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Abstract
TheBordaEffect, first introduced byColman andPoutney (BehavSci 23:15–20, 1978),
occurs in a preference aggregation process using the Plurality rule if given the (unique)
winner there is at least one loser that is preferred to the winner by a majority of the
electorate. Colman and Poutney (1978) distinguished two forms of the Borda Effect:
the Weak Borda Effect, describing a situation under which the unique winner of the
Plurality rule is majority dominated by only one loser; and the Strong Borda Effect,
under which the Plurality winner is majority dominated by each of the losers. The
Strong Borda Effect is well documented in the literature as the Strong Borda Paradox.
Colman and Poutney (1978) showed that the probability of the Weak Borda Effect
is not negligible; but they only focused on the Plurality rule. In this note, we extend
the work of Colman and Poutney (1978) by providing, for three-candidate elections,
representations of the limiting probabilities of the (Weak) Borda Effect for the whole
family of scoring rules and scoring runoff rules. Our analysis leads us to highlight
that there is a relation between the (Weak) Borda Effect and Condorcet efficiency.
We perform our analysis under the assumptions of Impartial Culture and Impartial
Anonymous Culture, which are two well-known assumptions often used for such a
study.
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1 Introduction

de Borda (1781) and de Condorcet (1785) who were both members of the Paris Royal
Academy of Sciences, proposed alternative voting rules to the one that was in use in
the academy at the time. With m ≥ 3 candidates, the Borda rule gives m − k points to
a candidate each time she is ranked kth by a voter and the winner is the candidate with
the highest total number of points. This rule belongs to the family of scoring rules
containing all the voting systems under which candidates receive points according to
the position they have in voters’ rankings and the total number of points received by
a candidate defines her score; the winner is the candidate with the highest score. The
best-known scoring rules are the Plurality rule, the Borda rule and the Antiplurality
rule. Under the Antiplurality rule, the winner is the candidate with the fewest number
of last places in the voters’ rankings. de Condorcet (1785) criticized the Borda rule
in that there can exist a candidate who is preferred to the Borda winner by more than
half of the electorate. de Condorcet (1785) proposed the Pairwise Majority Rule based
on pairwise comparisons.1 According to this rule, a candidate should be declared the
winner if she beats all the other candidates in pairwise comparisons; such a candidate
is called the Condorcet winner. Nonetheless, the Condorcet principle has a drawback:
the Condorcet winner does not always exist and calculation of the winner one can end
in majority cycles.

de Borda (1784) showed that for a given voting rule, the Plurality rule can elect
the Condorcet loser, a candidate who loses all his pairwise comparisons. The Borda-
Condorcet debate thus emphasized the fact that pairwise comparisons may not agree
with scoring rules. The possible disagreements gave rise to the definition of the fol-
lowing phenomena or voting paradoxes: (i) the Strong Borda Paradox, which occurs
when a scoring rule elects the Condorcet loser when she exists; (ii) the Strict Borda
Paradox, which occurs when the collective rankings of a scoring rule is completely
the reverse of that of the pairwise comparisons; and (iii) the Weak Borda Paradox,
in which a scoring rule reverses the ranking of the pairwise comparisons on some
pairs of candidates without necessarily electing the Condorcet loser; in other words,
this paradox occurs if given that there is a Condorcet loser, she is not ranked last by
the scoring rule. The study of the likelihood of each of these three paradoxes is well
addressed in the social choice literature. Without seeking to be exhaustive, the reader
may refer to the theoretical works of Diss and Gehrlein (2012), Diss et al. (2018), Diss
and Tlidi (2018), Gehrlein and Fishburn (1976, 1978a), Gehrlein and Lepelley (1998,
2010, 2011, 2017), Kamwa and Valognes (2017), Lepelley (1993, 1996), Lepelley
et al. (2000a, b), Saari (1994), Saari and Valognes (1999), Tataru and Merlin (1997).
We might also mention the empirical works that have investigated these paradoxes
using real-world data, notably Bezembinder (1996), Colman and Poutney (1978),
Riker (1982), Taylor (1997), Van Newenhizen (1992) and Weber (1978). A summary
of the results of these empirical studies can be found in Gehrlein and Lepelley (2011,
p 15).

In addition to the variations of the Borda Paradox just listed, there is also the
less well known Borda Effect first introduced by Colman and Poutney (1978). They

1 See Young (1988) for a modern interpretation of Condorcet’s rule.

123



On the Likelihood of the Borda Effect… 521

distinguished the Strong Borda Effect and the Weak Borda Effect: the Strong Borda
Effect describes a situation in which the Plurality rule elects the Condorcet loser,
while theWeak Borda Effect concerns a situation under which the Plurality winner is
majority dominated by only one of the Plurality losers. Evidently, the Strong Borda
Effect is equivalent to the Strong Borda Paradox. The Weak Borda Effect is a little
bit special and subtle, however, and if one is not careful one can misunderstand this
phenomenon and thereby miscalculate its occurrences. This is indeed what happened
to Gillett (1984, 1986).

Gillett (1984) criticized Colman (1980) of misusing the Weak Borda Effect as an
indicator of the likelihood that the Plurality rule would produce an outcome inconsis-
tent with the wishes of the majority. Then he showed that the likelihood of the Weak
Borda Effect provides an inadequate, poor and misleading index of the propensity of
Plurality/Majority disagreement. Colman (1984) replied that this criticism was based
on a misunderstanding, as he “had proposed it [theWeak Borda Effect] not as an index
of Plurality-majority disagreement, but rather as an index of the propensity of the Plu-
rality voting procedure to select a unique winner when a majority of a committee or
an electorate ... prefer one of the defeated alternatives to the plurality winner”. This
misunderstanding appears clearly in the introduction to Gillett (1986), where one can
read : “TheWeak Borda Effect refers to a situation which can occur under the plurality
voting systemwhereby at least one of the losing candidates is preferred to the winning
candidate by a simple majority of the voters ... ”. Note that this definition refers to the
overall Borda Effect. This misunderstanding obviously led Gillet to question the prob-
ability of theWeak Borda Effect calculated by Colman (1980). Subsequently Colman
(1986) responded to all the misunderstandings and criticisms of Gillett (1984, 1986).

For three-candidate elections, Colman and Poutney (1978, p 17) reported the exact
probabilities of the Strong Borda Effect and theWeak Borda Effect for groups of voters
ranging in size from 7 to 301. According to their results “the smallest committee size
in which the Strong or Weak Borda Effect can occur is seven, probabilities 0.018 and
0.126, respectively. In a committee of eight members it is useful to know that the
effect cannot occur, but in groups of nine or more there is a significant probability
of its occurrence. The likelihood of the strong and weak effects tends to rise as the
number of voters increases until with 301 voters the probabilities are 0.029 and 0.276,
respectively,with no obvious asymptote in sight”.With the use of survey data regarding
voters’ preference rankings, Colman and Poutney (1978) found the occurrence of the
Borda Effect in fifteen instances out of 261 three-cornered contests in the results of
the 1966 British General Election. A similar experiment was conducted by Nurmi and
Suojanen (2004).

