 Identify which DMs need to reconsider their preferences and which pair of
alternatives have to be checked, for which the following recognition rules are used:

(1) Recognize the DMs eh− that are contributing the least to the current consensus
process. The corresponding index h− is determined by

h− = argmin
h

GC I (Bh,r ). (13)

The minimum GC I in the r th round is denoted as GC Ir . If more than one DM is
identified in this step, then all are checked for the next identification rule, or one
is selected randomly for the next identification rule.

(2) Recognize the places that have to be modified for DM eh− . Suppose for eh− , the
preference over (i∗, j∗) is the farthest compared to the group preference over
(i∗, j∗), then bh−

i∗ j∗ needs to be modified. Following the above notations, the place
(i∗, j∗) is given by,

(i∗, j∗) = argmax
i, j

|bh−
i j,r − bci j,r |. (14)

From (13)–(14), eh− needs to modify the APR for the pair (xi∗ , x j∗).
Step 5 Generate suggestions. This step is critical and is used to modify the pref-

erence for the identified DMs. Let Os = {0, 0.1, . . . , 0.6, . . . , 0.9, 1}, be the set
of eleven original terms with the lth element of Os being denoted as Os(l). Let

Bl
h−,r = (bh

−,l
i j,r )n×n , where,

bh
−,l

i j,r =

⎧
⎪⎨

⎪⎩

bh
−

i j,r−1, i �= i∗, j �= j∗,
Os(l), i = i∗, j = j∗,
1/Os(l), i = i∗, j = j∗.

(15)
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Let Posi∗ j∗(eh−) = {l|C I (Bl
h−,r ) ≥ C I ∧ GC I (Bl

h−,r ) > GC Ir } and

P1i∗ j∗(eh−) = {l|C I (Bl
h−,r ) ≥ C I ∧ GC I (Bl

h−,r ) ≥ GC I }.
Therefore, there are two cases need to to be checked.
Case 1: Posi∗ j∗(eh−) �= ∅, which implies that in the current round, the consensus

level can be improved. The following two cases are examined.

(I) P1i∗ j∗(eh−) �= ∅ which indicates that both the predefined consistency and con-
sensus can be satisfied by choosing some l. To preserve as much initial information
as possible, the modified element should be Os(li∗ j∗), where

li∗ j∗ = argmin
l

{d(Bl
h−,r , Bh−)|l ∈ P1i∗ j∗(eh−)}. (16)

The element on position ( j∗, i∗) should be 1 − Os(li∗ j∗).
(II) P1i∗ j∗(eh−) = ∅, that is, {l|C I (Bl

h−,r ) ≥ C I ∧ GC Ir < GC I (Bl
h−,r )

< GC I } �= ∅. In this case, only an appropriate index li∗ j∗ needs to be cho-
sen to determine the element that needs to be modified in this round. It follows
that

li∗ j∗ = argmax
l

{GC I (Bl
h−,r )|l ∈ Posi∗ j∗(eh−)}. (17)

The element at position ( j∗, i∗) is then obtained by 1 − Os(li∗ j∗). Note that, if
more than one number in Posi∗ j∗(eh−)meets the above condition, the one which
is closest to the original preference should be selected.

The modified preference relation for eh− in this round is denoted as Bh−,r+1 =
(bh

−
i j,r+1)n×n , where

bh
−

i j,r+1 =

⎧
⎪⎪⎨

⎪⎪⎩

bh
−

i j,r , i �= i∗, j �= j∗,

Os(li∗ j∗), i = i∗, j = j∗,
1 − Os(li∗ j∗), i = j∗, j = i∗.

(18)

Let r = r + 1. If Case 1(I) is met, set f lag = 1 and go to Step 6; otherwise, go to
Step 2.

Case 2: Posi∗ j∗(eh−) = ∅, which implies that in the current round, the consensus
level can not be improved. Choose the second position for the identified DM eh− and
go to the beginning of Step 5. If all the positions for eh− can not be improved, choose
the DM who has the second minimum GC I , and go to 2) of Step 4. If all the DMs are
examined but the consensus level is not satisfactory, let f lag = 0 and go to Step 6.

