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Abstract
TheWinsorized mean is a well-known robust estimator of the population mean. It can
also be seen as a symmetric aggregation function (in fact, it is an ordered weighted
averaging operator), whichmeans that the information sources (for instance, criteria or
experts’ opinions) have the same importance. However, in many practical applications
(for instance, in many multiattribute decision making problems) it is necessary to
consider that the information sources have different importance. For this reason, in
this paper we propose a natural generalization of the Winsorized means so that the
sources of information can be weighted differently. The new functions, which we will
call Winsorized weighted means, are a specific case of the Choquet integral and they
are analyzed through several indices for which we give closed-form expressions: the
orness degree, k-conjunctiveness and k-disjunctiveness indices, veto and favor indices,
Shapley values and interaction indices. We also provide a closed-form expression for
theMöbius transform andwe showhowwe can aggregate data so that each information
source has the desiredweighting and outliers have no influence in the aggregated value.

Keywords Winsorized weighted means · Winsorized means · Choquet integral ·
Shapley values · SUOWA operators

1 Introduction

The aggregation of information is a fundamental process in many fields of science.
Many times, this process is carried out through functions that, from a given data set,
return a single value. Obviously, the choice of the function is of crucial importance
in this process (see, for instance, Zhang and Xu 2014). For instance, in the field of
statistics, it is well known that the mean is quite sensitive to extreme values and,
consequently, the sample mean is not a robust estimator of the population mean. So,
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the mean value may not be very representative in data where outliers may occur. For
overcoming this shortcoming, other estimators have been proposed in the literature
(see, for instance, Huber andRonchetti 2009). Two of themost popular are the trimmed
means and the Winsorized means. In the trimmed means, the lowest and the highest
values are removed before calculating the mean whereas in theWinsorizedmeans they
are replaced with the less extreme adjacent values.

Trimmed and Winsorized means can also be seen as symmetric aggrega-
tion functions. In fact, they are specific cases of OWA operators (Yager 1988):
Trimmed means are OWA operators associated with weighting vectors of the form
(0, . . . , 0, 1/m, . . . , 1/m, 0, . . . , 0) (where we are supposing that n − m values have
been removed) whileWinsorizedmeans are OWAoperators associated with weighting
vectors of the form (0, . . . , 0, (r+1)/n, 1/n, . . . , 1/n, (s+1)/n, 0, . . . , 0) (where we
are supposing that the r lowest values and the s highest values have been replaced). The
use of symmetric functions means that all information sources (for instance, criteria
or experts’ opinions) are treated equally. However, in many practical applications (for
instance, in many multiattribute decision making (MADM) problems) it is necessary
to consider that the information sources have different importance. But, as what we
have previously reported for the mean value, the use of the weighted mean, which
is known in the MADM literature as the simple additive weighting (SAW) method,
may not be adequate in presence of outliers. For this reason, several proposals have
been suggested in the literature with the purpose of introducing different weights
for the information sources in an OWA-type aggregation [see, among others, Torra
(1997), Llamazares (2013, 2015a), and Beliakov and Dujmović (2016)].

It is interesting to note that the three families of functions introduced by the above-
mentioned authors are specific cases of the Choquet integral (Choquet 1953). Since its
appearance, the Choquet integral has received increased attention from the scientific
community, due mainly to its simplicity, versatility and good properties (for instance,
it is well known that the Choquet integral is continuous, monotonic, idempotent,
compensative, and ratio scale invariant; see Grabisch et al 2009). For these reasons,
the Choquet integral has been a widely used tool in economics to deal with problems
related to decisionmakingunder risk anduncertainty, finance, insurance, socialwelfare
and quality of life (see, for instance, Heilpern 2002). Likewise, the integral of Choquet
has also received much attention in theMADM literature because it allows to take into
account the interaction that usually exists between the information sources, which is
very useful in this field (among the vast literature that exists on this topic, see, for
instance, Grabisch 1995; Grabisch and Labreuche 2010, 2016).

The aim of this paper is to present a natural generalization of theWinsorized means
that allows us to consider weighting vectors for the information sources. The new
functions, which we will call Winsorized weighted means, are also a specific case
of the Choquet integral whose capacities are known. The analysis of these functions
is carried out through the study of several indices that provide us with a more pre-
cise knowledge about their behavior in the aggregation processes. In this sense, we
give closed-form expressions for the following indices: the orness degree (Marichal
2004), k-conjunctiveness and k-disjunctiveness indices (Marichal 2007), veto and
favor indices (Marichal 2004, 2007), Shapley values (Shapley 1953), and interaction
indices (Owen 1972; Murofushi and Sugeno 1993); and also for their Möbius trans-
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An Analysis of Winsorized Weighted Means 909

form (Rota 1964). Of particular interest are the closed-form expressions obtained for
the Shapley values because they reflects the global importance of each information
source (as it is well known, in the case of a Choquet integral with respect to a capacity
μ, the importance of the i th information source is no given byμ({i}) but by importance
indices, and, among them, Shapley values are usually the most used). From them, we
can determine the weights that allow us to get Shapley values previously fixed, and,
in this way, we can aggregate data so that each information source has the desired
weighting and outliers have no influence in the aggregated value (the procedure used
will be illustrated with an example in Sect. 5).

The remainder of the paper is organized as follows. In Sect. 2 we recall some
basic concepts on Choquet integrals. Section 3 is devoted to introduce the Winsorized
weighted means. In Sect. 4 we show the main results of the paper: the Möbius trans-
form and several indices of the Winsorized weighted means are given in closed-form
expressions. In Sect. 5 we show by an example how Winsorized weighted means can
be applied. Finally, some concluding remarks are provided in Sect. 6. All proofs are
given in the Appendix.

2 Choquet Integral

The following notation will be used throughout the paper: N = {1, . . . , n}; given
T ⊆ N , |T | will denote the cardinality of T ; and vectors will be denoted in bold.
Given a vector x ∈ Rn , (·) and [·]will denote permutations such that x(1) ≤ · · · ≤ x(n)

and x[1] ≥ · · · ≥ x[n].
Choquet integralwas introducedbyChoquet (1953) byusing the concept of capacity

(Choquet 1953), which was also introduced in an independent way by Sugeno (1974)
under the name of fuzzy measure.

Definition 1 A capacity (or fuzzy measure) μ on N is a set function, μ : 2N −→
[0,∞) satisfying μ(∅) = 0 and μ(A) ≤ μ(B) whenever A ⊆ B. A capacity μ is
said to be normalized if μ(N ) = 1.

The Choquet integral is a functional that generalizes the Lebesgue integral (see, for
instance, Choquet 1953, Murofushi and Sugeno 1991, and Denneberg 1994). Never-
theless, in the discrete case, it can be seen as an aggregation function overRn (Grabisch
et al 2009, p. 181). Notice that we define the Choquet integral for all vectors of Rn

instead of nonnegative vectors given that we are actually considering the asymmetric
Choquet integral with respect to μ (on this, see again Grabisch et al 2009, p. 182).

Definition 2 Given a capacity μ on N , the Choquet integral with respect to μ is the
function Cμ : Rn −→ R defined by

Cμ(x) =
n∑

i=1

μ(A(i))
(
x(i) − x(i−1)

)
,

where A(i) = {(i), . . . , (n)}, and we adopt the convention that x(0) = 0.
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910 B. Llamazares

Weighted means and OWA operators (Yager 1988) are two of best well-known
specific cases of Choquet integrals. Both are defined through weighting vectors; that
is, non-negative vectors whose components sum to one.1

Definition 3 1. Given a weighting vector p, the weighted mean associated with p is
the function M p : Rn −→ R defined by

M p(x) =
n∑

i=1

pi xi .

