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Abstract This paper aims to develop, for any cooperative game, a solution notion
that enjoys stability and consists of a coalition structure and an associated payoff
vector derived from the Shapley value. To this end, two concepts are combined: those
of strong Nash equilibrium and Aumann–Drèze coalitional value. In particular, we
are interested in conditions ensuring that the grand coalition is the best preference
for all players. Monotonicity, convexity, cohesiveness and other conditions are used
to provide several theoretical results that we apply to numerical examples including
real-world economic situations.
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1 Introduction

Most of human groups are often faced to the need of making collective decisions.
The agents in such a group may be individuals, families, enterprises, political parties,
trade unions, towns, regions, countries, and other social organizations. A usual group
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decision-making procedure consists in carrying out a negotiation addressed to reach
full or partial agreements among the involved agents. The situation can be studied
from many different points of view depending on the decision at stake, the relation-
ships among the agents, their particular interests, and the procedure used to make the
decision. There exist in the literature a lot of contributions on the topic. Without trying
to be exhaustive, we mention here Gamson (1961), Brams (2003), Brams et al. (2005),
Hajdukova (2006), Alcalde and Romero-Medina (2006), Ray (2007), Blockmans and
Guerry (2016) and De Almeida and Wachowicz (2017). Many other references are
discussed along the text.

Basic tools for any analysis are: (a) a description of the set of agents and the
subsets able to arrive at an agreement between their members; (b) an evaluation of
the utility obtained by each agent in any possible circumstance; (c) the consequent
individual preferences on the set of outcomes; and (d) the additional ingredients that
one wishes to take into account when dealing with a given problem. In this paper we
propose to adopt the game theory perspective, because cooperative games provide a
useful (although not unique) model for discussing many aspects of the topic. With this
model, any value allows us to determine the possible payoffs and hence to define all
individual preferences. E.g., simple games have been widely used to study political
decision-making mechanisms. In this case, the power distribution, rather than a payoff
distribution in economic terms, is the relevant issue. Ideological constraints for the
agents, commonly present in politics, may be introduced in the model adapting a given
value conveniently. As an example, we recall the generalizations of the Banzhaf value
given by the symmetric coalitional binomial semivalues (Carreras and Puente 2012)
or the multinomial probabilistic values (Carreras and Puente 2015).

Our main objective is to present a new approach to the subject from the game theory
viewpoint. To this end, we consider: (a) the most basic model, which is that of TU
cooperative game; (b) the best known and accepted allocation method, the Shapley
value, from which we obtain the preferences based on maximizing its allocations; and
(c) a stability criterion derived from the Nash strong equilibrium notion. Our study
is centered on coalition formation using agents’ best preferences and obtaining as
solution(s) the coalition structure(s) where each agent lies in his preferred coalition
and receives therefore the allocation given to him by the Shapley value on the game
restricted to this coalition. This ensures the stability of the coalition structure and
leads to our solution concept. We obtain several theoretical results on existence and
uniqueness and illustrate the possibilities to apply these results to real-world simulated
economic problems.

While writing this paper, we have revised many articles related with the topic. We
have found minor similarities with our work in some of them and essential differences
in someothers (details are given along the text). Then, it seems interesting to summarize
here the highlights of the article in order to give clear insights into the novelty that it
represents and the gap that it fills.

• An applied game theory approach is used
• A new concept of solution for a cooperative game is established
• A noncooperative glance over any cooperative game is adopted
• The idea of stability is based on the Nash strong equilibrium notion
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• Our procedure leads to using the Aumann–Drèze value, which is the result of
applying the Shapley value to subgames

• The procedure works for any cooperative game
• The grand coalition is not necessarily assumed to form
• All theoretical results are strictly original and useful in practice, and they concern
the process relevant to group decision and negotiation

• Our model is simple, but it admits possibilities of sophistication based on intro-
ducing additional information not included in the characteristic function of the
game and, e.g., modifying, if necessary, the value used for allocating payoffs

Game theory studies conflictive situations that arise when a set of agents (called
players), which may have different or even opposed interests, must take individual
decisions to obtain some kind of individual payoffs as the result of their interaction.
Usually, there exists a certain level of competition that, in some cases, is compatible
with the possibility of total or partial cooperation.

Frequently, “cooperative game” and “noncooperative game” are considered in the
literature antagonistic notions. In a cooperative game, the players are allowed to com-
municate between them in order to coordinate their actions, looking for a joint profit
derived from their agreement. Nothing of this is permitted in the noncooperative case,
where each player has a set of strategies and chooses one of them, trying to max-
imize his payoff and being aware that this payoff may well depend on the choices
simultaneously made by the other players.

At this point, it is convenient to specify the relative importance of two concepts:
communication possibilities and enforceability of the agreements.1 We quote from
Harsanyi (1982):

This distinction was first proposed by Nash (1950, 1951), who defined coopera-
tive games as games permitting both communication and enforceable agreements
between the players, and defined noncooperative games as games permitting nei-
ther communication nor enforceable agreements.
[...] it is now commonly agreed that it is preferable to distinguish cooperative
games and noncooperative games on the basis of one single criterion. It turns out
that enforceability or unenforceability of agreements is a much more important
characteristic of a game than presence or absence of communication is.

Thus, we adopt in the sequel two basic assumptions for cooperative games: first, free
communication is allowed between players in order to coordinate strategies; second,
any agreement to this end, arrived at by some or all players, is completely enforceable
and, of course, each player may sign only one agreement at most. So, if the players
agree to cooperate then a negotiation is carried out, one or more binding contracts can
be established among all players or within subsets of players (called coalitions) and,
finally, the benefits of the cooperation are to be shared as specified in the contract(s).

A cooperative game merely describes the utility of the coalitions, independently, a
priori, of whether theywill really form or not. Therefore, we adopt twomore additional
assumptions: first, all players agree that the Shapley value (Shapley 1953; Roth 1988)

1 A suggestion for which we are grateful to a reviewer.
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is the “universal sharing rule” to be used in all circumstances;2 second, in consequence,
each player perfectly knows the possibilities of the others, that is, the coalitions they
might choose and the payoffs they would receive according to the coalition structure
derived from their respective choices.

Often, it is implicitly assumed that, at the end, the grand coalition will form and
its utility will be divided among all players. However, one can raise objections to this
assumption, since such a full agreement may depend on many factors (for example,
the sharing rule used) and it is not unlikely that in certain cases the players prefer other
options to organize themselves. We quote Shenoy’s basic ideas (Shenoy 1979) to this
respect:

The theory of n-person cooperative games is a mathematical theory of coalition
behavior. A fundamental problem posed in game theory is to determine what
outcomes are likely to occur if a game is played by “rational players”. I.e. given
an n-person cooperative game, it is natural to inquire (1) what will be the final
allocationof payoffs to eachof the players and (2)whichof the possible coalitions
can be expected to form. These two aspects of coalition behavior are closely
related. The final allocation of payoffs to each of the players depends on the
coalitions that finally form, and the coalitions that finally form depend on the
available payoffs to each player in each of these coalitions. Since the publication
in 1944 of the monumental work Theory of Games and Economic Behavior by
Von Neumann and Morgenstern (1953), most of the research in n-person game
theory has been concerned explicitly with predicting players’ payoff and only
implicitly (if at all) with predicting which coalitions shall form. In this paper,
the primary emphasis is on the second aspect of coalition behavior, namely the
formation of coalitions.

We subscribe Shenoy’s opinion. What is important when analysing a game is to deter-
mine: (a) which coalitions—not necessarily the grand coalition—will form, and (b)
which are the payoffs that players will subsequently receive. When using the Shapley
value on subgames we are in fact following the philosophy of the Aumann–Drèze
value (1974) (AD value, for short, in the sequel).

Grounds for our approach may be found, on one hand, in a strong criticism justified
in previous works (Amer et al. 2007; Carreras and Owen 2011, 2013) against the use
of the proportional rule as universal sharing rule; on the other, in a renewed interest
on the AD value, revealed in very recent articles (Wiese 2007; Casajus 2009; Tutić
2010; Alonso-Meijide et al. 2015; Carreras and Owen 2016).

The Shapley value of any player in any game is a weighted (convex) sum of the
marginal contributions of the player to all possible coalitions. Therefore, depending
on the game, the payoff assigned to a fixed player by the Shapley value might be even
smaller than the utility that this player can obtain alone. In this case, forming the grand
coalition is harmful for this player and hence it would be difficult to persuade him to
enter this coalition.