As their analysis was only focused on the Plurality rule, the results of Colman
and Poutney (1978, p 17) are quite limited in scope as the Borda Effect can also be
observed with all the scoring rules and scoring runoff rules. To our knowledge, apart
from Colman and Poutney (1978) no other paper has investigated the Weak Borda
Effect under other scoring rules nor under scoring runoff rules. The main objective of
this paper is to fill this gap in the literature by providing, for three-candidate elections,
representations of the overall limiting probabilities for general weighted scoring rules
and scoring runoff rules. We show that these representations can be deduced from the
well-known results on the likelihood of the Strong Borda Paradox and on Condorcet
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efficiency.TheCondorcet efficiencyof a votingprocedure is the conditional probability
that it will elect the Condorcet winner, given that a Condorcet winner exists. We
perform our analysis under the assumptions of Impartial Culture (IC) and Impartial
AnonymousCulture (IAC), twowell-known assumptions underwhich such studies are
often driven in the social choice literature. These assumptions are defined in Sect. 2.4.

The rest of the paper is structured as follows: Section 2 is devoted to basic notations
and definitions. Section 3 presents our results. In Sect. 4, we extend our analysis to
scoring runoff rules when we eliminate all the candidates who obtain strictly less than
the average score; we also enrich the topic by including an analysis with single-peaked
preferences. Section 5 concludes.

2 Preliminaries

2.1 Preferences

Let N be a set of n voters (n ≥ 2) and A = {a, b, c} a set of three candidates. Individual
preferences are linear orders, these are complete, asymmetric and transitive binary
relations on A. With three candidates, there are exactly 6 linear orders P1, P2, . . . , P6
on A. A voting situation is a 6-tuple π = (n1, n2, . . . , nt , . . . , n6) that indicates
the total number nt of voters casting each of the complete linear orders such that∑6

t=1 nt = n. We will simply write abc to denote the linear order on A according to
which a is strictly preferred to b, b is strictly preferred to c; and by transitivity a is
strictly preferred to c. Table 1 describes a voting situation on A = {a, b, c}.

Given a, b ∈ A and a voting situation π , we denote by nab(π) (or simply nab) the
total number of voters who strictly prefer a to b. If nab > nba , we say that candidate a
majority dominates candidateb; or equivalently,a beatsb in a pairwisemajority voting.
In such a case, we will simply write aMb. Candidate a is said to be the Condorcet
winner (resp. the Condorcet loser) if aMb and aMc (resp. bMa and cMa). If for a
given voting situation we get aMb, bMc and cMa, this describes a majority cycle.

2.2 Voting Rules

Scoring rules are voting systems that give points to candidates according to the position
they have in voters’ ranking. For a given scoring rule, the total number of points
received by a candidate defines her score for this rule. The winner is the candidate
with the highest score. In general, with three candidates and complete strict rankings, a
scoring vector is a 3-tuplew = (w1, w2, w3) of real numbers such thatw1 ≥ w2 ≥ w3
and w1 > w3. Given a voting situation π , each candidate receives wk each time she
is ranked kth (k = 1, 2, 3) by a voter. The score of a candidate a ∈ A is the sum
S(π,w, a) = ∑6

t=1 ntwr(t,a) where r(t, a) is the rank of candidate a according to
voters of type t .

A normalized scoring vector has the shape wλ = (1, λ, 0) with 0 ≤ λ ≤ 1. For
λ = 0, we obtain the Plurality rule. For λ = 1, we have the Antiplurality rule and for
λ = 1

2 , we have the Borda rule. From now on, we will denote by S(π, λ, a) the score
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Table 1 Possible strict rankings
on A = {a, b, c} n1 : abc n2 : acb n3 : bac

n4 : bca n5 : cab n6 : cba

Table 2 Scores of candidates
S(π, λ, a) = n1 + n2 + λ(n3 + n5)

S(π, λ, b) = n3 + n4 + λ(n1 + n6)

S(π, λ, c) = n5 + n6 + λ(n2 + n4)

of candidate a when the scoring vector is wλ = (1, λ, 0) and the voting situation is
π ; without loss of generality, wλ will be used to refer to the voting rule. Table 2 gives
the score of each candidate in A = {a, b, c} given the voting situation of Table 1.

If for a given λ, candidate a scores better than candidate b, we denotes it by aSλb.
In one-shot voting, the winner is the candidate with the largest score. Runoff systems
involve two rounds of voting: in the first round, the candidate with the smallest score
is eliminated. In the second round, a majority contest determines who is the winner.
Without loss of generality, we will denote by wλr the runoff rule under which wλ is
used at the first stage. Runoff systems are widely used in the real world: in France,
they are used for presidential, legislative and departmental elections; they are used
for presidential elections in many other countries (Finland, Argentina, Austria, Egypt,
etc.) and organizations such as the International Olympic Committee to designate the
host city of the Olympic Games.

2.3 The Borda-Likewise Effects

Consider Tables 1 and 2 and let us assume that candidate a is the winner for the
one-shot scoring rule wλ. This means that aSλb and aSλc. In such a case, we get the
Strong Borda Paradox or the Strong Borda Effect if bMa and cMa: candidate a is the
Condorcet loser and she is elected by wλ. If bMa, cMa, bMc and cSλb, the collective
ranking of wλ is acb while that of the Pairwise Majority rule is bca; this defines the
Strict Borda Paradox. If there is a Condorcet loser and she is not ranked last by wλ,
we get the Weak Borda Paradox. The Weak Borda effect happens if only one of the
two candidates b and c who majority dominates candidate a. To get an overview on
how these paradoxes are connected, let us assume the relations of Table 3. As one can
notice in Table 3, the Strict Borda Paradox, the Strong Borda Paradox and the Weak
Borda Effect are all subcases of the Weak Borda Paradox; the Strict Borda Paradox
is the severe form of the Strong Borda Paradox while these two paradoxes are not
connected with the Weak Borda Effect.

With runoff systems, it is obvious that theStrongBordaParadox and theStrict Borda
Paradox never occur for all λ; but this can be the case for the Weak Borda Paradox
and the Weak Borda Effect. Under these rules, the Borda Effect is just equivalent to
theWeak Borda Effect.
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Table 3 Results of the scoring rule, of the pairwise comparisons and the resulting paradoxes

Result of the scoring rule Results of the pairwise comparisons Resulting paradoxes

aSλb and aSλc and bSλc bMa, cMa and cMb Strict Borda paradox

a is the Condorcet loser (bMa and cMa) Strong Borda paradox

bMa and/or cMa and/or cMb Weak Borda paradox

only bMa or cMa Weak Borda effect

2.4 The Probability Models

As stated in Sect. 1, the likelihood of each of the variations of the Borda paradox is
well addressed in the social choice literature. Most of the time, the probabilities are
obtained by assuming the Impartial Culture hypothesis (IC) or that of Impartial and
Anonymous Culture (IAC).