Step 6 Let Bh = Bh,r . Output the modified Bh, h = 1, 2, · · · ,m, GC I (Bh),

h = 1, 2, · · · ,m, r , and f lag.
Step 7 End.

To fully understand the above algorithm, more explanations are given for some of
the steps. Step 1 is used to improve the individual consistency levels to ensure that the
APRs satisfy the desired consistency at the beginning of the consensus process. Step
2 computes the group APR using Eq. (11), which is then used to calculate the group
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consensus index for each APR. Step 3 determines whether the termination conditions
have been met. Steps 4 and 5 are central to the feedback as they guide the DMs in
changing their preferences; that is, Step 4 sequentially identifies the DMs and the
positions that need to be revised. Step 5 assists the DMs to precisely revise their
preferences.

Several approaches have been developed to simultaneously address consistency
and consensus for preference relations. The most pertinent are examined to clarify
the similarities and differences. Dong and Xu discussed an iteration-based consen-
sus model for both multiplicative preference relations and APRs [see Chapter 3 in
Dong and Xu (2016)]. Li et al. presented a novel consensus process that had an indi-
vidual consistency control that allowed for the adjustment range for each preference
value to be determined [see Algorithm 2 in Li et al. (2019)]. The similarity between
our proposed approach and these two is in the consensus framework. The proposed
approach adopts the same framework as Dong and Xu (2016); that is, all individual
preference relations are adjusted to an acceptable consistency before the consensus
reaching process. After carefully examination, the ideas in the first three steps of the
proposed algorithm and that in Li et al. (2019) are almost the same; that is, to improve
the individual consistency level and check the termination condition. As they both
adopt the same iteration-based consensus process principles, they have some common
procedures. However, there are differences in steps 4 and 5. Li et al. (2019) sought
to obtain adjustable ranges based on an optimization-based consensus rule (OCR),
and in the feedback strategy, it is suggested that all DMs revise their preferences with
the assistance of the adjustable ranges. However, the proposed approach has a local
feedback strategy and provides suggestions using the original discrete scale.

Quite recently, multi-stage optimization models are proposed to deal with the same
problem (Wuet al. 2019). It isworth emphasizing the difference between this paper and
Wu et al. (2019). Although the ideas behind the two papers are inconsistent, a common
feature of the two papers is using the original discrete scale in the feedback process.
An optimization-based approach is utilized inWu et al. (2019) while this paper adopts
a novel iteration-based approach. As the multi-stage optimization model in Wu et al.
(2019) is an NP-hard problem, it may be time-consuming to solve it. By contrast, it
is computationally easy to apply the proposed approach. Another difference is that
Wu et al. (2019) employs a global strategy while this paper adopts a local strategy
when updating the references. With the aid of the proposed approach, the consensus
problem is boiled down to step-by-step preference changes. Overall, this paper adds to
the relevant literature that it provides a quite different way to solve the same problem
(i.e., consistency and consensus building).

As mentioned, a core issue in the interactive consensus reaching process is to guide
theDMs to change their preferences to attain a higher consensus level. Generally, how-
ever, only the final output from iteration-based models or optimization-based models
is shown to DMs to reduce the time needed for the interactive decision-making. The
above algorithm is an iteration-based model and has distinct features when compared
with optimization consensusmodels. Optimization-basedmodels provide global infor-
mation on diverse objects such as the amount of change or the number of adjusted
preferences, which are then used to calculate the consensus process costs. If the DMs
accept the recommendations given by the optimization models, the total feedback
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strategy costs can be easily estimated. However, the optimal solution may requires all
DMs to change their preferences and an identified DM may be asked to change all
elements in their preference relations. However, as the DMs may want to gradually
change their preferences, a step-by-step approach could be more acceptable.

Although there is no specific goal in iteration-based consensus processes, an implicit
objective is pursued; for example, in Algorithm 2, the implicit objective is to minimize
the number of modifications. Let Bh = (bhi j )n×n and Fh = ( f hi j )n×n be the initial and

modified APRs. Then |bhi j − f hi j | > 0 indicates that the preference on position for DM
eh has been changed. The optimization model which aims to minimize the number of
modifications, is established as follows:

min
m∑

h=1

n−1∑
i=1

n∑
j=i+1

δhi j

s.t .