2 A survey that shows the impact of the Shapley value in several scientific disciplines is due to Moretti and
Patrone (2008).
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One could argue that this situation is avoided if the game is superadditive, because
in this case the Shapley value assigns to each player at least his individual utility.
Nevertheless, there are superadditive gameswhere the formation of the grand coalition
is not the best option for all players, and even for none of them.We provide an example.

Example 1.1 (Aumann and Drèze 1974) Let us consider the symmetric, monotonic
and superadditive 3-person cooperative game u defined by

u(∅) = 0, u({i}) = 0, u({i, j}) = 8 for all distinct i, j and u({1, 2, 3}) = 9.

Superadditivity holds here because u({i})+u({ j}) ≤ u({i, j}) and u({i})+u({ j, k}) ≤
u(N ) for all distinct i, j, k ∈ N . The players might choose (a) to remain all alone, (b)
to join a partner and leave aside the other player, or (c) to form the grand coalition
{1, 2, 3}. Then, from the symmetric role of all players in this game, it is clear that the
payoff to a player would be 0 if he remains alone, 4 if he joins just a partner, and 3
if all form the grand coalition. Therefore, players’ preferences as to all these options
are, schematically,

• {1, 2} ≡ {1, 3} > {1, 2, 3} > {1} for player 1,
• {1, 2} ≡ {2, 3} > {1, 2, 3} > {2} for player 2,
• {1, 3} ≡ {2, 3} > {1, 2, 3} > {3} for player 3.

We conclude that any organisation of the form B = {{i, j}, {k}}, with i, j, k distinct,
would be a “solution” of this game and would be “stable” in the sense that no player
or group of players has a strict incentive and the power to modify this structure.

The convenience to simultaneously deal with coalition formation and payoffs allo-
cation inspired the notions of coalition structure and coalitional value, introduced by
Aumann and Drèze (1974), and gave a new impulsion to the development of value
theory. These authors extended the Shapley value to this new framework, using the
approach of isolated unions, and obtained the first coalitional value, the AD value. A
second approach, that of bargaining unions, was used by Owen (1977), when intro-
ducing what is called now Owen value.

Two main differences between these values are: (1) the Owen value satisfies effi-
ciency, whereas the AD value satisfies relative efficiency (that is, in each union); and
(2) the payoffs given by the AD value within each union are independent of the organ-
isation of the remaining players, but this is not true for the Owen value. The reason is
that the AD value is intended for being applied when the players are assumed to stop
the bargaining once they have formed the unions, whereas the Owen value is based
on the assumption that they form unions only as a previous step addressed to attain a
better bargaining position when forming, at the end, the grand coalition.

The existence of different coalitional values raised the convenience of testing the
stability of any coalition structure with regard to a given value. This is a great contribu-
tion of Hart and Kurz (1984). These authors assume that both a game and a coalitional
value are given, define the notion of stability for any coalition structure and try to
determine which coalition structures (if any) are stable in the given game with regard
to the given coalitional value. They introduced two kinds of stability that they called
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γ -stability and δ-stability, both based on the notion of (strong) Nash equilibrium for
noncooperative games (Nash 1950; Aumann 1959).3 They gave an axiomatic charac-
terization of a “CS value”, which coincides with the Owen value, and used only this
value in their analysis of games with a coalition structure. Hart and Kurz’s experience
with the Owen value raises concerns that in general it is not easy to find valuable
results on stability.

Many authors have worked on stability from different approaches. E.g., Wiese
(2007) and Casajus (2009) define variations of the AD value that take into account,
in some way, the players’ outside options (a viewpoint that we will not share here).
A Casajus’ nice result shows that any game admits some stable coalition structure for
his value, while Tutić (2010) presents a 4-person game that admits no stable coalition
structure for either the AD value or the Wiese value.

In general, in any cooperative game, the players are still interested, individually, in
obtaining the best possible payoff. This introduces a “noncooperative flavor” in the
cooperative game theory. Thus, a cooperative game might be rather viewed just as a
tool that defines the strategies available to each player, as well as the payoffs obtained
by applying a given general sharing rule to any profile of strategies. And this is our
approach.

The notion of strategy is usual in the context of noncooperative games but it is not
so common when dealing with cooperative games. A strategy for a player will consist
in choosing a coalition to which this player belongs.

Once each player has computed his payoff when he joins any possible coalition,
each player chooses one coalition among those that give him the maximum payoff.
A coalition is called optimal when each of its members has chosen it. The optimal
coalitions, jointlywith the singletons corresponding to the players not appearing in any
of them, constitute a coalition structure in the player set. Such a coalition structure
is stable, in the sense that there is no reason to change it, so it can be considered,
jointly with the payoffs allocated to the players according to the Shapley value in each
involved subgame, as a solution of the cooperative game.

This stability idea recalls the notion of strong Nash equilibrium for noncooperative
games. Any other (unstable) coalition structure, jointly with the attached payoffs to
each player, can be interpreted as an “outcome” for the game following Yang (2011),
but it represents an inefficient behavior of the players, since at least one of them will
feel unsatisfied and, moreover, will have the opportunity to change his choice. Among
other questions, we will pay special attention to this: which conditions must satisfy a
cooperative game to ensure that the grand coalition is stable in the previously defined
sense?

The organization of the paper is as follows. We first provide basic preliminaries
in Sect. 2. Next, we propose some numerical examples in Sect. 3 to illustrate the
problem. In Sect. 4, the notions of monotonicity, convexity, cohesiveness and others
are used to establish five main results. Section 5 includes more examples analysed
with these results. In Sect. 6, applications to economic problems are sketched. Section
7 concludes.

3 In a previous work Hart and Kurz (1983), they defined two more notions, α-stability and β-stability, for
NTU cooperative games, but we will restrict our study to TU games.
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2 Preliminaries and Formal Definitions

We will assume that the reader is familiar with the grounds of the cooperative and
noncooperative game theories. We first recall some basic ideas, establish the notation
that will be used throughout this work, and introduce the main notions formally. For
more details we refer the reader to e.g. (Driessen 1988; González-Díaz et al. 2010;
Owen 2013).

Let N = {1, 2, . . . , n} be the set of players and 2N be the set of coalitions (subsets
of N ). A cooperative game in N is defined by (and identified with) its characteristic
function u : 2N −→ R, which assigns to each coalition S ⊆ N a real number
u(S), interpreted as the utility that coalition S can obtain if all its members agree,
independently of the behavior of the remaining players, i.e. the members of N\S. The
only restriction is that u(∅) = 0 for any game u.

Player i ∈ N is a null player in game u if u(S ∪ {i}) = u(S) for all S ⊆ N\{i}.
Players i, j ∈ N are symmetric players in game u if u(S ∪ {i}) = u(S ∪ { j}) for all
S ⊆ N\{i, j}. Endowed with the usual linear operations u + u′ and λu for any λ ∈ R,
the set of all cooperative games in N becomes a real vector space GN of dimension
2n − 1.

If u ∈ GN and ∅ 
= T ⊆ N , the restriction of u to T is the game uT ∈ GT defined
by uT (S) = u(S) for all S ⊆ T .4 We also say that uT is a subgame of u. Obviously,
uN = u.

The following conditions, that define special classes of games, are hereditary, in
the sense that if one of them holds for a game then it holds for all its subgames.

A game u ∈ GN is monotonic if u(S) ≤ u(T ) whenever S ⊂ T .
A game u ∈ GN is symmetric if all i, j ∈ N are symmetric players in u. This is

equivalent to saying that u(S) depends only on the cardinality of coalition S, s = |S|,
for all S ⊆ N .

A game u ∈ GN is superadditive if u(R)+ u(S) ≤ u(R ∪ S) when R ∩ S = ∅. It is
called additive if u(R)+u(S) = u(R∪ S)when R∩ S = ∅, and strictly superadditive
if u(R) + u(S) < u(R ∪ S) when R ∩ S = ∅.

A coalition structure in N is a collectionB = {B1, B2, . . . , Bm} of pairwise disjoint
coalitions (unions) such that B1 ∪ B2 ∪ . . .∪ Bm = N . The trivial coalition structures
are BN = {N } and Bn = {{1}, {2}, . . . , {n}}. The second might be understood as a
sort of “disagreement point”.

It follows at once that, if u is superadditive andB = {B1, B2, . . . , Bm} is a coalition
structure in N , then

u(B1) + u(B2) + · · · + u(Bm) ≤ u(N ).