For our framework with three candidates, IC assumes that each voter chooses her
preference according to a uniform probability distribution and gives a probability of 1

6
for each ranking to be chosen independently. The likelihood of a given voting situation
ñ = (n1, n2, n3, n4, n5, n6) is given by Prob(ñ) = n!

∏6
i=1 ni !

× (6)−n . For our analysis

under this assumption with an infinite electorate, we follow the same technique as
Cervone et al. (2005), David and Mallows (1961), Gehrlein (1979, 2002, 2017).

Under IAC, first introduced by Gehrlein and Fishburn (1976), the likelihood of
a given event is calculated with respect to the ratio between the number of voting
situations inwhich the event is likely over the total number of possible voting situations.
It is known that the total number of possible voting situations in three-candidate
elections is given by the following five-degree polynomial in n: Cn

n+3!−1 = (n+5)!
n!5! .

The number of voting situations associated with a given event can be reduced to the
solutions of a finite system of linear constraints with rational coefficients. As recently
pointed out in the social choice literature, the appropriate mathematical tools to find
these solutions are the Ehrhart polynomials. The background of this notion and its
connection with the polytope theory can be found in Gehrlein and Lepelley (2011,
2017), Lepelley et al. (2008), and Wilson and Pritchard (2007). This technique has
been widely used in numerous studies analyzing the probability of electoral events
in the case of three-candidate elections under the IAC assumption. As we deal only
with the probability with large electorates, we follow a procedure that was developed
in Cervone et al. (2005) and recently used in many research papers such as Diss and
Gehrlein (2012, 2015), Diss et al. (2010, 2012), Gehrlein et al. (2015), Moyouwou
and Tchantcho (2015) among others. This technique is based on the computation of
polytopes’ volumes.

3 Likelihood of theWeak Borda Effect in Three-Candidate Elections

Colman and Poutney (1978, p 17) reported for three-candidate elections the exact
probabilities of the Weak Borda Effect for groups of voters ranging in size from 7 to
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301. Their calculations were performed under the IC hypothesis. For three-candidate
elections, we provide representations for the limiting probabilities of the Weak Borda
Effect for the whole family of the scoring rules and scoring runoff rules under IC and
IAC.

3.1 Representations of the Limiting Probability for One-Shot Scoring Rules

Given a voting situation on A = {a, b, c} andwλ = (1, λ, 0), we denote by P(a; bMa)

the probability of the situation described by the following inequalities:

⎧
⎨

⎩

aSλb
aSλc
bMa

⇔
⎧
⎨

⎩

(1 − λ)n1 + n2 + (λ − 1)n3 − n4 + λn5 − λn6 > 0
n1 + (1 − λ)n2 + λn3 − λn4 + (λ − 1)n5 − n6 > 0
−n1 − n2 + n3 + n4 − n5 + n6 > 0

(1)

Also,wedenote by P(a; bMa; cMa, �) the probability of the situationunderwhich the
winner is beaten in pairwise comparisons by the twoother candidates under assumption
�; � stands here for IC or IAC.

It follows that with three candidates, Pλ
WBE(3,∞, �), the limiting probability of the

Weak Borda Effect under assumption �, is given by:

Pλ
WBE(3,∞, �) = 3

(

P(a; bMa, �) + P(a; cMa, �) − P(a; bMa; cMa, �)

)

= 6P(a; bMa, �) − 3P(a; bMa; cMa, �)

= 6P(a; bMa, �) − Pc(3,∞, �) × Pλ
SgBP(3,∞, �) (2)

with Pλ
SgBP(3,∞, �) the conditional probability of the Strong Borda Paradox and

Pc(3,∞, �) the probability that a Condorcet winner (or Condorcet loser) exists;
Pλ
BE(3,∞, �), the limiting probability of the Borda Effect under assumption �, is

given by:

Pλ
BE(3,∞, �) = Pλ

WBE(3,∞, �) + 3P(a; bMa; cMa, �)

= 6P(a; bMa, �) (3)

Representations of Pc are known in the literature both under IC and IAC.

Pc(3,∞, IC) = 3

4
+ 3

2
sin−1

(
1

3

)

and Pc(3,∞, I AC) = 15

16

Some representations for Pλ
SgBP(3,∞, �) are provided by Gehrlein and Fishburn

(1978a), Tataru and Merlin (1997) and Cervone et al. (2005). Now, all we have to do
is to find P(a; bMa, �).
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3.1.1 Representation Under IC

Let us define the quantity z = 1 − λ(1 − λ) that we will use along the paper. The
representation of the conditional probability of the Strong Borda Paradox provided by
Gehrlein and Fishburn (1978a) under IC is as follows:

Pλ
SgBP(3,∞, IC) = 3Φ4(R)

Pc(3,∞, IC)
(4)

where

Φ4(R) = 1

9
− 1

4π

(

sin−1
(√

2

3z

)

+ sin−1
(√

1

6z

))

+ 1

4π2

{(

sin−1
(√

2

3z

))2

−
(

sin−1
(√

1

6z

))2

−
∫ 1

0

√
1

36 − (3 − t)2
cos−1

(
6t z − g(t, z)

2g(t, z)

)

dt

}

with g(t, z) = 4(3z − 2)2 − (3z − 2 − t z)2 + 6(3z − 2).
Another representation is provided by Tataru and Merlin (1997) as follows:

Pλ
SgBP(3, ∞, IC) = 3

π2Pc(3, ∞, IC)

∫ 2λ−1

0

[ 2t cos−1
( √

9t2+3√
(t2+3)(4t2+1)

)

(t2 + 3)
√
6t2 + 2

+
t cos−1

( √
3(1−t2)√

(3t2+1)(t2+3)(4t2+1)

)

(t2 + 3)
√
6t2 + 14

]

dt (5)

Let us find P(a; bMa, IC) following the technique of Gehrlein and Fishburn (1976).
To do so, we consider Eq. 1 and define the following three discrete variables:

X1 = 1 − λ : p1 X2 = 1 : p1 X3 = −1 : p1
1 : p2 1 − λ : p2 −1 : p2

−1 + λ : p3 λ : p3 1 : p3
−1 : p4 −λ : p4 1 : p4
λ : p5 −1 + λ : p5 −1 : p5

−λ : p6 −1 : p6 1 : p6
where pi is the probability that a voter who is randomly selected from the electorate
is associated with the i th ranking of Table 1. Under IC, pi = 1

6 . For X j > 0, this
indicates that the j th inequality of Eq. 1 is satisfied.With n voters, Eq. 1 fully describes
the Borda effect when the average value of each of the X j are positive. According
to Gehrlein and Fishburn (1978b), P(a; bMa, IC) is equal to the joint probability
that X1 > 0, X2 > 0 and X3 > 0; when n → ∞, it is equivalent to the trivariate
normal positive orthant probability Φ3(R′) such that X j

√
n ≥ E(X j

√
n) and R′ is a
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correlation matrix between the variables X j . Thus P(a; bMa) = Φ3(R′). In our case,
R′ is as follows

R′ =

⎡

⎢
⎢
⎣

1 1
2 −

√
2
3z

1 −
√

1
6z

1

⎤

⎥
⎥
⎦

Given the form of R′, we can easily derive Φ3(R′) from the work of David and
Mallows (1961):

Φ3(R
′) = 1

6
− 1

4π

(

sin−1
(√

2

3z

)

+ sin−1
(√

1

6z

))

(6)

Following Eqs. 2 and 3, we derive Proposition 1.