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C I (Fh) ≥ C I , h = 1, 2, . . . ,m, (19 − 1)
GC I (Fh) ≥ GC I , h = 1, 2, . . . ,m, (19 − 2)
|bhi j − f hi j | ≤ Mδhi j , i < j, h = 1, 2, . . . ,m, (19 − 3)
δhi j ∈ {0, 1}, i < j, h = 1, 2, . . . ,m, (19 − 4)
f hi j ∈ S[0,1], i < j, h = 1, 2, . . . ,m. (19 − 5)

(19)

where M is a sufficiently large number. Constraints (19-1) and (19-2) require that the
modified APRs satisfy both the consistency and consensus levels. As model (19) is
equivalent to an integer programming model and is an NP-hard problem, heuristic
approaches have been used to determine satisfactory solutions. A heuristic approach
may be a rule of thumb to guide individual actions (Pearl 1984). Steps 4 and 5 in
Algorithm 2 indicate such a rule. As noted by Pearl (1984), “the heuristics are simple
to calculate relative to the complexity of finding a solution and, although they do not
necessarily always guide the search in the correct direction, they quite often do.” Cao
et al. (2008) presented a method to derive a consistency matrix (multiplicative pref-
erence relations) from an inconsistent matrix, which they called a heuristic approach.
Based on the above analysis, Algorithm 2 could be considered a heuristic approach
to solving model (19) as it provides an effective method for finding the positions at
which the preferences need revising, but does not guarantee an optimal solution.

In Step 4 of Algorithm 2, if more than one position is identified, then either the
preferences for all these positions are changed in the same round, or one of the positions
is randomly chosen. In general, the latter approach requires less implementation time.
Consider a case in which two positions need to be revised in the same round. If these
twopositions aremodified in the same round, 121 iterationswould be needed; however,
if only one position is modified in each of the two rounds, only 22, which would save
considerable time. Therefore, in this paper, only one of the identified positions is
changed in changes in each round. Changing preferences of two positions is used only
when it is failed to modify the preference of one position in a round.

In Algorithm 2, the proposed consensus process guarantees that all the adjusted
preference relations are of acceptable consistency and that the modified elements still
belong to the original discrete scale. While it is difficult to prove the convergence of
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Algorithm2, the simulations in Sect. 4 confirm that the algorithm is able to successfully
achieve a predefined consensus level.

3.3 Numerical Example and Comparisons

The following example is given to demonstrate the viability of the proposed consensus
algorithm.

Example 2 Consider the example discussed in Chiclana et al. (2008). Suppose there
are four DMs {e1, e2, e3, e4} who provide their APRs over X = {x1, x2, x3, x4}. Let
λ = (λ1, λ2, λ3, λ4)

T = ( 14 ,
1
4 ,

1
4 ,

1
4 )

T be the individual weight vector for Bh, h =
1, 2, · · · , 4.

B1 =

⎛

⎜⎜⎝

0.5 0.2 0.6 0.4
0.8 0.5 0.9 0.7
0.4 0.1 0.5 0.3
0.6 0.3 0.7 0.5

⎞

⎟⎟⎠ , B2 =

⎛

⎜⎜⎝

0.5 0.7 0.9 0.5
0.3 0.5 0.6 0.7
0.1 0.4 0.5 0.8
0.5 0.3 0.2 0.5

⎞

⎟⎟⎠ ,

B3 =

⎛

⎜⎜⎝

0.5 0.3 0.5 0.7
0.7 0.5 0.1 0.3
0.5 0.9 0.5 0.25
0.3 0.7 0.75 0.5

⎞

⎟⎟⎠ , B4 =

⎛

⎜⎜⎝

0.5 0.25 0.15 0.65
0.75 0.5 0.6 0.8
0.85 0.4 0.5 0.5
0.35 0.2 0.5 0.5

⎞

⎟⎟⎠ .