This fact is interesting: it means that any coalition structure is, in principle, feasible,
given that the total utility will be able to satisfy the demands of all unions. The
inequality becomes strict when the game is strictly superadditive and B 
= BN , and
an equality under additivity.

4 Here uT will not mean the unanimity game associated to coalition T .
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The Shapley value (Shapley 1953; Roth 1988) is a map� : GN −→ R
n that assigns

to each game u ∈ GN a vector �[u] = (�1[u],�2[u], . . . , �n[u]). The allocation
given by the Shapley value to each player i ∈ N in any game u ∈ GN is

�i [u] =
∑

Si
γn(s)[u(S) − u(S\{i})], where s = |S| and γn(s) = 1

n
(n−1
s−1

) .

We will use the Shapley value as universal sharing rule, so it will be applied to any
game and also to all its subgames.

The weighting coefficients γn(s) do not depend on game u. As is well known, for
any i ∈ N ,

∑

Si
γn(s) = 1.

Hence �i [u] ≥ u({i}) for any player i and any superadditive game u, and �i [u] >

u({i}) if, moreover, u(S) > u({i}) + u(S\{i}) for at least one coalition S containing
i . This means that such a player would prefer joining the grand coalition instead of
remaining alone.

However, given a coalition structure B, the same holds for any subgame uBk . That
is, �i [uBk ] ≥ u({i}) for all Bk and all i ∈ Bk , and �i [uBk ] > u({i}) if, moreover,
u(S) > u({i}) + u(S\{i}) for at least one coalition S ⊆ Bk containing i , so such
players i ∈ Bk would also prefer joining Bk instead of remaining alone.

Now we introduce the main notions formally.
Let u be a cooperative game in N . Following Hart and Kurz’s γ -model (1984), we

first set up an auxiliary noncooperative game ��(u).
For each i ∈ N the strategy set is 	i = {S ⊆ N : i ∈ S}, thus having cardinality

2n−1. The strategy space of ��(u) is 	1 ×	2 × · · ·×	n , so any profile of strategies
σ ∈ 	1 × 	2 × · · · × 	n is of the form σ = (S1, S2, . . . , Sn), with i ∈ Si for each
i ∈ N .

Given profile σ = (S1, S2, . . . , Sn), a nonempty coalition S is said to be σ -selected
if and only if Si = S for each i ∈ S. We set �σ = {S ⊆ N : S is σ − selected}. If
S, T ∈ �σ are distinct then S ∩ T = ∅. We then consider the coalition structure

Bσ = {S : S ∈ �σ } ∪ {{ j} : j /∈ Uσ }, where Uσ =
⋃

S∈�σ

S.

The payoffs in ��(u) are given for each profile σ by

ki (σ ) =
{

�i [uSi ] if Si ∈ �σ ,

u({i}) otherwise.

Thus, in practice, a strategy of any player in a cooperative game will imply to remain
alone unless all members of the coalition he chooses make the same choice. If all
members of the coalition agree to choose it, then each one of them obtains the payoff
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given to him by the application of the Shapley value to the restricted game. Otherwise
(and even if only one of these members does not choose it), the payoff obtained by
each player that chose the coalition will be just his individual utility.5 For example, if
player 1 chooses {1, 2} but 2 and 3 choose {2, 3}, then player 1 gets u({1}). Of course,
if a player chooses to remain alone, he will also obtain his individual utility, because
�i [u{i}] = u({i}) for each i ∈ N .

Definition 2.1 ��(u), with strategy space 	1 × 	2 × · · · × 	n and payoff functions
k1, k2, . . . , kn , is the noncooperative game associated to game u with respect to the
Shapley value �.

Given a profile σ = (S1, S2, . . . , Sn), a defector group of σ is a nonempty coalition
T ⊆ N with strategies σ̃i ∈ 	i for each i ∈ T such that ki ((σ̃i )i∈T , (σ j ) j∈N\T ) >

ki (σ ) for all i ∈ T .
If profile σ is free from defector groups, then it is a strong Nash equilibrium in

��(u). We then say that Bσ is a stable coalition structure in u (with regard to the
Shapley value).

Now we translate these ideas to the cooperative language. We are assuming that all
players try to optimize their individual payoffs. Hence, once each player has computed
his payoff when he joins any possible coalition, he chooses one of the coalitions that
maximize this payoff. This gives rise to a profile σ ∗.

Definition 2.2 A coalition is called optimal if it gives to each of its members his best
payoff.

When these decisions have been taken, any two different optimal coalitions are dis-
joint, and the collection of these chosen optimal coalitions, jointly with the singletons
corresponding to the players not appearing in any of them, constitutes a coalition struc-
ture Bσ ∗ in the player set. The optimal coalitions form �σ ∗ , the family of σ ∗-selected
members of Bσ ∗ .

Definition 2.3 If profile σ ∗ is a strong Nash equilibrium in��(u), the coalition struc-
ture Bσ ∗ can be considered, jointly with the payoffs allocated to the players, as a
solution of the cooperative game, since it gives a behavioral pattern and a subsequent
payoff vector.

Such a coalition structure is stable because it comes from a profile that is a strong
Nash equilibrium. This means that there exists no strict incentive in payoff terms for
any player (and, in fact, neither for any set of players) to change his decision and move
from one coalition to another.

Of course, this solution may not be unique (cf. Example 3.2 below) or not exist
(cf. Example 3.3). Any other (unstable) coalition structure may be considered as an
outcome for the game, but it represents an inefficient behavior of the players because
at least one of them will feel unsatisfied (cf. Example 3.2).

5 The difference between the γ -model and the δ-model lies here. In the δ-model, Hart and Kurz assume
that, if only some members of a coalition choose it, the subcoalition consisting of these members forms,
while the others become singletons. Of course, if a coalition forms in the γ -model it also forms in the
δ-model, but the converse is not true. Here we prefer using the γ -model solely because the subcoalition
might have a utility no longer interesting to its members.
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3 Examples

Some numerical examples will illustrate the above notions.

Examples 3.1 (a) Let n = 3 and u be the monotonic game defined by

u(∅) = 0, u({1}) = 1, u({2}) = 0, u({3}) = 0,
u({1, 2}) = 3, u({1, 3}) = 2, u({2, 3}) = 1, u(N ) = 5.

The Shapley value is �[u] = (2.5, 1.5, 1). The five coalition structures are Bn =
{{1}, {2}, {3}}, B{1,2} = {{1, 2}, {3}}, B{1,3} = {{1, 3}, {2}}, B{2,3} = {{1}, {2, 3}}
and BN = {N }. The strategy set of player 1 is, with a simplified notation, 	1 =
{1, 12, 13, 123}, 	2 and 	3 being analogous. This gives 43 = 64 profiles in the
noncooperative game. The payoffs derived from applying the Shapley value �

are as follows:

Player Bn B{1,2} B{1,3} B{2,3} BN

1 1 2 1.5 1 2.5
2 0 1 0 0.5 1.5
3 0 0 0.5 0.5 1

There are 14 Nash equilibria in ��(u). However, only one of them is strong:
the equilibrium defined by σ = (123, 123, 123) that gives rise to the only stable
coalition structure: BN .

(b) Let n = 3 and u be the monotonic game defined by

u(∅) = 0, u({i}) = 0, u({1, 2}) = 6, u({1, 3}) = 1,

u({2, 3}) = 1, u(N ) = 6.

Here, �[u] = (17/6, 17/6, 1/3). Only profiles of the form (12, 12, X), where
X stands for any coalition containing player 3, are strong Nash equilibria. All of
them lead to the only stable coalition structure B{1,2} = {{1, 2}, {3}} 
= BN , with
payoff vector (3, 3, 0).

Example 3.2 Let us take n = 3 and consider the game u defined by

u(∅) = 0, u({1}) = 1, u({2}) = 3, u({3}) = 0,
u({1, 2}) = 6, u({1, 3}) = 1, u({2, 3}) = 3, u({1, 2, 3}) = 6.

The game is superadditive. Player 3 is a null player. The Shapley value of the non-trivial
involved games, u, u{1,2}, u{1,3} and u{2,3}, is as follows:

�1[u] = 2, �2[u] = 4, �3[u] = 0,
�1[u{1,2}] = 2, �2[u{1,2}] = 4, �3[u{1,3}] = 0,
�1[u{1,3}] = 1, �2[u{2,3}] = 3, �3[u{2,3}] = 0.
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According to these payoffs, players’ preferences are the following:

• Player 1 wishes to enter either coalition {1, 2, 3} or {1, 2} instead of forming a
coalition with player 3 or remaining alone. We will simply write

{1, 2, 3} ≡ {1, 2} > {1, 3} ≡ {1} for player 1.