Proposition 1 For three-candidate elections and scoring rule wλ,

Pλ
WBE(3,∞, IC) = 6Φ3(R

′) − 3Φ4(R)

= 1 − Pc(3,∞, IC) × Pλ
CE(3,∞, IC)

Pλ
BE(3,∞, IC) = 1 − Pc(3,∞, IC)

(

Pλ
CE(3,∞, IC) − Pλ

SgBP(3,∞, IC)

)

with Pλ
CE(3,∞, IC) being the conditional probability that the winner is the Condorcet

winner given that a Condorcet winner exists.

According to Proposition 1, the representations of the limiting probability of the
Weak Borda and that of the Borda Effect under IC can be deduced from those of
Condorcet efficiency and of the Strong Borda Paradox, which are well documented in
the literature.

Given that z is symmetric about λ = 0.5, it follows that Pλ
WBE(3,∞, IC) =

P1−λ
WBE(3,∞, IC) and Pλ

BE(3,∞, IC) = P1−λ
BE (3,∞, IC). We report in Table 4 the

computed values of the limiting probability of the (Weak) Borda Effect for λ =
0(0.1)1. For 0 ≤ λ ≤ 1

2 , the probability tends to decrease, and it increases for 1
2 ≤

λ ≤ 1. We find that the limiting probability is minimized by the Borda rule (λ = 1
2 )

and it is maximized by the Plurality rule (λ = 0) and the Antiplurality rule (λ = 1).
The fact that the Borda rule does not exhibit the strong Borda Effect has been pointed
out by Fishburn and Gehrlein (1976); they showed that the Borda rule is the only
scoring rule that always guarantees that the Condorcet loser, when she exists, is not
the unique winner.
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Table 4 Computed values of the Borda effect under one-shot and scoring runoff rules

λ One-shot rules Runoff rules

Strong Borda effect Weak Borda effect Borda effect Borda effect

IC IAC IC IAC IC IAC IC IAC

0 0.0338 0.0277 0.3092 0.1736 0.3431 0.2014 0.1216 0.0920

0.1 0.0217 0.0180 0.2766 0.1582 0.2983 0.1762 0.1095 0.0834

0.2 0.0115 0.0098 0.2432 0.1447 0.2547 0.1545 0.0992 0.0752

0.3 0.0042 0.0039 0.2119 0.1350 0.2161 0.1389 0.0919 0.0683

0.4 0.0006 0.0006 0.1876 0.1328 0.1883 0.1336 0.0884 0.0637

0.5 0.0000 0.0000 0.1779 0.1458 0.1779 0.1458 0.0877 0.0625

0.6 0.0006 0.0012 0.1876 0.1825 0.1882 0.1837 0.0884 0.0632

0.7 0.0042 0.0057 0.2119 0.2335 0.2161 0.2392 0.0919 0.0664

0.8 0.0115 0.0127 0.2432 0.2913 0.2547 0.3040 0.0992 0.0724

0.9 0.0217 0.0209 0.2766 0.3513 0.2983 0.3722 0.1095 0.0805

1 0.0338 0.0295 0.3092 0.4097 0.3431 0.4392 0.1216 0.0903

3.1.2 Representation Under IAC

Under IAC, when n → ∞, we deduce Pc(3,∞, I AC)× Pλ
SgBP(3,∞, I AC) from the

results of Cervone et al. (2005):

Pc(3,∞, I AC) × Pλ
SgBP(3,∞, I AC)

=
⎧
⎨

⎩

(2λ−1)3(12−9λ−2λ2)
432(λ−1)3

for 0 ≤ λ ≤ 1
2

(2λ−1)3(2−53λ+331λ2−88λ3+12λ4)
1728λ3(3λ−1)(λ+1)

for 1
2 ≤ λ ≤ 1

(7)

In order to find P(a; bMa, I AC), let us denote by Vλ
ab the set of all voting situations

at which a is the winner given λ and is majority dominated only by b. A profile
π ∈ Vλ

ab implies that the inequalities of Eq. 1 are satisfied. Notice that as n → ∞,
P(a; bMa, I AC) = vol (Pab), the 5-dimensional volume of the polytope Pab is
obtained from the characterization of Vλ

ab just by replacing each n j by p j = n j
n in

the simplex S = {(p1, p2, . . . , p6) : ∑6
t=1 p j = 1 with p j ≥ 0, j = 1, 2, . . . , 6}.

Given 0 ≤ λ ≤ 1, computing vol (Pab) leads the following:2

P(a; bMa, I AC) =
⎧
⎨

⎩

58−221λ+276λ2+29λ3−328λ4+213λ5−20λ6−8λ7

864(λ+1)(λ−1)3(λ−2)
for 0 ≤ λ ≤ 1

2

−2+37λ−318λ2+890λ3−910λ4−246λ5+280λ6+16λ7

1728λ3(λ−2)(λ+1)
for 1

2 ≤ λ ≤ 1
(8)

Following Eq. 3, we get Proposition 2.

2 The computer program we used is available upon request.
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Proposition 2 For three-candidate elections and scoring rule wλ,

Pλ
WBE(3,∞, I AC)

=
⎧
⎨

⎩

150−513λ+529λ2+194λ3−692λ4+367λ5−28λ6−8λ7

432(λ+1)(λ−2)(λ−1)3
for 0 ≤ λ ≤ 1

2

8−126λ+1163λ2−4939λ3+8882λ4−2416λ5−11580λ6+5984λ7+192λ8

1728λ3(3λ−1)(λ+1)(λ−2)
for 1

2 ≤ λ ≤ 1

= 1 − Pc(3,∞, I AC) × Pλ
CE(3,∞, I AC)

Pλ
BE(3,∞, I AC)

= 1 − Pc(3,∞, I AC)

(

Pλ
CE(3,∞, I AC) − Pλ

SgBP(3,∞, I AC)

)

Proposition 2 tells us that under IAC, representations of the limiting probabilities
of the Weak Borda Effect and that of the Borda Effect can also be deduced from those
of Condorcet efficiency and the Strong Borda Paradox. We then derive the values
provided in Table 4. Notice that under IAC, the likelihood of the Weak Borda Effect is
minimized at λ� = 16709

44883 ≈ 0.3723 where the probability is 0.1324; the likelihood of
the Borda effect is minimized at λ� = 5063

13009 ≈ 0.3892 where the probability is 0.1335.
For both the Weak Borda Effect and the Borda effect, as λ grows from 0 to λ�, the
probability of the effect tends to decrease, and it increases when λ grows from λ� to 1.