2. Given a weighting vector w, the OWA operator associated with w is the function
Ow : Rn −→ R defined by

Ow(x) =
n∑

i=1

wi x[i],

where as we have said, [·] is a permutation on N such that x[1] ≥ · · · ≥ x[n].

3 WinsorizedWeightedMeans

Winsorizedmeans received this name in honor ofWinsor, who suggested replacing the
magnitude of extreme observations by the magnitude of the next largest (or smallest)
observation (see Dixon 1960; Wainer 1976). Although it is common to define the
Winsorized means through the proportion of the replaced values, we will use, for
convenience, the number of replaced values (see, for instance, Barnett and Lewis
1994).

Definition 4 Given an integer r , with 0 ≤ r < n/2, the r -fold Winsorized mean is
defined by

Mr (x) = 1

n

(
r x(r+1) +

n−r∑

i=r+1

x(i) + r x(n−r)

)

Notice that the arithmetic mean (when r = 0) and the median (when r is the largest
integer less than n/2) are specific cases of theWinsorized means. The above definition
can be easily extended to consider asymmetrical Winsorized means. For this, we will
use the following notation:

R = {(r , s) ∈ {0, 1, . . . , n − 1}2 | r + s < n}.

1 It is worth noting that the choice of the weight distribution has generated a large literature [in the case of
OWA operators, see, for instance, Llamazares (2007), Liu (2011), Bai et al (2017) and Lenormand (2018)].
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An Analysis of Winsorized Weighted Means 911

Definition 5 Let (r , s) ∈ R. The (r , s)-fold Winsorized mean is defined by

M (r ,s)(x) = 1

n

(
r x(r+1) +

n−s∑

i=r+1

x(i) + sx(n−s)

)
.

Note that the kth order statistic (OSk(x) = x(k)) is obtained with the pair (k −
1, n − k) ∈ R; and the extreme cases of these pairs allow us to get the minimum and
the maximum. Obviously, asymmetrical Winsorized means are specific cases of OWA
operators.

Winsorized means can also be easily extended to include a weighting vector p:
Given x, it is sufficient to replace the r lowest values and the s highest values by
x(r+1) and x(n−s), respectively, and to consider the weighted mean associated with p.

Definition 6 Let p be a weighting vector and (r , s) ∈ R. The (r , s)-fold Winsorized
weighted mean is defined by

M (r ,s)
p (x) =

(
r∑

i=1

p(i)

)
x(r+1) +

n−s∑

i=r+1

p(i)x(i) +
(

n∑

i=n−s+1

p(i)

)
x(n−s).

Notice that M (0,0)
p = M p for any weighting vector p, and M (k−1,n−k)

p = OSk
for any k ∈ N and any weighting vector p. Moreover, it is worth emphasizing that
Winsorizedweightedmeans have been obtained as specific cases of SUOWAoperators
(Llamazares 2018b); which are in turn particular cases of the Choquet integral [on
SUOWA operators see Llamazares (2015a, b, 2016a, b, 2018a, b, 2019a, b)]. It is easy
to see (Llamazares 2018b) that the capacity associated with the (r , s)-foldWinsorized
weighted mean is

μ(r ,s)
p (T ) =

⎧
⎪⎨

⎪⎩

0, if |T | ≤ s,∑
i∈T pi , if s < |T | < n − r ,

1, if |T | ≥ n − r ,

(1)

where T ⊆ N . In the specific case of order statistics, where r+s = n−1, the capacity
is

μ(r ,s)
p (T ) =

{
0, if |T | ≤ s,

1, if |T | ≥ n − r = s + 1.
(2)

4 The Results

There exist in the literature several indices such as the orness and andness degrees, the
tolerance indices, the importance and interaction indices, etc., that allow us to know the
behavior of the functions used in the aggregation processes. The aim of this section is
to analyze theWinsorized weighted means by showing closed-form expressions of the
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following indices: the orness degree, k-conjunctiveness and k-disjunctiveness indices,
veto and favor indices, the Shapley values, and interaction indices. Moreover, we also
provide the expression of the Möbius transforms of the capacities associated with the
Winsorized weighted means.

4.1 The Orness Degree

The notion of orness was introduced by Yager (1988) in the field of OWA operators
to measure the degree to which the aggregation is disjunctive (i.e., it is like an or
operation). Subsequently, and by using the notion of average value, Marichal (1998,
2004) generalized it to the case of Choquet integrals and gave an expression in terms
of the capacity.

Remark 1 Let μ be a normalized capacity on N . Then

orness(Cμ) = 1

n − 1

n−1∑

t=1

1(n
t

)
∑

T⊆N
|T |=t

μ(T ).

The orness degree of the functions M (r ,s)
p is shown in the next proposition.

Proposition 1 Let p be a weighting vector and (r , s) ∈ R. Then,

orness
(
M (r ,s)

p
) = 1

2
+ r(r + 1) − s(s + 1)

2n(n − 1)
.

It is worth noting that the orness degree of M (r ,s)
p does not depend on the weighting

vector p; that is, orness
(
M (r ,s)

p
) = orness

(
M (r ,s)

)
for any weighting vector p. Other

immediate consequences of the previous proposition are gathered in the following
corollary.

Corollary 1 Let (r , s) ∈ R. Then:

1. If r > s then orness
(
M (r ,s)

)
> 0.5; if r = s then orness

(
M (r ,s)

) = 0.5; and if
r < s then orness

(
M (r ,s)

)
< 0.5.

2. orness
(
M (r ,s)

) = 1 − orness
(
M (s,r)

)
.

3. If r + s ≤ n − 2, then

orness
(
M (r+1,s)) = orness

(
M (r ,s)) + r + 1

n(n − 1)
,

orness
(
M (r ,s+1)) = orness

(
M (r ,s)) − s + 1

n(n − 1)
.

4. If r + s ≤ n − 3, then

orness
(
M (r+1,s+1)) = orness

(
M (r ,s)) + r − s

n(n − 1)
.
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An Analysis of Winsorized Weighted Means 913

Table 1 Orness degree of the
functions M(r ,s) when n = 5

r s
4 3 2 1 0

0 0 0.2 0.35 0.45 0.5

1 0.25 0.4 0.5 0.55

2 0.5 0.6 0.65

3 0.75 0.8

4 1

The properties given in the previous corollary can be easily observed in Table 1,
where we show the orness degree of the functions M (r ,s) when n = 5.

Notice that Table 1 has a triangular structure (there are no values below the main
diagonal of the table) so that the values increase as we move down or to the right.
Moreover, in the main diagonal appear the orness degree of the order statistics (from
theminimum to themaximum), and in the upper right corner appears the orness degree
of the weighted mean.

It is also interesting to note that the properties given in Corollary 1 are reflected in
the structure of Table 1:

1. The values below the secondary diagonal are greater than 0.5; the values in the
secondary diagonal are 0.5; and the values above the secondary diagonal are less
than 0.5.

2. The symmetric values with respect to the secondary diagonal sum to one.
3. The value of a cell in the row labeled r increases the amount r+1

n(n−1) when wemove
a position down; the value of a cell in the column labeled s decreases the amount
s+1

n(n−1) when we move a position to the left (alternatively, the value of a cell in
the column labeled s increases the amount s

n(n−1) when we move a position to the
right).

4. The value of a cell labeled (r , s) varies the amount r−s
n(n−1) when we move down to

the left (alternatively, the value of a cell labeled (r , s) increases the amount r+s+1
n(n−1)

when we move down to the right).