• Player 2 has similar preferences:

{1, 2, 3} ≡ {1, 2} > {2, 3} ≡ {2} for player 2.

• Player 3 is indifferent with respect to any possible coalition:

{1, 2, 3} ≡ {1, 3} ≡ {2, 3} ≡ {3} for player 3.

In view of these preferences, two solutions arise for this game. If all players choose
coalition {1, 2, 3}, this coalition is optimal and a solution of the game is given by the
corresponding coalition structure and the subsequent payoffs:

B = {{1, 2, 3}} = BN , �1[u] = 2, �2[u] = 4, �3[u] = 0.

If, instead, players 1 and 2 choose coalition {1, 2}, this coalition is optimal, and another
solution of the game is given by the corresponding coalition structure and the subse-
quent payoffs:

B = {{1, 2}, {3}} = B{1,2}, �1[u{1,2}] = 2, �2[u{1,2}] = 4, u({3}) = 0.

Finally, if e.g. player 1 chooses {1, 2, 3} but player 2 chooses {1, 2}, or conversely,
then there is no optimal coalition, and the outcome of the game, defined by

B = {{1}, {2}, {3}} = Bn, u({1}) = 1, u({2}) = 3, u({3}) = 0,

is not a solution. It lacks stability because players 1 and 2 would like to modify
their choices and give rise to one of the previous solutions. Note that, if e.g. two
players obtain simultaneously their respective best payoff in more than one coalition
containing both, as it happens here, then the contract theywill sign shouldmention, not
only the payoff allocated to each player, but also which of these coalitions they must
choose in order to coordinate strategies effectively. We also remark that if a player can
choose among two optimal coalitions, his payoff will be the same, but this does not
extend to non-optimal coalitions.

Example 3.3 Let n = 3 and consider the superadditive game u defined by

u({1, 2}) = 1, u({2, 3}) = u({1, 2, 3}) = 2 and otherwise u(S) = 0.
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The Shapley value of the non-trivial involved games, u, u{1,2}, u{1,3} and u{2,3}, is as
follows:

�1[u] = 1/6, �2[u] = 7/6, �3[u] = 4/6,
�1[u{1,2}] = 1/2, �2[u{1,2}] = 1/2, �3[u{1,3}] = 0,
�1[u{1,3}] = 0, �2[u{2,3}] = 1, �3[u{2,3}] = 1.

Notice that, in spite of superadditivity,�1[u] is not the best payoff for player 1. In this
case, players’ preferences do not define any optimal coalition. They are as follows:

• {1, 2} > {1, 2, 3} > {1} ≡ {1, 3} for player 1,
• {1, 2, 3} > {2, 3} > {1, 2} > {2} for player 2,
• {2, 3} > {1, 2, 3} > {3} ≡ {1, 3} for player 3.

We conclude that there is no solution for this game. Maybe a second bargaining round
could be expected. Intuitively, it seems quite reasonable that player 2 would convince
(or force) the others to accept the grand coalition.6

Example 3.4 Let us take n = 3 and α > 0, and consider the game u defined by

u(∅) = 0, u({1}) = 5, u({2}) = 1, u({3}) = 0,
u({1, 2}) = 9, u({1, 3}) = 5, u({2, 3}) = 4, u({1, 2, 3}) = α.

It is clear that game u is supperadditive for α ≥ 9. The Shapley value of the non-trivial
involved games, u, u{1,2}, u{1,3} and u{2,3}, is as follows:

�1[u] = 2.5 + α/3, �2[u] = α/3, �3[u] = α/3 − 2.5,
�1[u{1,2}] = 6.5, �2[u{1,2}] = 2.5, �3[u{1,3}] = 0,
�1[u{1,3}] = 5, �2[u{2,3}] = 2.5, �3[u{2,3}] = 1.5.

The allocations given by the Shapley value in game u are the best for players 1 and
3 only if α ≥ 12, and for player 2 only if α ≥ 7.5. Thus, the relevant cases are the
following.

(1) α < 7.5. The possible optimal coalitions are {1, 2} and {2, 3}, which would give
rise to two solutions.

(2) α = 7.5. The possible optimal coalitions are again {1, 2} and {2, 3}, which would
give rise to two solutions, but player 2 is indifferent between any of them and
{1, 2, 3}.

(3) 7.5 < α < 12. The preferences diverge: player 1 still prefers {1, 2}, player 2
prefers {1, 2, 3} only, and player 3 still prefers {2, 3}. There is no solution.

(4) α = 12. Player 1 is indifferent between {1, 2} and {1, 2, 3}, player 2 prefers
{1, 2, 3} only, and player 3 is indifferent between {2, 3} and {1, 2, 3}. The only
solution is given by the grand coalition {1, 2, 3}.

6 The lack of solution appears here and in other examples below. Following Segal (2003), we could call
collusion proof to any game where this occurs. In such a game, players are reduced to form, in principle,
the trivial structure Bn , that we have called the “disagreement point”.
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(5) α > 12. All players prefer the grand coalition {1, 2, 3}, which yields the only
solution.

We see that superadditivity does not ensure the existence of a solution but neither it is
a necessary condition for this existence.

4 Conditions for Stability in Coalition Formation

This section contains the theoretical results.We begin by the trivial role of null players.
A general property when null players arise in a game is that the solution (if any) is
never unique. Let i ∈ N be a null player in game u. If B = {B1, B2, . . . , Bm} is a
stable coalition structure for game uN\{i}, then B′ = {B1, B2, . . . , Bm, {i}}, as well
as any coalition structure of N of the form Bk = {B1, B2, . . . , Bk ∪ {i}, . . . , Bm} for
any k, is stable for game u. More generally, we have:

Proposition 4.1 (Null players do not matter) Let u 
= 0 be a game and Z(u) ⊂ N
be the nonempty set of null players in u. Then the stable coalition structures in u
are obtained from the stable coalition structures in the restricted game uN\Z(u) by
allowing all null players i ∈ Z(u) to incorporate in any way.

Proof It is straightforward. ��
Examples 4.2 Let us illustrate the arrangement of null players in the stable coalition
structures of the restricted game.

(a) Let n = 3 and u be the superadditive monotonic game defined by

u(∅) = u({3}) = 0, u({1}) = u({1, 3}) = 1, u({2})
= u({2, 3}) = 2, u({1, 2}) = u(N ) = 4.

Here Z(u) = {3} and the only stable coalition structure in uN\Z(u) is BN\Z(u) =
{{1, 2}}. Hence, the only stable coalition structures in u are B{1,2} = {{1, 2}, {3}}
and BN , with payoff vector (1.5, 2.5, 0) in both cases.

(b) Now let n = 3 and u be the monotonic game defined by

u(∅) = u({3}) = 0, u({1}) = u({2}) = u({1, 2})
= u({1, 3}) = u({2, 3}) = u(N ) = 4.

Here Z(u) = {3} again and the only stable coalition structure in uN\Z(u) isBn−1 =
{{1}, {2}}. Hence, the only stable coalition structures in u areBn = {{1}, {2}, {3}},
B{1,3} = {{1, 3}, {2}} and B{2,3} = {{1}, {2, 3}}, with payoff vector (4, 4, 0) in all
cases.

We next present fivemain results, with a previous lemma for the first and another for
the third. In all results, it is implicitly assumed that the Shapley value is the universal
sharing rule.
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Definition 4.3 (Shapley 1971) A game u is convex if, for all R, S ⊆ N ,

u(R ∪ S) + u(R ∩ S) ≥ u(R) + u(S).

It can be seen that this condition is equivalent to the following:

u(S ∪ {i}) − u(S) ≤ u(T ∪ {i}) − u(T )

for all S ⊆ T ⊆ N\{i} and all i ∈ N . In words, the incentives for joining a coalition
increase as the coalition grows (the so-called “snowball effect”) (Driessen 1988).

If u is convex then it is clearly superadditive, and convexity is hereditary. There is
a close connection between the convexity of a game u and the core of u, introduced
by Gillies (1953) as

C(u) = {x = (x1, x2, . . . , xn) :
∑

i∈N
xi = u(N ) and

∑

i∈S
xi ≥ u(S) if ∅ 
= S ⊂ N }.