Stage 1: Consistency control process
The predefined consistency level is set at C I = 0.9. Using (2),

C I (B1) = 1,C I (B2) = 0.7667,C I (B3) = 0.65,C I (B4) = 0.8333.

As C I (Bh) < C I , h = 2, 3, 4, Algorithm 1 is used to improve the consistency level
of these identified APRs. B1 = B1 and the modified APRs are obtained as,

B2 =

⎛

⎜⎜⎝

0.5 0.7 0.9 0.9
0.3 0.5 0.6 0.7
0.1 0.4 0.5 0.8
0.1 0.3 0.2 0.5

⎞

⎟⎟⎠ , B3 =

⎛

⎜⎜⎝

0.5 0.9 0.5 0.7
0.1 0.5 0.1 0.3
0.5 0.9 0.5 0.4
0.3 0.7 0.6 0.5

⎞

⎟⎟⎠ ,

B4 =

⎛

⎜⎜⎝

0.5 0.25 0.4 0.65
0.75 0.5 0.6 0.8
0.6 0.4 0.5 0.5
0.35 0.2 0.5 0.5

⎞

⎟⎟⎠ .

The corresponding consistency indexes areC I (B2) = 0.9,C I (B3) = 0.9,C I (B4)

= 0.9. Stage 1 (that is, Step 1 of Algorithm 2 in the proposed paper) is the same as Step
1 of Algorithm 2 in Li et al. (2019). Although both steps aim to obtain adjusted APRs
that have acceptable consistencies, the methods used to improve the consistency are
different. Therefore, as expected, the modified APRs that have acceptable consistency
under the two methods may be different.
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Stage 2: Consensus reaching process
Using (11), the group APR is

B =

⎛

⎜⎜⎝

0.5 0.5125 0.6 0.6625
0.4875 0.5 0.55 0.625
0.4 0.35 0.5 0.5

0.3375 0.3750 0.5 0.5

⎞

⎟⎟⎠ .

Using (12), the consensus indexes are determined as follows,

GC I (B1) = 0.8000,GC I (B2) = 0.8083,GC I (B3) = 0.7667,GC I (B4) = 0.8833.

Situation 1
Consider the case used in Li et al. (2019) where GC I = 0.84. It is known that

all DMs are unable to reach the consensus threshold. Using Algorithm 2, the process
terminates after 4 rounds.

Round 1
As GC I (Bh,1) < GC I , h = 1, 2, 3, move on to Step 3 of Algorithm 2. It is found

that eh− = e3, (i∗, j∗) = (2, 3) and

C I (Bl
2,1) = {0.8667, 0.9000, 0.9000, 0.9000, 0.9000, 0.8667, 0.8333, 0.8000,

0.7667, 0.7333, 0.7000}.
GC I (Bl

2,1) = {0.7542, 0.7667, 0.7792, 0.7917, 0.8042, 0.8167,
0.8292, 0.8417, 0.8292, 0.8167, 0.8042}.

Because the current consensus level is far from the GC I in the first few rounds,
more than one position can be chosen; however, when the current consensus level is
close to GC I , only one position is suggested for the identified DMs.

Then P1i∗ j∗(e2) = ∅ and Case 1(I) in Step 5 of Algorithm 2 applies. Therefore,
the modified element in position (2, 3) should be 0.4. As

GC I (B1,2) = 0.8125,GC I (B2,2) = 0.8125,GC I (B3,2) = 0.8042,

GC I (B4,2) = 0.8875,

therefore, it follows thatGC I (Bh,2) < GC I , h = 1, 2, 3, and a second round is
needed.