4.2 k-Conjunctiveness and k-Disjunctiveness Indices

The notions of k-conjunctive and k-disjunctive Choquet integrals (which were orig-
inally called at most k-intolerant and at most k-tolerant Choquet integrals) were
introduced by Marichal (2007) to determine the conjunctive/disjunctive character of
aggregation (see also Komorníková and Mesiar 2011).

Definition 7 Let k ∈ N and let μ be a normalized capacity on N .

1. Cμ is k-conjunctive if Cμ ≤ OSk ; i.e., Cμ(x) ≤ x(k) for any x ∈ Rn .
2. Cμ is k-disjunctive if Cμ ≥ OSn−k+1; i.e., Cμ(x) ≥ x(n−k+1) for any x ∈ Rn .

Since k-conjunctive and k-disjunctive Choquet integrals are infrequent in prac-
tice, Marichal (2007) suggested two indices for measuring the degree to which a
Choquet integral is k-conjunctive or k-disjunctive.
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914 B. Llamazares

Definition 8 Let k ∈ N\{n} and let μ be a normalized capacity on N . The k-
conjunctiveness and k-disjunctiveness indices for Cμ are defined by

conjk(Cμ) = 1 − 1

n − k

n−k∑

t=1

1(n
t

)
∑

T⊆N
|T |=t

μ(T ),

disjk(Cμ) = 1

n − k

n∑

t=k

1(n
t

)
∑

T⊆N
|T |=t

μ(T ) − 1

n − k
= 1

n − k

n−1∑

t=k

1(n
t

)
∑

T⊆N
|T |=t

μ(T ).

In the following propositions we show the k-conjunctiveness and k-disjunctiveness
indices for the functions M (r ,s)

p .

Proposition 2 Let p be a weighting vector, (r , s) ∈ R, and k ∈ N\{n}. Then,

conjk
(
M (r ,s)

p
) =

⎧
⎪⎨

⎪⎩

1 if k ≥ n − s,
n(n−1)+s(s+1)−k(k−1)

2n(n−k) if r < k < n − s,
n(n−1)+s(s+1)−r(r+1)

2n(n−k) if k ≤ r .

Proposition 3 Let p be a weighting vector, (r , s) ∈ R, and k ∈ N\{n}. Then,

disjk
(
M (r ,s)

p
) =

⎧
⎪⎨

⎪⎩

1 if k ≥ n − r ,
n(n−1)+r(r+1)−k(k−1)

2n(n−k) if s < k < n − r ,
n(n−1)+r(r+1)−s(s+1)

2n(n−k) if k ≤ s.

As in the case of the orness degree, k-conjunctiveness and k-disjunctiveness indices
do not depend on the weighting vector p; that is, conjk

(
M (r ,s)

p
) = conjk

(
M (r ,s)

)

and disjk
(
M (r ,s)

p
) = disjk

(
M (r ,s)

)
for any weighting vector p. Notice also that

conjk
(
M (r ,s)

) = disjk
(
M (s,r)

)
.

4.3 Veto and Favor Indices

The notions of veto and favor (originally called dictator) were suggested by Dubois
and Koning (1991) in the framework of the social choice functions.

Definition 9 Let j ∈ N and let μ be a normalized capacity on N .

1. j is a veto for Cμ if Cμ(x) ≤ x j for any x ∈ Rn .
2. j is a favor for Cμ if Cμ(x) ≥ x j for any x ∈ Rn .

Since veto and favor criteria are rather unusual, Marichal (2004, 2007) proposed
two indices to measure the degree with which the behavior of a criterion is like a veto
or a favor.

123



An Analysis of Winsorized Weighted Means 915

Definition 10 Let j ∈ N and let μ be a normalized capacity on N . The veto and favor
indices of criterion j with respect to μ are defined by

veto(Cμ, j) = 1 − 1

n − 1

n−1∑

t=1

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

μ(T ),

favor(Cμ, j) = 1

n − 1

n−1∑

t=0

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

μ(T ∪ { j}) − 1

n − 1
.

In the following propositions we show the veto and favor indices of criteria with
respect to the capacities μ

(r ,s)
p .

Proposition 4 Let p be a weighting vector, (r , s) ∈ R and j ∈ N. Then,

veto
(
M (r ,s)

p , j
) = 1 − r

n − 1
− (1 − p j )

(
(n − r)(n − r − 1) − s(s + 1)

)

2(n − 1)2
.

Proposition 5 Let p be a weighting vector, (r , s) ∈ R and j ∈ N. Then,

favor
(
M (r ,s)

p , j
) = (1 − p j )

(n − 1)(n − 2) + r(r + 1) − s(s − 1)

2(n − 1)2

+ p j

(
1 − s

n − 1

)
.

4.4 The Shapley Values

The Shapley values were introduced in the cooperative game theory as a solution to
the problem of distributing the valueμ(N ) among the players. They can be interpreted
as a type of average of the contribution of player j alone in all coalitions (see Shapley
1953; Marichal 2007).

Definition 11 Let j ∈ N and let μ be a normalized capacity on N . The Shapley value
of criterion j with respect to μ is defined by

φ j (μ) = 1

n

n−1∑

t=0

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

(
μ(T ∪ { j}) − μ(T )

)
.

The Shapley values of the capacities μ
(r ,s)
p are shown in the following proposition.

Proposition 6 Let p be a weighting vector, (r , s) ∈ R and j ∈ N. Then,

φ j
(
μ(r ,s)

p
) = r + s

n − 1

1

n
+

(
1 − r + s

n − 1

)
p j . (3)
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It is worth mentioning that the Shapley value φ j
(
μ

(r ,s)
p

)
is a convex combination

between 1/n and p j , which are the Shapley values of the capacities of any OWA

operator (for instance, μ
(r ,n−1−r)
p or μ

(n−1−s,s)
p ) and μ

(0,0)
p , respectively. Moreover,

given j ∈ N , the values φ j
(
μ

(r ,s)
p

)
are the same for all capacities μ

(r ,s)
p having the

same value of r + s. Other immediate consequences of the previous proposition are
gathered in the following corollary.

Corollary 2 Let p be a weighting vector and j ∈ N.

1. If r + s = n − 1 then φ j
(
μ

(r ,s)
p

) = 1/n.
2. If r + s < n − 1 then

p j >
1

n
⇒ φ j

(
μ(r ,s)

p
)

>
1

n
,

p j = 1

n
⇒ φ j

(
μ(r ,s)

p
) = 1

n
,

p j <
1

n
⇒ φ j

(
μ(r ,s)

p
)

<
1

n
.

Since the Shapley value reflects the global importance of each criterion, it seems
very interesting to be able to determine the weights that allow us to obtain Shapley
values previously fixed. Notice that when r + s < n − 1 we can express the weight
p j in terms of φ j (μ

(r ,s)
p ):

p j = n − 1

n − 1 − (r + s)

(
φ j

(
μ(r ,s)

p
) − r + s

n − 1

1

n

)

= n − 1

n − 1 − (r + s)

(
φ j

(
μ(r ,s)

p
) − 1

n
+ 1

n

(
1 − r + s

n − 1

))

= 1

n
+ n − 1

n − 1 − (r + s)

(
φ j

(
μ(r ,s)

p
) − 1

n

)
.

From the previous expressions it is easy to check that p j ≥ 0 if and only ifφ j (μ
(r ,s)
p ) ≥

r+s
n(n−1) , and

∑n
j=1 p j = 1. Therefore we have the following corollary.