Indeed, the Shapley value �[u] of any convex game u belongs to C(u) and is, in fact,
the center of gravity of this core, which in turn is the only stable set in Von Neumann
and Morgestern’s sense (1953).

Lemma 4.4 Let u be a game and i, j ∈ N be distinct players. Then, setting t = |T |,7

�i [u] − �i [uN\{ j}] =
∑

T 
 i, j

γn(t + 2)[u(T ∪ {i, j})

−u(T ∪ {i}) − u(T ∪ { j}) + u(T )].

Proof The proof is straightforward. ��
Theorem 4.5 If u is a convex game then BN gives a solution for u.

Proof Let i, j ∈ N be distinct players in u. For any T ⊆ N\{i, j} we apply convexity
taking R = T ∪ {i} and S = T ∪ { j} and obtain from Lemma 4.4 that �i [u] −
�i [uN\{ j}] ≥ 0.8

Inductively, it follows that, for any i ∈ N ,

�i [u] ≥ �i [uN\{ j}] ≥ �i [uN\{ j,k}] ≥ · · · ≥ �i [u{i}] = u({i}).

This means that, for all i ∈ S ⊂ N , �i [u] ≥ �i [uS]. Thus, for any B =
{B1, B2, . . . , Bm} 
= BN , any Bk and any i ∈ Bk ,�i [u] ≥ �i [uBk ]. We then conclude
that N is an optimal coalition for all players and hence BN is a solution for u. ��

7 In Segal (2003), the expression [u(T ∪{i, j})−u(T ∪{i})−u(T ∪{ j})+u(T )] is denoted as�2
i j [u](T ),

and �2
i j is called the “second-order difference operator”.

8 This inequality is, in fact, equivalent to the convexity of the game (Ichiishi 1993, Theorem 2.1.3).
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Remarks 4.6 (a) In a convex game, other solutions different from BN may appear,
as in Example 3.2. Instead, in Example 3.3 the game is not convex and does not
possess any solution, whereas in Example 3.4 the game is convex if and only if
α ≥ 12, and BN is the only solution for these values of α.

(b) Convexity is not a necessary condition. The game considered in Remark 4.9(a)
below is not convex, but BN is a solution.

(c) In the previous literature, different authors have been interested in giving sufficient
conditions for games, weaker than convexity, to ensure that the Shapley value lies
in the core. Sprumont (1990) adopted amore general viewpoint, that of population
monotonic allocation schemes (cf. Remark 4.7). Using a recursive expression of
the Shapley value, he proved that if u is a quasiconvex game then �[u] ∈ C(u).
Iñarra andUsategui (1993) introduced average convex games and partially average
convex games as wider classes of games u such that �[u] ∈ C(u). Izawa and
Takahashi (1998) found a necessary and sufficient condition for�[u] ∈ C(u) and
called totally convex to the games satisfying that condition: among them, there
are all average convex games.

Sprumont (1990) gave an example of 3-person game to show that the extended
Shapley value of a quasiconvex game may not be a population monotonic allocation
scheme. It is the quasiconvex game u defined by

u({1, 3}) = u({2, 3}) = 2/3, u(N ) = 1, or else u(S) = 0.

The Shapley value is �[u] = (2/9, 2/9, 5/9) and clearly belongs to C(u). What is
interesting for us is that players’ preferences in this game are

• {1, 3} > {1, 2, 3} > {1, 2} ≡ {1} for player 1,
• {2, 3} > {1, 2, 3} > {1, 2} ≡ {2} for player 2,
• {1, 2, 3} > {1, 3} ≡ {2, 3} > {3} for player 3,

so we conclude that BN is not a solution for u and hence Theorem 4.5 cannot be
extended to quasiconvex games.

Izawa and Takahashi (1998) gave another example of 3-person game such that it is
totally convex but not average convex. It is defined by

u({1, 2}) = 5, u({1, 3}) = u({2, 3}) = 7, u(N ) = 10, or else u(S) = 0.

The Shapley value is�[u] = (3, 3, 4) and clearly belongs toC(u). What is interesting
for us is again that players’ preferences in this game are

• {1, 3} > {1, 2, 3} > {1, 2} > {1} for player 1,
• {2, 3} > {1, 2, 3} > {1, 2} > {2} for player 2,
• {1, 2, 3} > {1, 3} ≡ {2, 3} > {3} for player 3,

so we conclude that BN is not a solution for u and hence Theorem 4.5 cannot be
extended to totally convex games.

These two (counter)examples share a feature that prevents BN from being stable:
u(N ) is not great enough. This highlights the interest of Theorem 4.14.
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Remark 4.7 Sprumont (1990) introduced and studied a refinement of the core allo-
cation notion, the so-called population monotonic allocation schemes (PMAS, for
short). Given an n-person game u in a player set N , such an scheme is defined by an
n2n−1-dimensional vector x = (xiS)i∈S,∅
=S⊆N satisfying

(1)
∑

i∈S
xiS = u(S) for all nonempty S ⊆ N , and

(2) if i ∈ S ⊂ T then xiS ≤ xiT .

From condition (1) it readily follows that xN = (xiN ) ∈ C(u) and xS = (xiS) ∈ C(uS)
if ∅ 
= S ⊂ N . Condition (2) guarantees that, once a coalition S has decided upon an
allocation of u(S), no player will be tempted to induce the formation of a coalition
smaller than S. This general notion of PMAS seems close to our solution concept
because in both approaches it is assumed that if a coalition S forms then its members
share the worth u(S), and moreover that this sharing is not affected by the behavior
of the external players (those of N\S).

In principle, any PMAS could also be used to discuss coalition formation in any
game u, by considering that, if B = {B1, B2, . . . , Bm} is a coalition structure in N ,
the payoffs obtained by the players are given as follows: if i ∈ Bk , then this player
receives xiBk . It is worthy mentioning that, although Sprumont accepts that players

may not achieve full efficiency, with this interpretation BN will always be a stable
coalition structure, i.e. a solution (maybe not unique), because of condition (2).

However, in this paper we are interested only in solutions derived from the appli-
cation of the Shapley value to games and subgames (thus, as universal sharing rule),
that is, taking xiS = �i [uS]. Then, our solution concept is not necessarily a PMAS,
since the translation of condition (2) to our framework implies that, if i ∈ S ⊂ T , then
�i [uS] ≤ �i [uT ]. Nevertheless, this is not always satisfied, as game u of Exam-
ple 3.1(b) shows. The coalition structure B{1,2}, with payoff vector (3, 3, 0), is a
solution but x1{1,2} = �1[u{1,2}] > �1[u] = x1N . Summing up, condition (2) estab-
lishes a main difference between PMAS and our solutions.

Anyway, Sprumont’s (1990) results are very interesting. In his Proposition 3, a
proof is given for a result communicated by Ichiishi (1987): any convex game admits
a PMAS, given by any extended vector of marginal contributions. This proof uses
permutations and hence is completely different from our existence proof for Theo-
rem 4.5. Also Corollaries 1 and 2 to Proposition 3 deserve being mentioned here.
The first states that every core allocation of a convex game can be reached through a
PMAS. The second states that, in particular, the extended Shapley value of a convex
game, defined by xiS = �i [uS], is a PMAS (and hence BN is a solution for the game,
as is stated by our Theorem 4.5).

Definition 4.8 Following Yang (2011), a game u is (strictly) cohesive if

u(N ) >

m∑

k=1

u(Bk) for all coalition structures B 
= BN .

In words, this means that BN is the only coalition structure that maximizes the sum
of utilities of all its unions.
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Remarks 4.9 (a) Cohesiveness does not imply superadditivity. Let us take n = 3 and
consider the game u defined by

u(∅) = 0, u({1}) = 2, u({2}) = 1, u({3}) = 1,
u({1, 2}) = 3, u({1, 3}) = 3, u({2, 3}) = 1, u({1, 2, 3}) = 5.

The game is monotonic and cohesive, but it is not superadditive because

u({2}) + u({3}) � u({2, 3}).

(b) Cohesiveness neither ensures the existence of solution. Let us consider Exam-
ple 3.4 with 9 < α < 12. Then it is easy to check that game u is cohesive, but the
discussion carried out in that example shows that it has no solution.

(c) It may be interesting to recall Bell’s (1938) recursive formula, which gives the
number bn of possible coalition structures in a finite set of cardinality n:

bn =
n−1∑

k=0

(
n − 1

k

)
bk, with b0 = 1.

Thus, for n = 1, 2, 3, 4, 5, 6, 7, . . ., there exist bn = 1, 2, 5, 15, 52, 203, 877, . . .
coalition structures, respectively.