Round 2
It is found that eh− = e3, (i∗, j∗) = (1, 2) and

C I (Bl
2,2) = {0.7000, 0.7333, 0.7667, 0.8000, 0.8333, 0.8667,

0.9000, 0.9000, 0.9000, 0.9000, 0.8667}.
GC I (Bl

2,2) = {0.8208, 0.8333, 0.8458, 0.8583, 0.8667, 0.8542, 0.8417, 0.8292,
0.8167, 0.8042, 0.7917}.
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The modified element in position (1, 2) should choose 0.6. As

GC I (B1,3) = 0.8250,GC I (B2,3) = 0.8000,GC I (B3,3) = 0.8417,

GC I (B4,3) = 0.9000,

it follows that GC I (Bh,3) < GC I , h = 1, 2, and a third round is needed.
Round 3
It is found that eh− = e2, (i∗, j∗) = (1, 3) and

C I (Bl
3,3) = {0.7333, 0.7667, 0.8000, 0.8333, 0.8667, 0.9000, 0.9333, 0.9333,

0.9333, 0.9000, 0.8667}.
GC I (Bl

3,3) = {0.7875, 0.8000, 0.8125, 0.8250, 0.8375, 0.8500, 0.8375, 0.8250,
0.8125, 0.8000, 0.7875}.

The modified element in position (2, 4) should choose 0.5. As

GC I (B1,4) = 0.8083,GC I (B2,4) = 0.8500,GC I (B3,4) = 0.8583,

GC I (B4,4) = 0.9167,

it follows that GC I (Bh,4) < GC I , h = 1, and a fourth round is needed.
Round 4
It is found that eh− = e1, (i∗, j∗) = (2, 3) and

C I (Bl
1,4) = {0.7000, 0.7333, 0.7667, 0.8000, 0.8333, 0.8667, 0.9000, 0.9333,

0.9667, 1.0000, 0.9667}.
GC I (Bl

1,4) = {0.7875, 0.8000, 0.8125, 0.8250, 0.8375, 0.8500, 0.8458, 0.8333,
0.8208, 0.8083, 0.7958}.

The modified element in position (2, 3) should choose 0.6. As

GC I (B1,5) = 0.8458,GC I (B2,5) = 0.8458,GC I (B3,5) = 0.8708,

GC I (B4,5) = 0.9125,

it follows that asGC I (Bh,5) > GC I , h = 1, 2, 3, 4, the predefined consensus level is

achieved. Themodified preference relations are as follows. B3 = B4 and the difference

between Bh and Bh over the upper triangular part have been underlined.
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Table 2 Consistency and consensus indexes for Example 2

Round DM Position Consistency index Consensus index

r = 1 e3 (2, 3) {1.0000, 0.9000, 0.9000, 0.9000} {0.8125, 0.8125, 0.8042, 0.8875}
r = 2 e3 (1, 2) {1.0000, 0.9000, 0.9000, 0.9000} {0.8250, 0.8000, 0.8417, 0.9000}
r = 3 e2 (1, 3) {1.0000, 1.0000, 0.9000, 0.9000} {0.8083, 0.8500, 0.8583, 0.9167}
r = 4 e1 (2, 3) {0.9000, 1.0000, 0.9000, 0.9000} {0.8458, 0.8458, 0.8708, 0.9125}
r = 5 e1 (1, 2) {0.9000, 1.0000, 0.9000, 0.9000} {0.8833, 0.8583, 0.8833, 0.9000}
r = 6 e2 (3, 4) {0.9000, 0.9000, 0.9000, 0.9000} {0.8917, 0.8833, 0.8917, 0.8917}
r = 7 e2 (1, 4) {0.9000, 0.9000, 0.9000, 0.9000} {0.9000, 0.9083, 0.8833, 0.8875}
r = 8 e3 (2, 4) {0.9000, 0.9000, 0.9000, 0.9000} {0.9000, 0.9250, 0.9000, 0.8708}
r = 9 e4 (2, 4) {0.9000, 0.9000, 0.9000, 0.9000} {0.9083, 0.9167, 0.9083, 0.8958}
r = 10 e4 (1, 2) {0.9000, 0.9000, 0.9000, 0.9167} {0.9063, 0.9188, 0.9104, 0.9021}