3.2 Representations of the Limiting Probability for Scoring Runoff Rules

One can also observe the Borda effect with runoff scoring rules. Nonetheless, notice
that only the Weak Borda Effect can be observed; it is obvious that this cannot be the
case for the Strong Borda Effect. So, with runoff scoring rules, the Weak Borda Effect
is equivalent to the Borda Effect.

Let us now provide representation of the limiting probability of the Borda Effect
for all the scoring runoff rules both under IC and IAC. Without loss of generality, the
following inequalities characterize a voting situation exhibiting theWeakBordaEffect.

⎧
⎪⎪⎨

⎪⎪⎩

aSλc
bSλc
aMb
cMa

⇔

⎧
⎪⎪⎨

⎪⎪⎩

n1 + (1 − λ)n2 + λn3 − λn4 + (λ − 1)n5 − n6 > 0
λn1 − λn2 + n3 + (1 − λ)n4 − n5) + (λ − 1)n6 > 0
n1 + n2 − n3 − n4 + n5 − n6 > 0
−n1 − n2 − n3 + n4 + n5 + n6 > 0

(9)

Remark 1 We notice that under the Borda runoff, the Borda effect can only occur in
case of a majority cycle. This is because if the inequalities of Eq. 9 are satisfied and
cMb, this indicates that the Condorcet winner c is ranked last by the Borda rule: we
know that this is not possible. So, in three-candidate elections, it is only in case of a
majority cycle that the Borda runoff can produce the Borda effect.

3.2.1 Representation Under IC

One can get a representation of the limiting probability of theBorda effect by following
the technique of David and Mallows based on quadrivariate normal positive orthant
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probabilities, as we did in Sect. 3.1.1. We consider Eq. 9 and define the following four
discrete variables:

X1 = 1 : p1 X2 = λ : p1 X3 = 1 : p1 X4 = −1 : p1
1 − λ : p2 −λ : p2 1 : p2 −1 : p2
λ : p3 1 : p3 −1 : p3 −1 : p3

−λ : p4 1 − λ : p4 −1 : p4 1 : p4
−1 + λ : p5 −1 : p5 1 : p5 1 : p5
−1 : p6 −1 + λ : p6 −1 : p6 1 : p6

With n voters, Eq. 9 fully describes the Weak Borda effect when the average
value of each of the X j are positive. According to Gehrlein and Fishburn (1978b),
Pλr

W BE (3,∞, IC), the limiting probability of the Weak Borda effect, is equal to the
joint probability that X1 > 0, X2 > 0, X3 > 0 and X4 > 0; when n → ∞, it is
equivalent to the quadrivariate normal positive orthant probability Φ4(R′′) such that
X j

√
n ≥ E(X j

√
n) and where R′′ is a correlation matrix between the variables X j .

The matrix R′′ is as follows

R′′ =

⎡

⎢
⎢
⎢
⎢
⎣

1 1
2

√
1
6z −

√
2
3z

1 −
√

1
6z −

√
1
6z

1 − 1
3
1

⎤

⎥
⎥
⎥
⎥
⎦

Comparing this to the results ofDavid andMallows (1961) and the related literature,
the matrix R′′ does not appear to be at all close to any special form that we are familiar
with; finding a representation for Φ4(R′′) seems to be a tricky task.3 Fortunately,
Gehrlein (1979) [see also Gehrlein (2017)] developed a general representation to
obtain numerical values of Φ4(R′′) as a function of a series of bounded integrals over
a single variable. Using the formula suggested by Gehrlein (1979), we get Φ4(R′′)
and then we derive Proposition 3.

Proposition 3 For three-candidate elections and a scoring runoff rule wλr ,

Pλr

W BE (3,∞, IC) = 6Φ4(R
′′)

= 1

2
+ 3

2π2

[

−
(

2

3z − 2

) 1
2
∫ 1

0
cos−1

(
F1(z, t)

N1(z, t) × N2(z, t)

)

dt

−
(

1

6z − 1

) 1
2
∫ 1

0
cos−1

(
F2(z, t)

N2(z, t) × N3(z, t)

)

dt

−
√
2

4

∫ 1

0
cos−1

(
F3(z, t)

N1(z, t) × N3(z, t)

)

dt

]

= 1 − Pc(3,∞, IC) × Pλr

CE(3,∞, IC)

3 Thanks to Bill Gehrlein for pointing this out and for his help.
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where

F1(z, t) = (6z)−
3
2 (9z − 6t2); N1(z, t) = 1

3

(

9 − t2 − 1

z

(

4t2 + 3

2

)) 1
2

F2(z, t) = (6z)−
3
2 (3zt2 − 9z − 3t2); N2(z, t) = 1

2

(
3z − 2t2

z

) 1
2

F3(z, t) = zt2 − 9z + 7t2 − 3

18z
; N3(z, t) = 1

3

(−2zt2 + 18z − 5t2 − 3

2z

) 1
2

According to Proposition 3, one can derive the representation of the Borda Effect
for runoff scoring rules from that of Condorcet efficiency. To our knowledge, only
the representations of Condorcet efficiency for the Plurality runoff, the Antiplurality
runoff and the Borda runoff are provided in the literature [see for example Gehrlein
and Lepelley (2011)]. So, from Proposition 3, the reader can get the overall Condorcet
efficiency of the scoring runoff rules.

The computed values of Pλr

W BE (3,∞, IC) are provided in Table 4. It comes out
that for all λ, we get 8.7% < Pλr

W BE (3,∞, IC) < 12.2%. It tends to decrease for
0 ≤ λ ≤ 1

2 and it increases for 1
2 ≤ λ ≤ 1. The probability is minimized by the Borda

runoff (λ = 1
2 ) and maximized by the Plurality runoff (λ = 0) and the Antiplurality

runoff (λ = 1).

Remark 2 Our formula is in line with Remark 1 since we find for the Borda runoff
that Pλr

W BE (3,∞, IC) is equal to the probability of a majority cycle under IC, which
is well documented in the literature.

3.2.2 Representation Under IAC

Following the same scheme as in Sect. 3.1.2, we compute the volume and get Propo-
sition 4.