This formula tells us the amount of work necessary to check whether a game
is cohesive or not, although a previous checking of superadditivity already solves
some cases for cohesiveness. E.g., for n = 4 a total of 25 checks are needed for
superadditivity, but 7 of them check also cohesiveness, so only 7 cases remain to
check.

Theorem 4.10 If u is a cohesive game then no coalition structure B 
= BN gives a
solution for u.

Proof Let u be a cohesive game. Then, using efficiency, for any coalition structure
B 
= BN we have

∑

i∈B1
�i [uB1 ] +

∑

i∈B2
�i [uB2 ] + · · · +

∑

i∈Bm
�i [uBm ] =

m∑

k=1

u(Bk) < u(N )

= �1[u] + �2[u] + · · · + �n[u].

This implies that, necessarily, for some player i in some Bk we must have �i [uBk ] <

�i [u]. Hence, i will not choose Bk as his “best” coalition, Bk will not be an optimal
coalition, and B jointly with its corresponding payoffs will not be a solution of the
game. ��
Remarks 4.11 (a) Dropping cohesiveness, Theorem 4.10 does not hold. Indeed, in

Example 3.2, the game is superadditive but not cohesive. And we find that BN =
{1, 2, 3} is a stable coalition structure but B{1,2} = {{1, 2}, {3}} is also so.
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(b) The converse of Theorem 4.10 is not true. In Example 3.3, no coalition structure
B 
= BN gives a solution for u, but the game is not cohesive.

Corollary 4.12 If u is a convex and cohesive game, then the trivial coalition structure
BN gives the only solution for u. ��
Lemma 4.13 Let u be a game and i ∈ S ⊂ N. Then, setting s = |S| and t = |T |,

�i [u] − �i [uS] = �′(u, i, S) + u(N ) − u(N\{i})
n

+ �′′(u, i, S),

where �′(u, i, S) =
∑

Ti : T⊆S

[γn(t) − γs(t)][u(T ) − u(T \{i})]

and �′′(u, i, S) =
∑

Ti : N 
=T�S

γn(t)[u(T ) − u(T \{i})].

Proof The proof is straightforward, starting with

�i [u] − �i [uS] =
∑

Ti
γn(t)[u(T ) − u(T \{i})] −

∑

Ti : T⊆S

γs(t)[u(T ) − u(T \{i})].

��
Theorem 4.14 If u is any game, and u(N ) is great enough, or—equivalently—the
marginal contributions u(N ) − u(N\{i}) are great enough for all i ∈ N, then the
trivial coalition structure BN gives a solution for u, and it is likely to be the only
solution.

Proof Let u be any game and B = {B1, B2, . . . , Bm} be a coalition structure different
from BN . Let i ∈ Bk for some k. Then, using Lemma 4.13, with S = Bk (and hence
s = bk = |Bk |),

�i [u] − �i [uBk ] = �′(u, i, Bk) + u(N ) − u(N\{i})
n

+ �′′(u, i, Bk).

Clearly, u(N ) does not intervene in either �′(u, i, Bk) or �′′(u, i, Bk). It follows that,
if the total utility u(N ) is great enough, in the sense that, for all i ∈ N ,

u(N ) ≥ u(N\{i}) − n[�′(u, i, Bk) + �′′(u, i, Bk)],

or, equivalently, if the marginal contributions u(N ) − u(N\{i}) are great enough for
all i ∈ N , that is,

u(N ) − u(N\{i}) ≥ −n[�′(u, i, Bk) + �′′(u, i, Bk)],

then we obtain

�i [u] − �i [uBk ] ≥ 0
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for all i ∈ Bk and all Bk ∈ B, that is, for all i ∈ N and all B 
= BN . This implies that
all players i ∈ N will prefer (maybe not uniquely) the grand coalition to any other
subcoalition. In other words, the trivial coalition structure BN will be a solution of the
game, and the only solution if the above inequalities are strict. ��
Remarks 4.15 (a) The expression “great enough” is suggested by the following fact.

Let u be any game. If u(N ) is increased by an amount δ > 0 and the other utilities
remain invariant, a new game u′ is obtained, defined by

u′(S) = u(S) if S 
= N and u′(N ) = u(N ) + δ.

The effect of δ on the Shapley value of any player i ∈ N is

�i [u′] = �i [u] + δ

n
,

whereas, for any B 
= BN , any Bk ∈ B and any i ∈ Bk , �i [u′
Bk

] = �i [uBk ].
In fact, this is the basis for an alternative proof of Theorem 4.14 of a qualitative
nature —i.e. without specifying “how much great” should u(N ) be.

(b) Notice that if u is monotonic then �′(u, i, Bk) ≤ 0 whereas �′′(u, i, Bk) ≥ 0,
and also that both expressions vanish if i is a null player in u.

(c) The condition provided by Theorem 4.14 is not especially useful in practice, but
it guarantees that, by increasing the total utility u(N ) sufficiently, we will always
find that BN is a solution, and it will be the only one if u(N ) increases still a bit
more.

Theorem 4.16 If u 
= 0 is monotonic then:

(a) If u(S) >
∑

i∈S
�i [u] for some nonempty S ⊂ N, then BN is not stable in u.

(b) If, moreover, u is superadditive, then neither Bn is stable in u.
(c) Instead, if u(S) <

∑

i∈S
�i [u] for all nonempty S ⊂ N, then BN is the only stable

coalition structure in u.

Proof By Proposition 4.1, we assume Z(u) = ∅. It is easy to see that, for any S ⊂ N ,

�i [uS] � �i [u] for all i ∈ S if and only if u(S) �
∑

i∈S
�i [u].

Then:

(a) In case >, the members of S will prefer S to N , so BN will not be a solution for
u.

(b) Superadditivity implies that �i [u] ≥ u({i}) for all i ∈ N . So the members of S
will neither accept Bn .

(c) In case < it follows that, for any coalition structure B 
= BN ,

�i [uBk ] < �i [u]
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for all i ∈ Bk and all k and all B 
= BN , that is, for all i ∈ N . This implies that
BN is the only stable coalition structure in u. ��

Remarks 4.17 (a) The interest of this result lies in its easy application in practice.
Once we have computed the Shapley value �[u], it is not especially difficult to
compare, for each S ⊂ N , u(S) with

∑

i∈S
�i [u].

(b) A reviewer suggested that one might get from Theorem 4.16(c) an appealing
result: BN is stable for game u if and only if the Shapley value �[u] lies in
the core C(u). The “only if” part is true. We will prove an equivalent statement:
if �[u] /∈ C(u) then BN is not stable. Indeed, if �[u] /∈ C(u) then there exists
a nonempty S ⊂ N such that

∑

i∈S
�i [u] < u(S). Since u(S) =

∑

i∈S
�i [uS] we

obtain
∑

i∈S
�i [u] <

∑

i∈S
�i [uS], so�i [u] < �i [uS] for some i ∈ S. Thus, all such

i ∈ S are not satisfied with BN and hence this coalition structure, with the payoffs
given by the Shapley value �[u], is not stable. Maybe there exists another stable
coalition structure, maybe there is no solution: among the examples provided in
Sections 3, 5 and 6 that do not admit BN as a solution, there are cases where other
solution(s) exist(s), and cases where no solution exists.

However, the “if” part does not hold. The counterexamples given by Sprumont
(1990) and Izawa and Takahashi (1998) and detailed in Remark 4.7 are games u
with �[u] ∈ C(u) that do not admit BN as a solution. Both games are monotonic
but not convex.

Our next result refers to any game u such that
∑m

k=1
u(Bk) = u(N ) for some

B 
= BN . Such a game may be called weakly additive game with respect to B, since
this condition follows from additivity but is not equivalent to it. Of course, if this
happens for all B 
= BN then the game is additive and all coalition structures are
solutions of the game, with a common payoff given by u({i}) for each i ∈ N .

We will use here a standard notation: if B is a coalition structure in N then, for each
i ∈ N , B(i) will denote the union Bk that contains i . Moreover, given a coalition
structure B, we will distinguish between singletons and larger unions (unions of
cardinality > 1).

Theorem 4.18 (Weakly additive games) Let u be a weakly additive game with respect
to a coalition structure B 
= BN . Then there are only two possibilities:

(a) If �i [uB(i)] = �i [u] for all i ∈ N, then BN is a solution for u if and only if B is
also a solution.