B1 =

⎛

⎜⎜⎝

0.5 0.2 0.6 0.4
0.8 0.5 0.6 0.7
0.4 0.4 0.5 0.3
0.6 0.3 0.7 0.5

⎞

⎟⎟⎠ , B2 =

⎛

⎜⎜⎝

0.5 0.7 0.5 0.9
0.3 0.5 0.6 0.7
0.5 0.4 0.5 0.8
0.1 0.3 0.2 0.5

⎞

⎟⎟⎠ ,

B3 =

⎛

⎜⎜⎝

0.5 0.6 0.5 0.7
0.4 0.5 0.4 0.3
0.5 0.6 0.5 0.4
0.3 0.5 0.6 0.5

⎞

⎟⎟⎠ .B4 =

⎛

⎜⎜⎝

0.5 0.25 0.4 0.65
0.75 0.5 0.6 0.8
0.6 0.4 0.5 0.5
0.35 0.2 0.5 0.5

⎞

⎟⎟⎠ .

The corresponding consistency indexes for the modified APRs are

C I (B1) = 0.9000,C I (B2) = 0.9000,C I (B3) = 0.9000,C I (B4) = 0.9000.

Note that the revised matrices obtained using Li et al.’s approach are very different
from those obtained here. Please see the matrices on Page 328 of Li et al. (2019) for
details of the revised matrices.

Situation 2
When GC I = 0.9, all APRs do not reach the consensus level. Using Algorithm 2,

the algorithm terminates after 10 rounds. The consistency and consensus indexes are
shown in Table 2 and the modified APRs are

B1 =

⎛

⎜⎜⎝

0.5 0.5 0.6 0.4
0.5 0.5 0.6 0.7
0.4 0.4 0.5 0.3
0.6 0.3 0.7 0.5

⎞

⎟⎟⎠ , B2 =

⎛

⎜⎜⎝

0.5 0.7 0.5 0.7
0.3 0.5 0.6 0.7
0.5 0.4 0.5 0.6
0.3 0.3 0.4 0.5

⎞

⎟⎟⎠ ,

B3 =

⎛

⎜⎜⎝

0.5 0.6 0.5 0.7
0.4 0.5 0.4 0.5
0.5 0.6 0.5 0.4
0.4 0.5 0.6 0.5

⎞

⎟⎟⎠ , B4 =

⎛

⎜⎜⎝

0.5 0.3 0.4 0.65
0.7 0.5 0.6 0.8
0.6 0.4 0.5 0.5
0.35 0.2 0.5 0.5

⎞

⎟⎟⎠ .
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Table 3 Comparisons for
Example 2 Method GC I NOC(B, B)

Method in Wu and Xu (2012) 0.9 22

Proposed method 0.9 11

Method in Li et al. (2019) 0.84 23

Proposed method 0.84 4

The difference between Bh and Bh over the upper triangular part are underlined.
The corresponding consistency indexes for the modified APRs are

C I (B1) = 0.9000,C I (B2) = 0.9000,C I (B3) = 0.9000,C I (B4) = 0.9167.

The corresponding consensus indexes for the modified APRs are

GC I (B1) = 0.9063,GC I (B2) = 0.9188,GC I (B3) = 0.9104,GC I (B4) = 0.9021.

The comparison results are shown in Table 3.
Compared with existing approaches (Wu and Xu 2012; Li et al. 2019), the pro-

posed algorithmwas observed to have the following characteristics: (1) fewer elements
needed to be adjusted to arrive at the same consensus level; and (2) all modified ele-
ments belonged to the original discrete scale. However, neither of the two methods
being compared simultaneously had these two characteristics.

4 Simulation Experiment

In this section, an algorithm is given to conduct consensus simulations with individual
consistency control. In the simulation experiment, the initial APRs were randomly
generated. Then five factors are considered: the consistency level, the consensus level,
the number of changes (NOC), the amount of changes (AOC) and the ratio of change
(ROC).

Algorithm 3
Intput: The number of alternatives n, the number of simulations N , the number of
DMs m, GC I , and C I .
Output: The average number of changes NOC , the average amount of change AOC ,
the average ratio of change ROC .

Step 1 For eachm and fixed N , N groups are respectively generated, each of which
have m matrixes. Let {B1,r , B2,r , . . . , Bm,r }, where Bh,r = (bhi j,r )n×n be the matrix
for the hth DM in the r th simulation.