Proposition 4 For three-candidate elections and a scoring runoff rule wλr ,

Pλr

W BE (3,∞, I AC)

=
⎧
⎨

⎩

96λ7+176λ6+1028λ5−6420λ4+11138λ3−9157λ2+3777λ−636
1728(λ−2)(3λ−2)(λ−1)3

for 0 ≤ λ ≤ 1
2

−16λ5+128λ4−133λ3+68λ2−7λ−1
432λ3

for 1
2 ≤ λ ≤ 1

= 1 − Pc(3,∞, I AC) × Pλr

CE(3,∞, I AC)

The computed values of Pλr

W BE (3,∞, I AC) are provided in Table 4. We notice
that the probabilities are lower that those obtained under IC for all λ with 6.4% <

Pλr

W BE (3,∞, I AC) < 9.3%. It tends to decrease for 0 ≤ λ ≤ 1
2 and it increases for

1
2 ≤ λ ≤ 1. The probability is minimized by the Borda runoff (λ = 1

2 ) and maximized
by the Plurality runoff (λ = 0). Remark 2 also holds here.
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4 Further Analysis

In this section, we extend our analysis in two ways. There are two main classes of
scoring runoff rules: (i) where we eliminate only one alternative on each step, and
(ii) when we eliminate all candidates who obtain strictly less than the average score,
as in Kim and Roush (1996) or Favardin and Lepelley (2006). In Sect. 3.2, we only
considered the former type of this rule. In this section, we want to consider the second
type. We expect that it will greatly improve the results, because Favardin and Lepelley
(2006), Kim and Roush (1996), Lepelley and Valognes (2003) among others have
shown that runoff rules based on average are better than normal ones in terms of
manipulability.

It is well established in the literature that single-peakedness, a particular measure
of the social homogeneity, considerably influences the likelihood of voting paradoxes
[see for instance Lepelley and Valognes (2003)]. It would therefore be interesting to
include further analysis with single-peaked preferences. By so doing, one is expecting
to measure the impact of a left-right political divide that mimics some voting bodies.
So, we will provide probability representations of the Borda Effect for single-peaked
preferences in three-candidate elections.

4.1 The Borda Effect Under Another Version of Iterative Scoring Rules

The iterative scoring rules eliminate all the candidates who obtain strictly less than the
average score at each stage of the elimination process. Given the notation of Sect. 2.2,
if the iterative scoring rule is associated with λ = 1, this defines theKim-Roush voting
rule (Kim and Roush 1996); we get the Nanson rule (Nanson 1883) if the iterative
scoring rule is associated with λ = 1

2 .
For our framework with three candidates, when we eliminate all the candidates who

obtain strictly less than the average score, the following scenarios are conceivable:

Case 1: at the first run, two candidates (assume b and c) are eliminated and
candidate a wins.

This means that given S(π, λ) = S(π,λ,a)+S(π,λ,b)+S(π,λ,c)
3 the average score, we get

S(π, λ, a) ≥ S(π, λ), S(π, λ, b) < S(π, λ) and S(π, λ, c) < S(π, λ).
If in addition,

– bMa and cMa, we get the Strong Borda Effect. Without loss of generality, this
situation is fully characterized by the following inequalities:

⎧
⎪⎪⎨

⎪⎪⎩

S(π, λ, b) < S(π, λ)

S(π, λ, c) < S(π, λ)

bMa
cMa

⇔

⎧
⎪⎪⎨

⎪⎪⎩

(1 − 2λ)n1 + (1 + λ)n2 + (λ − 2)n3 + (λ − 2)n4 + (1 + λ)n5 + (1 − 2λ)n6 > 0
(1 + λ)n1 + (1 − 2λ)n2 + (1 + λ)n3 + (1 − 2λ)n4 + (λ − 2)n5) + (λ − 2)n6 > 0
−n1 − n2 + n3 + n4 − n5 + n6 > 0
−n1 − n2 − n3 + n4 + n5 + n6 > 0

(10)
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Let us denote by P
λr2

SBE(3,∞, �) the limiting probability of the Strong Borda Effect
associated with this situation given �.

– bMa or cMa but not both, we get the Weak Borda Effect. In this situation, it
follows that the probability of the Weak Borda Effect is given by

P
λr2

WBE(3,∞, �) = 6P(a; bMa, �) − P
λr2

SBE(3,∞, �)

Case 2: at the first run, only one candidate (assume c) is eliminated and candidate
a wins the majority contest versus b.

In this case, we get S(π, λ, a) ≥ S(π, λ), S(π, λ, b) ≥ S(π, λ), S(π, λ, c) < S(π, λ)

and aMb. Only the Weak Borda Effect is possible if cMa. Let us denote by

P
λr1

WBE(3,∞, �) the limiting probability of the Weak Borda Effect associated with
this situation, which is fully characterized by the following inequalities:

⎧
⎪⎪⎨

⎪⎪⎩

S(π, λ, a) > S(π, λ)

S(π, λ, b) > S(π, λ)

aMb
cMa

⇔

⎧
⎪⎪⎨

⎪⎪⎩

(2 − λ)n1 + (2 − λ)n2 + (2λ − 1)n3 − (1 + λ)n4 + (2λ − 1)n5) − (1 + λ)n6 > 0
−(1 − 2λ)n1 − (1 + λ)n2 − (λ − 2)n3 − (λ − 2)n4 − (1 + λ)n5 − (1 − 2λ)n6 > 0
n1 + n2 − n3 − n4 + n5 − n6 > 0
−n1 − n2 − n3 + n4 + n5 + n6 > 0

(11)

From the above, we deduce that in three-candidate elections with iterative scoring
rules under which we eliminate all the candidates who score less than the average

score, the limiting probability of the Strong Borda Paradox (Pλ
r

SBE(3,∞, �)) and the

limiting probability of the Weak Borda Paradox (Pλ
r

WBE(3,∞, �)) are as follows:

P
λr

WBE(3,∞, �) = P
λr2

WBE(3,∞, �) + P
λr1

WBE(3,∞, �)

P
λr

BE(3,∞, �) = 6P(a; bMa, �) + P
λr1

WBE(3,∞, �)

Using the same computation techniques as in the previous sections, we derive
the representations of the limiting probabilities as stated in Proposition 5 for IC and
Proposition 6 for IAC.
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Proposition 5 For three-candidate elections and a scoring runoff rulewλr eliminating
all the candidates who score less than the average score, we get under IC:

P
λr

WBE(3,∞, IC) = 1

8
− 9

8π
sin−1

(√
2z

2z

)

+3
√
2z

8zπ2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ 1

0

cos−1
(

G1(z,t)+ (3−2t2)(2z)
− 1
2

6√
√
√
√M2(z,t)×

(

M3(z,t)+ 1−t2
2z

)

)

√
1 − t2

2z

dt

−
∫ 1

0

cos−1
(

G1(z,t)√
M1(z,t)×M2(z,t)

)

√
1 − t2

2z

dt

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ 1

4π2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ 1

0

cos−1
(

G3(z,t)+ 3−2t2
6z√(

M1(z,t)− t
6z

)
×
(
M3(z,t)+ 1−t2

2z

)

)

√
1 − t2

9

dt

−
∫ 1

0

cos−1
(

G3(z,t)√
M1(z,t)×M3(z,t)

)

√
1 − t2

9

dt

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

P
λr

BE(3,∞, IC) = 1

4
− 3

2π
sin−1

(√
2z

2z

)

− 3
√
2z

8zπ2

∫ 1

0

cos−1
(

G1(z,t)√
M1(z,t)×M2(z,t)