(b) Otherwise, there exists some player i such that �i [uB(i)] < �i [u] and hence also
some player j such that � j [uB( j)] > � j [u]. Then four cases arise:

(b.1) If there exists some player of type i in some larger union, then B is not a
solution for u.

(b.2) If there exists some player of type j in some union, then BN is not a solution
for u.
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(b.3) If all members of larger unions are of type j , then B is a solution for u.
(b.4) If all players are of type i , then BN is a solution for u.

Proof Weak additivity immediately yields

∑

i∈N
�i [uB(i)] =

∑

i∈N
�i [u].

Thus, a first possibility is that �i [uB(i)] = �i [u] for all i ∈ N . In this case, if all
players prefer N then all of them equally prefer their respective union, and conversely.
This proves part (a).

Otherwise, there will be some i ∈ N such that �i [uB(i)] < �i [u] or some player j
such that � j [uB( j)] > � j [u], but the existence of one of them implies the existence
of the other in order to keep the equality of sums of values. The rest of the proof of
part (b) is straightforward, provided that a distinction is made between singletons and
larger unions. ��

5 More Examples

The following examples illustrate the above theorems.

Example 5.1 Let us consider again the 3-player game of Example 3.2, given by

u(∅) = 0, u({1}) = 1, u({2}) = 3, u({3}) = 0,
u({1, 2}) = 6, u({1, 3}) = 1, u({2, 3}) = 3, u({1, 2, 3}) = 6.

Theorems 4.5 and 4.10 (or, equivalently, Corollary 4.12), 4.14 and 4.16(c) apply and
the conclusion is that BN is the only solution of the game as we found in Example 3.2.

Example 5.2 Let us consider the 3-player game introduced in Remark 4.9(a) and
defined by

u(∅) = 0, u({1}) = 2, u({2}) = 1, u({3}) = 1,
u({1, 2}) = 3, u({1, 3}) = 3, u({2, 3}) = 1, u({1, 2, 3}) = 5.

In this case, Theorems 4.10, 4.14 and 4.16(c) apply and, again, we conclude that BN

is the only solution of the game.

Example 5.3 Let us take n = 3 and consider the game u defined by

u(∅) = 0, u({1}) = 0, u({2}) = 0, u({3}) = 5,
u({1, 2}) = 20, u({1, 3}) = 7, u({2, 3}) = 7, u({1, 2, 3}) = 25.

Here, parts (a) and (b) of Theorem 4.16 apply and imply that neither BN nor Bn

are solutions. However, B{1,2} is a solution. And, indeed, the Shapley value of the
non-trivial involved games, u, u{1,2}, u{1,3} and u{2,3}, is as follows:
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�1[u] = 9.67, �2[u] = 9.67, �3[u] = 5.67,
�1[u{1,2}] = 10, �2[u{1,2}] = 10, �3[u{1,3}] = 6,
�1[u{1,3}] = 1, �2[u{2,3}] = 1, �3[u{2,3}] = 6.

According to these payoffs, players’ preferences are the following:

• {1, 2} > {1, 2, 3} > {1, 3} > {1} for player 1,
• {1, 2} > {1, 2, 3} > {2, 3} > {2} for player 2,
• {1, 3} ≡ {2, 3} > {1, 2, 3} > {3} for player 3.

The only optimal coalition would be {1, 2}, and the only solution of the game is given
by the corresponding coalition structure and the subsequent payoffs:

B{1,2} = {{1, 2}, {3}}, �1[u{1,2}] = 10, �2[u{1,2}] = 10, u({3}) = 5.

Example 5.4 Let us consider the 3-player game u introduced in Example 3.3 and given
by

u({1, 2}) = 1, u({2, 3}) = u({1, 2, 3}) = 2 and otherwise u(S) = 0.

This game is weakly additive with respect to B{2,3}. Parts (b.1) and (b.2) of Theo-
rem 4.18 apply and say thatBN andB{2,3} are not solutions. Aswe saw in Example 3.3,
there is no solution for this game.

Examples 5.5 (a) Any additive game illustrates Theorem 4.18(a). All coalition struc-
tures are solutions of the game, with a common payoff given by u({i}) for each
i ∈ N .

(b) As an illustration of Theorem 4.18(b.3), let n = 3 and consider the game u defined
by

u(∅) = 0, u({i}) = 0 for all i,

u({1, 2}) = u(N ) = 4, u({1, 3}) = u({2, 3}) = 2,

and the coalition structure B{1,2} = {{1, 2}, {3}}, for which weak additivity, the
hypothesis of Theorem 4.18, is satisfied. With respect to B{1,2}, players 1 and 2
are j players. According to Theorem 4.18(b.2) and (b.3), B{1,2} is a solution for u
and BN is not. And, in effect, the Shapley value of the non-trivial involved games,
u, u{1,2}, u{1,3} and u{2,3}, is as follows:

�1[u] = 5/3, �2[u] = 5/3, �3[u] = 2/3,
�1[u{1,2}] = 2, �2[u{1,2}] = 2, �3[u{1,3}] = 1,
�1[u{1,3}] = 1, �2[u{2,3}] = 1, �3[u{2,3}] = 1,

and players’ preferences are
• {1, 2} > {1, 2, 3} > {1, 3} > {1} for player 1,
• {1, 2} > {1, 2, 3} > {2, 3} > {2} for player 2,
• {1, 3} ≡ {2, 3} > {1, 2, 3} > {3} for player 3.
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6 Applications to Real-World Economic Problems

In this section we present a miscellaneous of simulated real life situations where our
theory can apply. An inspiring source has been the work by Fiestras-Janeiro et al.
(2011). Following Remark 6.1, in cost games we denote utilities by negative numbers.

Remark 6.1 (Cost games and savings) In a cooperative game, it is generally assumed
that u(S) > 0 represents a profit or saving for coalition S. Superadditivity and cohe-
siveness conditions are therefore full of sense. However, when dealing with a cost
game c, where c(S) represents the amount that coalition S will have to pay, such cost
is often given by a positive number, inwhich case superadditivity is theworst condition
in order to promote coalition formation, and recourse has to be made to subadditivity
conditions.

To avoid this duplicity, we only need to represent costs by negative numbers. If
we do so, superadditivity and cohesiveness are convenient conditions also for cost
games. Then, using this (natural) representation convention, given a cost game c the
associated saving game u is defined by

u(S) = c(S) −
∑

i∈S
c({i}) for each S ⊆ N ,

and it is easy to check that players’ preferences, and hence the optimal coalitions for
each player and the stable coalition structures (if any), are the same in u as in c.

Example 6.2 Let n = 3 and consider a cost game c defined by

c(∅) = 0, c({1}) = − 4, c({2}) = − 6, c({3}) = − 5,
c({1, 2}) = − 6, c({1, 3}) = − 6, c({2, 3}) = − 8, c({1, 2, 3}) = − 8.

This cost game is cohesive and convex, and c(N ) is great enough. The application of
the Shapley value yields

�1[c] = − 1.5, �2[c] = − 3.5, �3[c] = − 3,
�1[c{1,2}] = − 2, �2[c{1,2}] = − 4, �3[c{1,3}] = − 3.5,
�1[c{1,3}] = − 2.5, �2[c{2,3}] = − 4.5, �3[c{2,3}] = − 3.5.

Players’ preferences are as follows:

• {1, 2, 3} > {1, 2} > {1, 3} > {1} for player 1,
• {1, 2, 3} > {1, 2} > {2, 3} > {2} for player 2,
• {1, 2, 3} > {1, 3} ≡ {2, 3} > {3} for player 3.

The trivial coalition structure is the only solution of the game.

Example 6.3 (A collective supply) Three towns located at points A(2, 2), B(− 2, 2)
and C(− 2,− 2) (distances given in km) are interested in being supplied with a fluid
(say, gas) from a production or distribution center located at D(2, 0) (see Fig. 1). We
are interested only in the connection costs. The cost in monetary units of establishing
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Fig. 1 A collective supply
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C
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any channel is of 1000/km, so the cost of a link to each town defined by a straight line
(DA, DB and DC , respectively) is given by

c({A}) = − 2000, c({B}) = − 4480, c({C}) = − 4480.

Taking profit of the good orographic conditions, the supplier offers common links
to any two towns simultaneously (DA + AB, DA + DC and DO + OB + OC ,
respectively) and even a full link to the three towns (DA + DO + OB + OC) with
costs

c({A, B}) = − 6000, c({A,C}) = − 6480, c({B,C}) = − 7660,

c({A, B,C}) = − 9660.