Corollary 3 Let (φ1, . . . , φn) be a weighting vector. Given (r , s) ∈ R such that r+s <

n − 1, the following conditions are equivalent:

1. min
j∈N φ j ≥ r + s

n(n − 1)
.

2. The vector p defined by

p j = 1

n
+ n − 1

n − 1 − (r + s)

(
φ j − 1

n

)
, j = 1, . . . , n,

is a weighting vector such that φ j (μ
(r ,s)
p ) = φ j for any j ∈ N.
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4.5 Interaction Indices

Interaction indices allow us to measure the interaction degree between two elements
of N . This concept was initially proposed by Owen (1972) under the name of covalue,
and, in an independent way, by Murofushi and Soneda (1993). Afterwards, it has been
generalized by Grabisch (1997) to subsets of N with any number of elements.

Definition 12 Letμ be a normalized capacity on N . The interaction index of elements
j, k ∈ N is defined by

I jk
(
μ

) = 1

n − 1

n−2∑

t=0

1
(n−2

t

)

·
∑

T⊆N\{ j,k}
|T |=t

(
μ(T ∪ { j, k}) − μ(T ∪ { j}) − μ(T ∪ {k}) + μ(T )

)
.

We next give the interaction indices of the capacities μ
(r ,s)
p .

Proposition 7 Let p be a weighting vector, (r , s) ∈ R and j, k ∈ N. Then,

I jk
(
μ(r ,s)

p
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
n−1 if r = 0 and s = n − 1,
1

n−2

(
p j + pk − 1

n−1

)
if r = 0 and 0 < s < n − 1

− 1
n−2

(
p j + pk − 1

n−1

)
if s = 0 and 0 < r < n − 1

− 1
n−1 if s = 0 and r = n − 1,

0 otherwise.

4.6 TheMöbius Transform

The Möbius transform (Rota 1964) is a relevant concept in several fields such as
combinatorics and cooperative game theory. In this last field it is known as Harsanyi
dividends (Harsanyi 1959) and it can be interpreted as the contribution of each coalition
by itself, without considering its parts.

Definition 13 Let μ be a normalized capacity on N . The Möbius transform of μ is the
set function mμ on N defined by

mμ(A) =
∑

B⊆A

(−1)|A\B|μ(B) (A ⊆ N ).

It is worth mentioning that given mμ, it is possible to recover μ by the expression

μ(A) =
∑

B⊆A

mμ(B) (A ⊆ N ),
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918 B. Llamazares

which it is known as the Zeta transform. Moreover, the Shapley values are related to
the Möbius transform through the following expression:

φ j (μ) =
∑

j∈A⊆N

mμ(A)

|A| .

In the following proposition we give theMöbius transforms of the capacitiesμ
(r ,s)
p .

Proposition 8 Let p be a weighting vector and (r , s) ∈ R. Then,

mμ
(r ,s)
p (A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |A| ≤ s,

(−1)|A|−s−1
(|A| − 2

s − 1

) (
∑

i∈A

pi

)
if s < |A| < n − r ,

(
∑

i∈A

pi

)(
(−1)|A|−s−1

(|A| − 2

s − 1

)

−(−1)|A|−n+r
( |A| − 2

n − r − 2

))

+ (−1)|A|−n+r
( |A| − 1

n − r − 1

)
if |A| ≥ n − r .

5 Example

In this section we show the use of Winsorized weighted means from a practical point
of view. For this, we will use an example taken from Llamazares (2019b). Suppose
that the Department of Mathematics in a Faculty of Economics offers a research
assistantship for the students accepted into the M. Sc. in Economics. Applicants are
evaluatedwith respect to seven subjects:Mathematics I (MatI),Mathematics II (MatII),
Mathematics III (MatIII), Statistics I (StaI), Statistics II (StaII), Econometrics I (EcoI),
and Econometrics II (EcoII), and the members of the committee would like to take
into account the following aspects:

1. Each one of the first three subjects is considered twice as important as each one
of the remaining four.

2. Outliers should be discarded.2

It is worth to notice that the above requirements fit perfectly into a Winsorized
weighted mean-type aggregation where, in principle, the weighting vector p is
(0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1). Table 2 collects the marks obtained by three stu-
dents (marks are given on a scale from 0 to 10). Note that, in Statistics I, student A
gets its highest mark whereas students B and C get their lowest grades. Furthermore,
these marks are also very different from those obtained in the other subjects and, as
we will see later, they could be considered outliers.

2 In this framework, outliers may be due to the fact that the same subject may have been taught by different
teachers, students may have been ill, or they may have copied answers, etc.
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Table 2 Marks of three students
in the different subjects

Student MatI MatII MatIII StaI StaII EcoI EcoII

A 7.9 7.8 7.7 9.8 7.5 7.6 7.4

B 7.7 7.8 7.9 5.2 8.3 8.4 8.5

C 8.2 8.4 8.5 5.2 7.7 7.8 7.9

Table 3 Ranking of the students when the functions M(r ,s)
p are used

r s
6 5 4 3 2 1 0

0 A
B∼C A
B∼C A
C
B A
C
B C
A∼B C
A
B A
C
B

1 B∼C
A C
B
A C
B
A C
B
A C
B
A C
B
A

2 B∼C
A C
B
A C
B
A C
B
A C
B
A

3 B∼C
A C
B
A C
B
A C
B
A

4 B
C
A B
C
A B
C
A

5 B∼C
A C
B
A

6 A
B∼C

Table 4 Shapley values of the
Winsorized weighted means

r + s φ1, φ2, φ3 φ4, φ5, φ6, φ7

0 0.2 0.1

1 0.190476 0.10714285

2 0.1809523 0.1142857

3 0.1714285 0.12142857

4 0.1619047 0.1285714

5 0.1523809 0.13571428

6 0.142857 0.142857

Table 3 gathers the ranking of the three students when the Winsorized weighted
means are used. As one can observe, student A wins when the weighted mean, the
minimum or the maximum are used. Moreover, he/she also wins with the pairs (0, 5),
(0, 4), and (0, 3). In the case of student B, he/she is the winner with the pairs (4, 2),
(4, 1), and (4, 0); and he/she ties with C in the first position with the order statistics
OS2, OS3, OS4 and OS6. In the remaining cases, the winner is student C.

In Table 4we collect the Shapley values of theWinsorizedweightedmeans obtained
by using expression (3). Notice that when r+s = 0 (that is, in the case of the weighted
mean) we get the desired values. However, as the value of r + s increases, the Shapley
values are approaching each other until they finally coincide, what happens when
r + s = 6 (in this case, the Winsorized weighted means are order statistics and their
Shapley values are 1/7).

Given that the Shapley values reflect the global importance of each criterion, the
weighting vector p should be chosen so that the Shapley values are 0.2 (for the subjects
MatI,MatII andMatIII) and 0.1 (for the remaining subjects). This can be done by using
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Table 5 Weights for which the
Shapley values of the subjects
are 0.2 and 0.1

r + s p1, p2, p3 p4, p5, p6, p7

0 0.2 0.1

1 0.21142857 0.09142857

2 0.2285714 0.07857142

3 0.2571428 0.0571428

4 0.3142857 0.0142857

Table 6 Ranking of the students
when the new weights are used

r s
4 3 2 1 0

0 C
B
A C
B
A C
B
A C
A
B A
C
B

1 C
B
A C
B
A C
B
A C
B
A

2 C
B
A C
B
A C
B
A

3 C
B
A C
B
A

4 C
B
A

Corollary 3. Notice that, since min
j∈N φ j = 0.1, the weights, which are shown in Table 5,

can only be obtained when r + s ≤ 4.
Table 6 shows the ranking of the students obtained through M (r ,s)

p when the new
weighting vectors are considered. It is interesting to note that now, in all cases, except
for the weighted mean, the winner is student C. In fact, in all cases, except for the
pairs (0, 0) and (0, 1), the ranking is C
B
A.