)

√
1 − t2

2z

dt

− 1

4π2

∫ 1

0

cos−1
(

G3(z,t)√
M1(z,t)×M3(z,t)

)

√
1 − t2

9

dt
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where

G1(z, t) = (3z + (z − 3)t2)
√
2

12z
2
3

; G3(z, t) = 1

2
+ (3 − z)t2 − 9

18z
;

M1(z, t) = 1 − 9 + (2z + 3)t2

18z
; M2(z, t) = 3

4
− t2

2z
;

M3(z, t) = 1 − 9 + 2zt2

18z

Proposition 6 For three-candidate elections and a scoring runoff rulewλr eliminating
all the candidates who score less than the average score, we get under IAC:

P
λr

WBE(3,∞, I AC)

=
⎧
⎨

⎩

−445λ+80−791λ3+913λ2+315λ4+48λ7+48λ6−165λ5

2592(λ−1)4
for 0 ≤ λ ≤ 1

2

27+96λ−615λ2+833λ3+112λ4−64λ5

2592λ2
for 1

2 ≤ λ ≤ 1

P
λr

BE(3,∞, I AC)

=
⎧
⎨

⎩

−1321λ+244−2837λ3+2829λ2+1205λ4+16λ7−16λ6−119λ5

2592(λ−1)4
for 0 ≤ λ ≤ 1

2

−λ2−354λ3+1335λ4−1585λ5+144λ6−4λ+32λ7+2
2592λ4

for 1
2 ≤ λ ≤ 1

After all computations, we notice that when candidates are eliminated according
to the average score, the representation of the (Weak) Borda Effect for this family of
scoring runoff rules cannot be deduced from those of Condorcet efficiency and the
Strong Borda Paradox, since we get:

P
λr

WBE(3,∞, �) �= 1 − Pc(3,∞, �) × Pλ
CE(3,∞, �)

P
λr

BE(3,∞, �) �= 1 − Pc(3,∞, �)

(

P
λr

CE(3,∞, �) − P
λr

SgBP(3,∞, �)

)

We provide some computed values of the probabilities in Table 5.

We notice from Table 5 that under IC, P
λr

SBE(3,∞, �) = P
(1−λ)r

SBE (3,∞, �) and

P
λr

WBE(3,∞, �) = P
(1−λ)r

WBE (3,∞, �). For 0 ≤ λ ≤ 1
2 , the probability tends to

decrease, and it increases for 1
2 ≤ λ ≤ 1. We find that the limiting probability is

minimized by the Nanson rule (λ = 1
2 ) and it is maximized at λ = 0 and by the

Kim-Roush rule (λ = 1). Comparing these results to those of Table 4, it seems that
for λ ∈ [0.3; 0.7], the scoring runoff rules with the eliminations according to the
average score exhibit the Borda Effect less than the rules under which candidates are
eliminated one by one; we get the reverse out of this range.

Under IAC, the likelihood of the Weak Borda Effect is minimized at λ� = 27521
58801 ≈

0.4680 where the probability is 0.046390; the likelihood of the Borda Effect is mini-
mized at λ� = 15031

32051 ≈ 0.4689 where the probability is 0.046399. For both the Weak
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Table 5 Computed values of the Borda effect for scoring runoff rules under which candidates are eliminated
according to the average score

λ Weak Borda effect Strong Borda effect Borda effect
IC IAC IC IAC IC IAC

0 0.1402 0.0849 0.0135 0.0093 0.1537 0.0942

0.1 0.1191 0.0748 0.0084 0.006 0.1275 0.0808

0.2 0.0991 0.0646 0.0043 0.0033 0.1034 0.0679

0.3 0.0819 0.0552 0.0015 0.0013 0.0834 0.0565

0.4 0.0702 0.0481 0.0002 0.0002 0.0704 0.0483

0.5 0.0657 0.0469 0 0 0.0657 0.0469

0.6 0.0702 0.0564 0.0002 0.0005 0.0704 0.0569

0.7 0.0819 0.0745 0.0015 0.0026 0.0834 0.0771

0.8 0.0991 0.0974 0.0043 0.0061 0.1034 0.1035

0.9 0.1191 0.123 0.0084 0.0105 0.1275 0.1335

1 0.1402 0.1501 0.0135 0.0154 0.1537 0.1655

Borda Effect and the Borda effect, as λ grows from 0 to λ�, the probability of the effect
tends to decrease, and it increases when λ grows from λ� to 1. We find that the limiting
probability is maximized by the Kim-Roush rule (λ = 1). Comparing these results
to those of Table 4, it seems that for λ ∈ [0.1; 0.6], the scoring runoff rules with the
eliminations according to the average score exhibit the Borda Effect less than the rules
under which candidates are eliminated one by one; we get the reverse out of this range.

4.2 Representations for the Limiting Probability with Single-Peaked Preferences

Single-peakedness describes situations where it can be appropriate to represent policy
options on a one-dimensional axis, such as ideological positions or the possible values
of a tax rate on the Left-Right axis. On this axis, a voter will be inclined to vote for
an option if it is closer to his preferred position (his bliss point). In our framework
with three candidates, single-peaked preferences implies that there is one candidate
who is never ranked last by any of the voters. According to Gehrlein (2004), such
a candidate appears as a positively unifying candidate since no voter is against her
possible election; voters agree at least that such a candidate is not the worst. In this
section, we will focus our analysis only on the IAC assumption.

4.2.1 The Case of One-Shot Scoring Rules

On A = {a, b, c}, let us assume without loss of generality that a is the never-bottom-
ranked candidate and b one of the other candidates; this implies that n4 = n6 = 0. To
make the computations,wehave to distinguish the situationswherea is thewinner from
those where she is not. On this basis, we derive that with single-peaked preferences,
Pλ
WBE(3,∞, I AC)�, the limiting probability of the Weak Borda Effect, is as follows:
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Pλ
WBE(3,∞, I AC)�

=
(

P(a; bMa, I AC)� + P(a; cMa, I AC)� − P(a; bMa; cMa, I AC)�
)

+ 2

(

P(b; aMb, I AC)� + P(b; cMb, I AC)� − P(b; aMb; cMb, I AC)�
)

Pλ
SBE(3,∞, I AC)�

= P(a; bMa; cMa, I AC)� + 2P(b; aMb; cMb, I AC)�

Using the same technique as before, we obtain

P(a; bMa, I AC)� = P(a; cMa, I AC)� =
⎧
⎨

⎩

λ2

8(λ−2)(λ−1) for 0 ≤ λ ≤ 1
2

4λ2−7λ+2
8(λ−2) for 1

2 ≤ λ ≤ 1

P(b; aMb; cMb, I AC)� = P(b; cMb, I AC)� =
{− (2λ−1)3

72(λ−1)2
for 0 ≤ λ ≤ 1

2

0 for 1
2 ≤ λ ≤ 1

P(b; aMb, I AC)� =
{

(5−λ)(2λ−1)2

72(λ−1)2
for 0 ≤ λ ≤ 1

2

0 for 1
2 ≤ λ ≤ 1

P(a; bMa; cMa, I AC)� = 0

Then, we get Proposition 7.