Step 2 For a given C I and GC I , Algorithm 2 is used to achieve consensus for

each group, and let Bh,r = (b
h
i j,r )n×n be the modified APRs corresponding to Bh,r .

Let NOCh
r , AOCh

r and ROCh
r be the number of changes, the amount of changes and

the ratio of changes for the hth DM in the r th simulation, respectively. For the r th
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Fig. 1 NOC (m = 4, N = 500)

simulation, the number of changes NOCr is calculated by

NOCr =
m∑

h=1

NOCh
r =

m∑

h=1

n−1∑

i=1

n∑

j=i+1

δhi j,r , (20)

where δhi j,r = 1 if |bhi j,r − b
h
i j,r | �= 0, and δhi j,r = 0 if |bhi j,r − b

h
i j,r | = 0. For the r th

simulation, the amount of changes AOCr is obtained by

AOCr =
m∑

h=1

AOCh
r =

m∑

h=1

2

n × (n − 1)

n−1∑

i=1

n∑

j=i+1

|bhi j,r − b
h
i j,r |. (21)

For the r th simulation, the ratio of changes ROCr is obtained by

ROCr =
m∑

h=1

ROCh
r =

m∑

h=1

NOCh
r

n(n − 1)/2
. (22)

Step 3 Calculate the average number of changes NOC =
∑N

r=1 NOCr
N , the amount

of changes AOC =
∑N

r=1 AOCr
N , and the ratio of change ROC =

∑N
r=1 ROCr

N .
Step 4 End.

In the following, various simulations were conducted based on Algorithm 3. The
predefined consistency threshold was set at C I = 0.9, and the predefined consensus
threshold took a value from {0.85, 0.86, . . . , 0.95}, and N = 500. The results for the
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Fig. 2 NOC(m = 6, N = 500)

Fig. 3 AOC (m = 4, N = 500)

average number of changes NOC are shown in Figs. 1 and 2, the average amount of
changes AOC are shown in Figs. 3 and 4, and the average ratio of changes ROC are
shown in Figs. 5 and 6.

The observations from these simulation experiments were as follows:

(1) From Figs. 1, 2, 3, 4, 5 and 6, it can be seen that with an increase in GC I , the
NOC , AOC and ROC of the DMs had increasing trends. It was also observed
that with an increase in m, it was more difficult for the groups to reach consensus.
These figures show that our proposed approach provided an effective way to build
GDM consensus with APRs.

123



1188 Z. Wu et al.

Fig. 4 AOC (m = 6, N = 500)

Fig. 5 ROC (m = 4, N = 500)

(2) For a fixedGC I , Figs. 1, 2, 3 and 4 show that the bigger the number of alternatives,
the bigger the values for NOC and AOC ; Figs. 5 and 6 show that the smaller the
number of alternatives, the bigger the values for ROC .

The simulation experiments demonstrated that the proposed algorithms successfully
achieved the goals in all cases; that is, a predefined consensus level was achieved using
Algorithm 2 and the individual consistency was effectively controlled.
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Fig. 6 ROC (m = 6, N = 500)

5 Conclusions

Consistency and consensus based approaches are powerful techniques for dealing
with GDM problems with preference relations. This paper developed corresponding
algorithms for GDM with APRs to resolve the problems associated with the diffi-
culties DMs have with traditional element modification and to reduce the number of
modifications for each APR. Therefore, the main contributions of this paper are:

(1) A consistency improving algorithm was proposed to ensure that the APRs were
of acceptable consistency and that the revised preference relation judgements
belonged to the original scale used by participants.

(2) A novel consensus reaching algorithm for APRs was proposed that ensured that
each individual APRwas of acceptable consistencywhen the predefined consensus
threshold was achieved, and that the revised judgements belonged to the original
scale.

(3) Finally, the simulation experiments and comparative studies demonstrated the
effectiveness of the proposed approaches.

Note that the proposed approaches are applicable to large-scale GDMs since they
are computationally easy. Future research will consider a comparative study of various
consensus models for large-scale GDMs.
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