Notice that, from a practical point of view, it is necessary to choose a Winsorized
weighted mean to rate the students. For that, we can use the following strategies:

1. To use a pair (r , s) previously fixed (some typical percentages are 10%, 15%,
20% or 25%; although smaller percentages are also used; see Hoitash and Hoitash
2009). In this case the pair (r , s) is chosen independently of the outliers present
in the data. For instance, suppose we choose a percentage of 20% at both ends.
Then, in our example, 0.2 · 7 = 1.4, and when we round down 1.4 to the nearest
integer we have r = s = 1. As we can see in Table 6, the winner is student C .

2. To choose a pair (r , s) so that the outliers of all students are removed. For that, first
of all we have to choose a method to detect outliers.3 Usual procedures to detect
outliers in the case of one-dimensional data are the boxplot rule (Tukey 1977)
and the MAD–median rule (see, for instance, Iglewicz and Hoaglin 1993, Wilcox
2012, and Leys et al 2013). In our example, with bothmethodswe get the following
outliers:

(a) For the student A: 9.8.
(b) For the student B: 5.2.

3 There is an abundant literature on this subject; see, for instance, Iglewicz and Hoaglin (1993), Barnett
and Lewis (1994), Wilcox and Keselman (2003), Seo (2006) and Aggarwal (2017).
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(c) For the student C: 5.2. Therefore, to remove the outliers of the three students
we should take the pair (1, 1),4 and the winner is student C (see again Table 6).

6 Conclusion

In this paper we have generalizedWinsorized means to include weighting vectors. For
this, we have introduced, in a natural way, a new family of functions calledWinsorized
weighted means. These functions are a specific case of Choquet integrals (in fact, they
are a specific case of SUOWA operators) and their capacities are relatively simple.
This fact allows that several indices such as the orness degree, the k-conjunctiveness
and k-disjunctiveness indices, the veto and favor indices, etc., can be given in closed-
form expressions. Of particular interest are the closed-form expressions obtained for
the Shapley values because they reflects the global importance of each information
source. From them, we can determine the weights that allow us to get Shapley values
previously fixed, and, in this way, we can aggregate data so that each information
source has the desired weighting and outliers have no influence in the aggregation.
It is important to note that other families of functions built in the framework of the
Choquet integral do not exhibit this behavior (see Beliakov 2018).

Acknowledgements The author is grateful to two anonymous referees for valuable suggestions and com-
ments. This work is partially supported by the Spanish Ministry of Economy and Competitiveness (Project
ECO2016-77900-P) and ERDF.

A Proofs

We first recall the definition and some properties of binomial coefficients (see, for
instance, Riordan (1968, pp. 1–3) and Grabisch (2016, p. 3).

Remark 2 Let m ∈ N and k ∈ Z. Then:

1.

(
m

k

)
=

⎧
⎨

⎩

m!
k!(m − k)! if 0 ≤ k ≤ m,

0 otherwise.

2.

(
m

k

)
=

(
m

m − k

)
.

3. If 0 ≤ k ≤ m, then
k∑

j=0

(−1) j
(
m

j

)
= (−1)k

(
m − 1

k

)
.

The following simple remarks on summation will be useful in some of the proofs.

4 In general, the pair (r , s) is obtained by taking r = max ri and s = max si , where (ri , si ) is the pair used
for removing the outlier of the i th alternative.
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Remark 3 Let p, q ∈ N, with p ≤ q + 1.5 Then:

q∑

t=p

t =
q∑

t=1

t −
p−1∑

t=1

t = q(q + 1) − p(p − 1)

2
.

Remark 4 Let p be a weighting vector. If ∅ � A ⊆ N and t ≥ 1, then

∑

T⊆A
|T |=t

∑

i∈T
pi =

(|A| − 1

t − 1

)∑

i∈A

pi .

In particular, when A = N we have

∑

T⊆N
|T |=t

∑

i∈T
pi =

(
n − 1

t − 1

) n∑

i=1

pi =
(
n − 1

t − 1

)
=

(
n

t

)
t

n
.

Remark 5 Let p be a weighting vector and j ∈ N . If t ≥ 1, then

∑

T⊆N\{ j}
|T |=t

∑

i∈T
pi =

(
n − 2

t − 1

) n∑

i=1
i �= j

pi =
(
n − 2

t − 1

)
(1 − p j ) =

(
n − 1

t

)
t(1 − p j )

n − 1
.

Remark 6 Let p be a weighting vector and j, k ∈ N . If t ≥ 1, then

∑

T⊆N\{ j,k}
|T |=t

∑

i∈T
pi =

(
n − 3

t − 1

) n∑

i=1
i �= j,k

pi =
(
n − 3

t − 1

)
(1 − p j − pk)

=
(
n − 2

t

)
t(1 − p j − pk)

n − 2
.

Proof of Proposition 1 Let p be a weighting vector and (r , s) ∈ R. Since

orness
(
M (r ,s)

p
) = 1

n − 1

n−1∑

t=1

1(n
t

)
∑

T⊆N
|T |=t

μ(r ,s)
p (T ),

and μ
(r ,s)
p is given by expression (1) (or expression (2) when r + s = n − 1), we

distinguish two cases:

5 Notice that we use the convention
∑q

t=p f (t) = 0 when p > q.
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1. If r + s = n − 1, then

orness
(
M (r ,s)

p
) = 1

n − 1

n−1∑

t=s+1

1 = n − s − 1

n − 1
= r

n − 1
.

2. If r + s < n − 1, then, by Remarks 4 and 3, we have

orness
(
M (r ,s)

p
)

= 1

n − 1

⎛

⎜⎜⎝
n−r−1∑

t=s+1

1(n
t

)
∑

T⊆N
|T |=t

∑

i∈T
pi + r

⎞

⎟⎟⎠

= 1

n − 1

(
1

n

n−r−1∑

t=s+1

t + r

)

= 1

n − 1

(
(n − r)(n − r − 1) − s(s + 1)

2n
+ r

)

= 1

n − 1

n(n − 1) + r(r + 1) − s(s + 1)

2n

= 1

2
+ r(r + 1) − s(s + 1)

2n(n − 1)
.

Notice that, when r + s = n − 1, the previous expression returns r/(n − 1). So,
it is also valid in the case r + s = n − 1.


�
Proof of Proposition 2 Let p be a weighting vector, (r , s) ∈ R, and k ∈ N\{n}. Since

conjk
(
M (r ,s)

p
) = 1 − 1

n − k

n−k∑

t=1

1(n
t

)
∑

T⊆N
|T |=t

μ(r ,s)
p (T ),

and μ
(r ,s)
p is given by expression (1) (or expression (2) when r + s = n − 1), we

distinguish the following cases:

1. If n − k ≤ s (or, equivalently, k ≥ n − s), then

conjk
(
M (r ,s)

p
) = 1.

2. If s < n − k < n − r (or, equivalently, r < k < n − s), by Remarks 4 and 3 we
have

conjk
(
M (r ,s)

p
) = 1 − 1

n − k

n−k∑

t=s+1

1(n
t

)
∑

T⊆N
|T |=t

∑

i∈T
pi = 1 − 1

n − k

n−k∑

t=s+1

t

n
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= 1 − 1

n − k

(n − k)(n − k + 1) − s(s + 1)

2n

= 1 − n − k + 1

2n
+ s(s + 1)

2n(n − k)

= n + k − 1

2n
+ s(s + 1)

2n(n − k)

= n(n − 1) + s(s + 1) − k(k − 1)

2n(n − k)
.