Proposition 7 For three-candidate elections with single-peaked preferences and scor-
ing rule wλ,

Pλ
WBE(3,∞, I AC)� =

⎧
⎨

⎩

4λ4−47λ3+78λ2−47λ+10
36(2−λ)(λ−1)2

for 0 ≤ λ ≤ 1
2

4λ2−7λ+2
4(λ−2) for 1

2 ≤ λ ≤ 1

= 1 − Pc(3,∞, I AC)� × Pλ
CE(3,∞, I AC)�

Pλ
BE(3,∞, I AC)� =

⎧
⎨

⎩

4λ4−25λ3+36λ2−20λ+4
12(2−λ)(λ−1)2

for 0 ≤ λ ≤ 1
2

4λ2−7λ+2
4(λ−2) for 1

2 ≤ λ ≤ 1

= 1 − Pc(3,∞, I AC)�
(

Pλ
CE(3,∞, I AC)� − Pλ

SgBP(3,∞, I AC)�
)

Table 6 provides some values of the limiting probabilities of the Borda Effect under
the IAC assumption.

From this table, we notice that the Weak Borda Effect is minimized at λ = 14830
39291 ≈

0.3774 with a probability equal to 0.0552, and is maximized at λ = 1. The Strong
Borda Effect only occurs forλ ∈ [0; 1

2 [; over this range the likelihood tends to decrease
as λ increases. Comparing the figures of Table 6 with those of Table 4, it appears that
the likelihood of the Strong Borda Effect is substantially the same in both tables for
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Table 6 Computed values of the Borda effect for scoring runoff rules when preferences are single-peaked
under the IAC assumption

λ One-shot rules Runoff rules

Weak Borda effect Strong Borda effect Borda effect Borda effect

0 0.1389 0.0278 0.1667 0.0486

0.1 0.1090 0.0176 0.1266 0.0328

0.2 0.0819 0.0094 0.0913 0.0188

0.3 0.0615 0.0036 0.0651 0.0078

0.4 0.0558 0.0006 0.0564 0.0014

0.5 0.0833 0 0.0833 0

0.6 0.1357 0 0.1357 0

0.7 0.1808 0 0.1808 0

0.8 0.2167 0 0.2167 0

0.9 0.2409 0 0.2409 0

1 0.2500 0 0.2500 0

λ ∈ [0; 1
2 ]; for λ ∈ [ 12 ; 1] the paradox vanishes when preferences are single-peaked,

while this is not the case when there are not. The likelihood of the (Weak) Borda Effect
is clearly lower for all λ when preferences are single-peaked. Thus, the Borda effect
tends to be less likely when preferences are single-peaked.

4.2.2 The Case of Runoff Scoring Rules

Recall that with runoff rules only the Weak Borda Effect can be observed, since this
cannot be the case for the Strong Borda Effect. It follows that the Weak Borda Effect
is equivalent to the Borda Effect. With single-peaked preferences, if we assume that
a is the never-bottom-ranked candidate, the Weak Borda Effect occurs if one of the
following situations holds:

– (i) aSλc, bSλc, aMb and cMa (or aSλb, cSλb, aMc and bMa)
– (ii) aSλc, bSλc, bMa and cMb (or aSλb, cSλb, cMa and bMc)
– (iii) bSλa, cSλa, bMc and aMb (or bSλa, cSλa, cMb and aMc)

Notice that all the situations (i) to (iii) are disjoints. It comes out that Pλr

W BE (3,∞, �),
the limiting probability of the Weak Borda effect is computed as follows

Pλr

W BE (3, ∞, I AC)� = 2

(

P(a; cMa, I AC)� + P(b; aMb, I AC)� + P(b; cMb, I AC)�
)

Using the same technique as before, we get:

P(a; cMa, I AC)� = P(b; cMb, I AC)� = 0 for 0 ≤ λ ≤ 1

P(b; aMb, I AC)� =
{

(λ+7)(2λ−1)3

144(λ−2)(λ−1)2
for 0 ≤ λ ≤ 1

2

0 for 1
2 ≤ λ ≤ 1
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Then, we derive Proposition 8.

Proposition 8 For three-candidate elections with single-peaked preferences and scor-
ing runoff rule wλr

Pλr

W BE (3,∞, I AC)� = Pλr

BE (3,∞, I AC)�

=
{

(λ+7)(2λ−1)3

72(λ−2)(λ−1)2
for 0 ≤ λ ≤ 1

2

0 for 1
2 ≤ λ ≤ 1

= 1 − Pc(3,∞, I AC)� × Pλr

CE(3,∞, I AC)�

Table 6 reports some computed values of theBordaEffect for runoff scoring ruleswhen
preferences are single-peaked. We notice that the paradox is maximized at λ = 0 and
it vanishes for λ ∈ [ 12 ; 1]. Comparing the results of Tables 4 and 6, we can conclude
that the Borda effect is less likely when preferences are single-peaked.

5 Concluding Remarks

The Borda Effect is one of the ramifications of the declensions of the Borda Paradox,
and it was first introduced and defined by Colman and Poutney (1978). Colman and
Poutney (1978) distinguished the Strong Borda Effect and the Weak Borda Effect:
the Strong Borda Effect describes a situation in which the Plurality rule elects the
Condorcet loser, while theWeak Borda Effect (WBE) concerns a situation under which
the Plurality winner is majority dominated by only one of the Plurality losers. The
results of Colman and Poutney (CoP, p 17) are quite limited in scope as they only
dealt with the Plurality rule: in fact this phenomenon can also affect all the scoring
rules and scoring runoffs. In this paper we found that for three-candidate elections,
the representation of the (Weak) Borda Effect for general weighted scoring rules and
scoring runoff rules can be deduced from those of Condorcet efficiency and the Strong
Borda Paradox. For one-shot rules, we found under assumption � (IC or IAC) that

Pλ
WBE(3,∞, �) = 1 − Pc(3,∞, �) × Pλ

CE(3,∞, �)

Pλ
BE(3,∞, �) = 1 − Pc(3,∞, �)

(

Pλ
CE(3,∞, �) − Pλ

SgBP(3,∞, �)

)

These relations, which also hold when preferences are single-peaked, teach us that the
Condorcet efficiency of a scoring rule impacts its vulnerability to the Borda Effect: the
more it is likely to select theCondorcetwinnerwhen it exists, the less it is susceptible to
producing the Borda Effect. On the contrary, the more a scoring rule is likely to select
the Condorcet loser when it exists, the more it is likely to exhibit the Borda Effect.
The first relation holds for scoring runoff rules. We also noted that the likelihood of
the Weak Borda Effect is quite low under runoff rules as opposed to one-shot rules.
We found that the relations above do not hold for scoring runoff rules eliminating
candidates who score less than the average score.
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