3. If n − k ≥ n − r (or, equivalently, k ≤ r ), we distinguish two cases:

(a) If r + s = n − 1, then

conjk
(
M (r ,s)

p
) = 1 − 1

n − k

n−k∑

t=n−r

1 = 1 − r − k + 1

n − k
= n − (r + 1)

n − k
.

(b) If r + s < n − 1, then

conjk
(
M (r ,s)

p
)

= 1 − 1

n − k

⎛

⎜⎜⎝
n−r−1∑

t=s+1

1(n
t

)
∑

T⊆N
|T |=t

∑

i∈T
pi + r − k + 1

⎞

⎟⎟⎠

= 1 − 1

n − k

(
n−r−1∑

t=s+1

t

n
+ r − k + 1

)

= 1 − 1

n − k

(
(n − r)(n − r − 1) − s(s + 1)

2n
+ r − k + 1

)

= 1 − 1

n − k

(
n + 1 − 2k

2
+ r(r + 1) − s(s + 1)

2n

)

= n(n − 1) + s(s + 1) − r(r + 1)

2n(n − k)
.

Notice also that, when r + s = n − 1, the previous expression returns (n −
r − 1)/(n − k). So, it is also valid in the case r + s = n − 1.


�

Proof of Proposition 3 Let p be a weighting vector, (r , s) ∈ R, and k ∈ N\{n}. Since

disjk
(
M (r ,s)

p
) = 1

n − k

n−1∑

t=k

1(n
t

)
∑

T⊆N
|T |=t

μ(r ,s)
p (T ),
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and μ
(r ,s)
p is given by expression (1) (or expression (2) when r + s = n − 1), we

distinguish the following cases:

1. If k ≥ n − r , then

disjk
(
M (r ,s)

p
) = 1

n − k

n−1∑

t=k

1 = 1.

2. If s < k < n − r , by Remarks 4 and 3 we have

disjk
(
M (r ,s)

p
) = 1

n − k

⎛

⎜⎜⎝
n−r−1∑

t=k

1(n
t

)
∑

T⊆N
|T |=t

∑

i∈T
pi + r

⎞

⎟⎟⎠

= 1

n − k

(
n−r−1∑

t=k

t

n
+ r

)

= 1

n − k

(
(n − r)(n − r − 1) − k(k − 1)

2n
+ r

)

= n(n − 1) + r(r + 1) − k(k − 1)

2n(n − k)
.

3. If k ≤ s, we distinguish two cases:

(a) If r + s = n − 1, then

disjk
(
M (r ,s)

p
) = 1

n − k

n−1∑

t=n−r

1 = r

n − k
.

(b) If r + s < n − 1, then

disjk
(
M (r ,s)

p
) = 1

n − k

⎛

⎜⎜⎝
n−r−1∑

t=s+1

1(n
t

)
∑

T⊆N
|T |=t

∑

i∈T
pi + r

⎞

⎟⎟⎠ .

Notice that the above expression coincides with that of the second item when
k = s + 1. Therefore,

disjk
(
M (r ,s)

p
) = n(n − 1) + r(r + 1) − s(s + 1)

2n(n − k)
.

Notice also that, when r+s = n−1, the previous expression returns r/(n−k).
So, it is also valid in the case r + s = n − 1.


�
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Proof of Proposition 4 Let p be a weighting vector, (r , s) ∈ R and j ∈ N . Since

veto
(
M (r ,s)

p , j
) = 1 − 1

n − 1

n−1∑

t=1

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

μ(r ,s)
p (T ),

and μ
(r ,s)
p is given by expression (1) (or expression (2) when r + s = n − 1), we

distinguish two cases:

1. If r + s = n − 1, then

veto
(
M (r ,s)

p , j
) = 1 − 1

n − 1

n−1∑

t=s+1

1 = 1 − r

n − 1
= s

n − 1
.

2. If r + s < n − 1, then, by Remarks 5 and 3, we get

veto
(
M (r ,s)

p , j
) = 1 − 1

n − 1

⎛

⎜⎜⎝
n−r−1∑

t=s+1

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

∑

i∈T
pi + r

⎞

⎟⎟⎠

= 1 − 1

n − 1

(
1 − p j

n − 1

n−r−1∑

t=s+1

t + r

)

= 1 − r

n − 1
− (1 − p j )

(
(n − r)(n − r − 1) − s(s + 1)

)

2(n − 1)2
.

Notice that, when r + s = n − 1, the previous expression returns s/(n − 1). So,
it is also valid in the case r + s = n − 1.


�
Proof of Proposition 5 Let p be a weighting vector, (r , s) ∈ R and j ∈ N . Since

favor
(
M (r ,s)

p , j
) = 1

n − 1

n−1∑

t=0

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

μ(r ,s)
p (T ∪ { j}) − 1

n − 1
,

and μ
(r ,s)
p is given by expression (1) (or expression (2) when r + s = n − 1), we

distinguish two cases:

1. If r + s = n − 1, then

favor
(
M (r ,s)

p , j
) = 1

n − 1

n−1∑

t=s

1 − 1

n − 1
= n − s − 1

n − 1
= r

n − 1
.
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2. If r + s < n − 1, then, by Remarks 5 and 3, we get

favor
(
M (r ,s)

p , j
)

= 1

n − 1

⎛

⎜⎜⎝
n−r−2∑

t=s

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

(
∑

i∈T
pi + p j

)
+ r + 1

⎞

⎟⎟⎠ − 1

n − 1

= 1

n − 1

(
1 − p j

n − 1

n−r−2∑

t=s

t + p j (n − r − s − 1) + r

)

= (1 − p j )
(
(n − r − 2)(n − r − 1) − s(s − 1) + 2r(n − 1)

)

2(n − 1)2

+ p j (n − s − 1)

n − 1

= (1 − p j )
(n − 1)(n − 2) + r(r + 1) − s(s − 1)

2(n − 1)2
+ p j

(
1 − s

n − 1

)
.

Notice that, when r + s = n − 1, the previous expression returns r/(n − 1). So,
it is also valid in the case r + s = n − 1.


�
Proof of Proposition 6 Let p be a weighting vector, (r , s) ∈ R and j ∈ N . Since

φ j
(
μ(r ,s)

p
) = 1

n

n−1∑

t=0

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

μ(r ,s)
p (T ∪ { j})

− 1

n

n−1∑

t=0

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

μ(r ,s)
p (T ).

and μ
(r ,s)
p is given by expression (1) (or expression (2) when r + s = n − 1), we

distinguish two cases:

1. If r + s = n − 1, then

φ j
(
μ(r ,s)

p
) = 1

n

n−1∑

t=s

1 − 1

n

n−1∑

t=s+1

1 = 1

n
.

2. If r + s < n − 1, then, by Remark 5, we have

φ j
(
μ(r ,s)

p
) = 1

n

⎛

⎜⎜⎝
n−r−2∑

t=s

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

(
p j +

∑

i∈T
pi

)
+ r + 1

⎞

⎟⎟⎠
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− 1

n

⎛

⎜⎜⎝
n−r−1∑

t=s+1

1
(n−1

t

)
∑

T⊆N\{ j}
|T |=t

∑

i∈T
pi + r

⎞

⎟⎟⎠

= 1

n

(
(n − r − s − 1)p j + 1 − p j

n − 1
(s − (n − r − 1)) + 1

)

= 1

n

(
s + r + n(n − r − s − 1)p j

n − 1

)

= r + s

n − 1

1

n
+ n − 1 − r − s

n − 1
p j

= r + s

n − 1

1

n
+

(
1 − r + s

n − 1

)
p j .

Notice that, when r + s = n−1, the previous expression returns 1/n. So, it is also
valid in the case r + s = n − 1.


�
Proof of Proposition 7 Let p be a weighting vector, (r , s) ∈ R and j, k ∈ N . Notice
that I jk

(
μ

(r ,s)
p

)
can be written as

I jk
(
μ(r ,s)

p
) = 1

n − 1

(
I{ j,k} − I{ j} − I{k} + I∅

)
,

where IK , K ⊆ N , is defined by

IK =
n−2∑

t=0

1
(n−2

t

)
∑

T⊆N\{ j,k}
|T |=t

μ(r ,s)
p (T ∪ K ).

Since μ
(r ,s)
p is given by expression (1) (or expression (2) when r + s = n − 1), we

distinguish two cases:

1. If r + s = n − 1, then it is easy to check that I{ j,k}, I{ j}, I{k}, and I∅ take the
following values:

I{ j,k} =
{∑n−2

t=0 1 = n − 1 if s = 0,∑n−2
t=s−1 1 = n − s otherwise,

I{ j} = I{k} =
n−2∑

t=s

1 = n − 1 − s,

I∅ =
{∑n−2

t=s+1 1 = n − 2 − s if s < n − 1,

0 otherwise.
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We now calculate I jk
(
μ

(r ,s)
p

)
taking into account the different values of I{ j,k}, I{ j},

I{k}, and I∅. We distinguish three cases:

(a) If s = 0, which is equivalent to r = n − 1, we get

I jk
(
μ(r ,s)

p
) = 1

n − 1
(n − 1 − 2(n − 1) + n − 2) = − 1

n − 1
.

(b) If 0 < s < n − 1 we have

I jk
(
μ(r ,s)

p
) = 1

n − 1
(n − s − 2(n − 1 − s) + n − 2 − s) = 0.

(c) If s = n − 1, which is equivalent to r = 0, we obtain

I jk
(
μ(r ,s)

p
) = 1

n − 1
.

Therefore,

I jk
(
μ(r ,s)

p
) =

⎧
⎪⎨

⎪⎩

1
n−1 if r = 0,

− 1
n−1 if r = n − 1,

0 otherwise.

(4)

2. If r + s < n − 1, then, by Remark 6, we can see that I{ j,k}, I{ j}, I{k}, and I∅
take the following values:

I{ j,k} =

⎧
⎪⎪⎨

⎪⎪⎩

∑n−2
t=0 1 = n − 1 if s = 0 and r = n − 2,

∑n−r−3
t=0

(
p j + pk + t(1−p j−pk )

n−2

)
+ r + 1 if s = 0 and r < n − 2,

∑n−r−3
t=s−1

(
p j + pk + t(1−p j−pk )

n−2

)
+ r + 1 otherwise,

I{ j} =
n−r−2∑

t=s

(
p j + t(1 − p j − pk)

n − 2

)
+ r ,

I{k} =
n−r−2∑

t=s

(
pk + t(1 − p j − pk)

n − 2

)
+ r ,

I∅ =

⎧
⎪⎨

⎪⎩

0 if r = 0 and s = n − 2,
∑n−2

t=s+1
t(1−p j−pk )

n−2 if r = 0 and s < n − 2,
∑n−r−1

t=s+1
t(1−p j−pk )

n−2 + r − 1 otherwise,

We now calculate I jk
(
μ

(r ,s)
p

)
taking into account the different values of I{ j,k},

I{ j}, I{k}, and I∅. For instance, when s = 0 and r = n − 2 we get
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I jk
(
μ(r ,s)

p
)

= 1

n − 1

(
n − 1 − p j − (n − 2) − pk − (n − 2) + 1 − p j − pk

n − 2
+ n − 3

)

= 1

n − 1

1 − (n − 1)(p j + pk)

n − 2
= − 1

n − 2

(
p j + pk − 1

n − 1

)
.

Once all the cases have been analyzed (to avoid tedious calculations, the
remaining cases are left to the reader), we have

I jk
(
μ(r ,s)

p
) =

⎧
⎪⎪⎨

⎪⎪⎩

1
n−2

(
p j + pk − 1

n−1

)
if r = 0 and 0 < s < n − 1,

− 1
n−2

(
p j + pk − 1

n−1

)
if s = 0 and 0 < r < n − 1,

0 otherwise.

(5)

Expressions (4) and (5) together establish the truth of Proposition 7. 
�
Proof of Proposition 8 Let p be a weighting vector and (r , s) ∈ R. Given A ⊆ N ,
since

mμ
(r ,s)
p (A) =

|A|∑

t=1

(−1)|A|−t
∑

T⊆A
|T |=t

μ(r ,s)
p (T ),

and μ
(r ,s)
p is given by expression (1) (or expression (2) when r + s = n − 1), we

distinguish the following cases:

1. If |A| ≤ s, then

mμ
(r ,s)
p (A) = 0.

2. If s < |A| < n − r , by Remark 4 and the third item of Remark 2, we get

mμ
(r ,s)
p (A)

=
|A|∑

t=s+1

(−1)|A|−t
∑

T⊆A
|T |=t

∑

i∈T
pi =

|A|∑

t=s+1

(−1)|A|−t
(|A| − 1

t − 1

)∑

i∈A

pi

=
(

∑

i∈A

pi

) |A|∑

t=s+1

(−1)|A|−t
(|A| − 1

|A| − t

)
=

(
∑

i∈A

pi

)|A|−s−1∑

j=0

(−1) j
(|A| − 1

j

)

=
(

∑

i∈A

pi

)
(−1)|A|−s−1

( |A| − 2

|A| − s − 1

)
= (−1)|A|−s−1

(|A| − 2

s − 1

)(
∑

i∈A

pi

)
.

Notice that when s = 0 we have mμ
(r ,s)
p (A) = 0.
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3 If |A| ≥ n − r , we distinguish two cases:

(a) If r + s = n − 1, then, by the third item of Remark 2 we have

mμ
(r ,s)
p (A) =

|A|∑

t=s+1

(−1)|A|−t
(|A|

t

)
=

|A|∑

t=s+1

(−1)|A|−t
( |A|

|A| − t

)

=
|A|−s−1∑

j=0

(−1) j
(|A|

j

)
= (−1)|A|−s−1

( |A| − 1

|A| − s − 1

)

= (−1)|A|−s−1
(|A| − 1

s

)
.

(b) If r + s < n − 1, by Remark 4 and the third item of Remark 2, we have

mμ
(r ,s)
p (A)

=
n−r−1∑

t=s+1

(−1)|A|−t
(|A| − 1

t − 1

) ∑

i∈A

pi +
|A|∑

t=n−r

(−1)|A|−t
(|A|

t

)

=
(

∑

i∈A

pi

)
n−r−1∑

t=s+1

(−1)|A|−t
(|A| − 1

|A| − t

)
+

|A|∑

t=n−r

(−1)|A|−t
( |A|

|A| − t

)

=
(

∑

i∈A

pi

) |A|−s−1∑

j=|A|−n+r+1

(−1) j
(|A| − 1

j

)
+

|A|−n+r∑

j=0

(−1) j
(|A|

j

)

=
(

∑

i∈A

pi

) (
(−1)|A|−s−1

( |A| − 2

|A| − s − 1

)

−(−1)|A|−n+r
( |A| − 2

|A| − n + r

))
+ (−1)|A|−n+r

( |A| − 1

|A| − n + r

)

=
(

∑

i∈A

pi

) (
(−1)|A|−s−1

(|A| − 2

s − 1

)
− (−1)|A|−n+r

( |A| − 2

n − r − 2

))

+ (−1)|A|−n+r
( |A| − 1

n − r − 1

)
.

Notice also that, when r + s = n − 1, the previous expression returns
(−1)|A|−s−1

(|A|−1
s

)
. So, it is also valid in the case r + s = n − 1.


�
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Beliakov G, Dujmović J (2016) Extension of bivariate means to weighted means of several arguments by

using binary trees. Inf Sci 331:137–147
Choquet G (1953) Theory of capacities. Ann Inst Fourier 5:131–295
Denneberg D (1994) Non-additive measures and integral. Kluwer Academic Publisher, Dordrecht
Dixon WJ (1960) Simplified estimation from censored normal samples. Ann Math Stat 31(2):385–391
Dubois D, Koning JL (1991) Social choice axioms for fuzzy set aggregation. Fuzzy Sets Syst 43(3):257–274
Grabisch M (1995) Fuzzy integral in multicriteria decision making. Fuzzy Sets Syst 69(3):279–298
Grabisch M (1997) k-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst

92(2):167–189
Grabisch M (2016) Set functions, games and capacities in decision making, theory and decision library,

series C, vol 46. Springer, Berlin
Grabisch M, Labreuche C (2010) A decade of application of the Choquet and Sugeno integrals in multi-

criteria decision aid. Ann Oper Res 175(1):247–286
Grabisch M, Labreuche C (2016) Fuzzy measures and integrals in MCDA. In: Greco S, Ehrgott M, Figueira

RJ (eds) Multiple criteria decision analysis: state of the art surveys, international series in operations
research and management science, vol 233, 2nd edn. Springer, New York, pp 553–603

Grabisch M, Marichal J, Mesiar R, Pap E (2009) Aggregation functions. Cambridge University Press,
Cambridge

Harsanyi JC (1959) A bargaining model for cooperative n-person games. In: Tucker AW, Luce RD (eds)
Contributions to the theory of games. Vol. 4, Annals of Mathematics Studies, vol 40. Princeton Uni-
versity Press, Princeton, pp 325–355

Heilpern S (2002) Using Choquet integral in economics. Stat Pap 43(1):53–73
Hoitash U, Hoitash R (2009) Conflicting objectives within the board: evidence from overlapping audit and

compensation committee members. Group Decis Negot 18(1):57–73
Huber PJ, Ronchetti EM (2009) Robust statistics, 2nd edn. Wiley, Hoboken
Iglewicz B, Hoaglin D (1993) How to detect and handle outliers. ASQC Quality Press, Milwaukee
Komorníková M, Mesiar R (2011) Aggregation functions on bounded partially ordered sets and their

classification. Fuzzy Sets Syst 175(1):48–56
LenormandM(2018)GeneratingOWAweights using truncated distributions. Int J Intell Syst 33(4):791–801
Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around

the mean, use absolute deviation around the median. J Exp Soc Psychol 49(4):764–766
Liu X (2011) A review of the OWA determination methods: classification and some extensions. In: Yager

RR, Kacprzyk J, Beliakov G (eds) Recent developments in the ordered weighted averaging operators:
theory and practice. Springer, Berlin, pp 49–90

Llamazares B (2007) Choosing OWA operator weights in the field of social choice. Inf Sci 177(21):4745–
4756

Llamazares B (2013) An analysis of some functions that generalizes weighted means and OWA operators.
Int J Intell Syst 28(4):380–393

Llamazares B (2015a) Constructing Choquet integral-based operators that generalize weighted means and
OWA operators. Inf Fus 23:131–138

Llamazares B (2015b) A study of SUOWA operators in two dimensions. Math Probl Eng 2015: Article ID
271,491

Llamazares B (2016a) A behavioral analysis of WOWA and SUOWA operators. Int J Intell Syst 31(8):827–
851

Llamazares B (2016b) SUOWA operators: constructing semi-uninorms and analyzing specific cases. Fuzzy
Sets Syst 287:119–136

Llamazares B (2018a) Closed-form expressions for some indices of SUOWA operators. Inf Fus 41:80–90
Llamazares B (2018b) Construction of Choquet integrals through unimodal weighting vectors. Int J Intell

Syst 33(4):771–790
Llamazares B (2019a) SUOWA operators: a review of the state of the art. Int J Intell Syst 34(5):790–818
Llamazares B (2019b) SUOWA operators: an analysis of their conjunctive/disjunctive character. Fuzzy Sets

Syst 357:117–134

123



An Analysis of Winsorized Weighted Means 933

Marichal JL (1998) Aggregation operators for multicriteria decision aid. Ph.D. thesis, University of Liège
Marichal JL (2004) Tolerant or intolerant character of interacting criteria in aggregation by the Choquet

integral. Eur J Oper Res 155(3):771–791
Marichal JL (2007) k-intolerant capacities and Choquet integrals. Eur J Oper Res 177(3):1453–1468
MurofushiT, SonedaS (1993)Techniques for reading fuzzymeasures (iii): interaction index. In: Proceedings

of the 9th fuzzy systems symposium, Sapporo (Japan), pp 693–696
Murofushi T, Sugeno M (1991) A theory of fuzzy measures. Representation, the Choquet integral and null

sets. J Math Anal Appl 159(2):532–549
Murofushi T, Sugeno M (1993) Some quantities represented by the Choquet integral. Fuzzy Sets Syst

56(2):229–235
Owen G (1972) Multilinear extensions of games. Manag Sci 18(5–part–2):64–79
Riordan J (1968) Combinatorial identities. Wiley, New York
Rota GC (1964) On the foundations of combinatorial theory I. Theory of Möbius functions. Z Wahrschein-

lichkeitstheorie Verwandte Geb 2(4):340–368
Seo S (2006) A review and comparison of methods for detecting outliers in univariate data sets. Master’s

thesis, University of Pittsburgh
Shapley LS (1953) A value for n-person games. In: Kuhn H, Tucker AW (eds) Contributions to the theory

of games, vol 2. Princeton University Press, Princeton, pp 307–317
SugenoM (1974) Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology
Torra V (1997) The weighted OWA operator. Int J Intell Syst 12(2):153–166
Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading
Wainer H (1976) Robust statistics: a survey and some prescriptions. J Educ Stat 1(4):285–312
Wilcox RR (2012) Modern statistics for the social and behavioral sciences: a practical introduction. CRC

Press, Boca Raton
Wilcox RR, Keselman HJ (2003) Modern robust data analysis methods: measures of central tendency.

Psychol Methods 8(3):254–274
Yager RR (1988) On ordered weighted averaging operators in multicriteria decision making. IEEE Trans

Syst Man Cybern 18(1):183–190
Zhang Z, Xu Z (2014) Analysis on aggregation function spaces. Int J Uncertain Fuzziness Knowl Based

Syst 22(05):737–747

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	An Analysis of Winsorized Weighted Means
	Abstract
	1 Introduction
	2 Choquet Integral
	3 Winsorized Weighted Means
	4 The Results
	4.1 The Orness Degree
	4.2 k-Conjunctiveness and k-Disjunctiveness Indices
	4.3 Veto and Favor Indices
	4.4 The Shapley Values
	4.5 Interaction Indices
	4.6 The Möbius Transform

	5 Example
	6 Conclusion
	Acknowledgements
	A Proofs
	References