Let us discuss coalition formation. Notice that the game is not convex, is not cohesive
and neither c(N ) is great enough because c({A})+c({B,C}) = c(N ). Wewill assume
that all towns accept the Shapley value as the sharing rule in all possible cases. The
cost game c played by the towns has been described above. If each town signs an
individual contract, then the corresponding costs will be

c({A}) = − 2000, c({B}) = − 4480 and c({C}) = − 4480.

If all agree to sign a full joint contract, the sharing is

�A[c] = − 1920, �B[c] = − 3750 and �C [c] = − 3990.

Finally, if {X,Y } is any two-player coalition that signs a joint contract, and c{X,Y }
denotes the restriction of game c to this coalition, then we have
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Fig. 2 The four cottages

�A[c{A,B}] = − 1760, �B[c{A,B}] = − 4240, �C [c{A,C}] = − 4480,
�A[c{A,C}] = − 2000, �B[c{B,C}] = − 3830, �C [c{B,C}] = − 3830.

So the preferences of each town on coalitions containing it are

• {A, B} > {A, B,C} > {A} ≡ {A,C} for town A,
• {A, B,C} > {B,C} > {A, B} > {B} for town B,
• {B,C} > {A, B,C} > {C} ≡ {A,C} for town C .

We conclude that, strictly speaking, there is no solution for the problem. However,
intuitively, it seems that, in a further negotiation, town B might convince (or force)
the others to form the grand coalition, as its position in the bargaining seems to be the
strongest.

Example 6.4 (The four cottages) A dirt track connects four cottages with a main road,
as is shown in Fig. 2. Asphalting the track costs 60,000 euros/km.

If S is any subset of cottages, c(S) will represent the cost (in thousands of euros)
of asphalting the fraction of the track that connects the cottages of S with the road.
This gives a cost game c in the player set N = {1, 2, 3, 4} of the respective owners of
A, B, C and D, defined by

c(∅) = 0, c({1}) = − 240, c({2}) = − 240, c({3}) = − 120,
c({4}) = − 60, c({1, 2}) = − 300, c({1, 3}) = − 300, c({1, 4}) = − 240,
c({2, 3}) = − 300, c({2, 4}) = − 240, c({3, 4}) = − 120, c({1, 2, 3}) = − 360,
c({1, 2, 4}) = − 300, c({1, 3, 4}) = − 300, c({2, 3, 4}) = − 300, c({1, 2, 3, 4}) = − 360.

The game is cohesive and c(N ) is great enough. We omit the details about the Shapley
value on subgames. By applying the standard technique proposed in previous sections,
we find that the preferences of cottage owners are as follows:

• {1, 2, 3, 4} > {1, 2, 3} ≡ {1, 2, 4} > {1, 2} > {1, 3, 4} > {1, 3} ≡ {1, 4} > {1}
for owner 1,

• {1, 2, 3, 4} > {1, 2, 3} ≡ {1, 2, 4} > {1, 2} > {2, 3, 4} > {2, 3} ≡ {2, 4} > {2}
for owner 2,

• {1, 2, 3, 4} > {1, 2, 3} ≡ {1, 3, 4} ≡ {2, 3, 4} > {1, 3} ≡ {2, 3} ≡ {3, 4} > {3}
for owner 3,

• {1, 2, 3, 4} > {1, 2, 4} ≡ {1, 3, 4} ≡ {2, 3, 4} > {1, 4} ≡ {2, 4} ≡ {3, 4} > {4}
for owner 4.

Thus, in this problem all players strictly prefer forming the grand coalition and share
the total cost (in thousand euros) in this way:

�1[c] = 135, �2[c] = 135, �3[c] = 75 and �4[c] = 15.

123



492 A. Magaña, F. Carreras

party Alice’s
home

Betty’s
home

Cate’s
home

12 km 8 km 5 km

Fig. 3 A taxi trip

0 321 . . . n−1 n
d1 d2 d3 . . . dn

Fig. 4 Logistics itinerary

This fits well the common sense standard rule applied by most councils in problems
of this kind.

Examples 6.5 (A taxi trip and a logistics problem) (a) A relatively similar problem is
the following. Three friends, Alice, Betty and Cate, respectively denoted as A, B and
C , leave a party, call a taxi, and ask the driver to carry them home together. The trip
is represented in Fig. 3 and the fee is one euro/km.

The cost game c played by the friends is given by

c(∅) = 0, c({A}) = − 12, c({B}) = − 20, c({C}) = − 25,
c({A, B}) = − 20, c({A,C}) = − 25, c({B,C}) = − 25, c({A, B,C}) = − 25.

This game is convex and cohesive, so the only solution is BN with the payoffs given
by the Shapley value of the game �[c] = (− 4,− 8,− 13). Again, this solution fits
well common sense, according to which friends travelling in the taxi in a given interval
should share equitably the cost of that interval.

(b) We generalize this example to a transportation problem. To fix ideas, let N =
{1, 2, . . . , n} be a set of consumers that want to be supplied with diverse goods from
a logistic centre located at the origin 0. The single itinerary followed by the carrier
(using, e.g., truck, train, ship or plane) can be described as in Fig. 4.

The transportation costs in each stretch of the route are given by negative numbers
d1, d2, . . . , dn , e.g. proportional to the respective lengths. Of course, if only a subset S
of consumers decided to make use of this service, the trip would finish at point max{S}
(the consumer of S furthest from 0), with the subsequent cost reduction. If costs are
assumed to be allocated in all cases by the Shapley value, the problem is whether the
consumers prefer to form the grand coalition or splitting into cheaper unions.

The cost game c that describes this problem is defined by

c(S) =
max{S}∑

k=1

dk for each S ⊆ N .

It is not difficult to check that this is a convex and cohesive game, so the only solution
is the coalition structure BN with associated payoffs given by the Shapley value of the
game:
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�i [c] =
i∑

k=1

dk
n + 1 − k

for each i ∈ N .

Once more, this fits common sense, which would recommend sharing equitably the
cost of each stretch among the consumers whose service requires the carrier to go
through this stretch.

Example 6.6 (The bankruptcy problem) The Talmud is an ancient Jewish document
where comments on Moses’ law and teachings of the rabbinical school are collected.
Towards 1140 AD, Rabbi Ibn Ezra proposed in the Talmud the following problem.
Jacob is dead, and each of his sons, Reuben, Simeon, Levi and Judah, presents a
brief document in which Jacob recognizes him as heir and bequeaths, respectively,
1/4, 1/3, 1/2, and all of its assets, valued at 120 m.u. (monetary units of that time).
All documents bear the same date and, therefore, none has priority over others. The
problem is how to divide Jacob’s inheritance.

Let N = {1, 2, 3, 4} be the set of Jacob’s sons in the order mentioned above,
E = 120 be the estate and d1 = 30, d2 = 40, d3 = 60, d4 = 120 be the creditors’
demands. In this example, the estate is the total of Jacob’s assets and the creditors
are Jacob’s sons. O’Neill (1982) defined a cooperative game to deal with this kind of
problems, now known as “bankruptcy problems”:

u(S) = max

⎧
⎨

⎩0, E −
∑

j /∈S
d j

⎫
⎬

⎭ for each S ⊆ N .

This game is given by

u(∅) = 0, u({1}) = 0, u({2}) = 0, u({3}) = 0,
u({4}) = 0, u({1, 2}) = 0, u({1, 3}) = 0, u({1, 4}) = 20,
u({2, 3}) = 0, u({2, 4}) = 30, u({3, 4}) = 50, u({1, 2, 3}) = 0,
u({1, 2, 4}) = 60, u({1, 3, 4}) = 80, u({2, 3, 4}) = 90, u({1, 2, 3, 4}) = 120.

The game is convex and cohesive and u(N ) is great enough. We omit the details about
the Shapley value on subgames. The preferences of Jacob’s sons are as follows:

• {1, 2, 3, 4} > {1, 2, 4} ≡ {1, 3, 4} > {1, 4} > {1, 2, 3} ≡ {1, 2} ≡ {1, 3} ≡ {1}
for Reuben,

• {1, 2, 3, 4} > {1, 2, 4} ≡ {2, 3, 4} > {2, 4} > {1, 2, 3} ≡ {1, 2} ≡ {2, 3} ≡ {2}
for Simeon,

• {1, 2, 3, 4} > {1, 3, 4} ≡ {2, 3, 4} > {3, 4} > {1, 2, 3} ≡ {1, 3} ≡ {2, 3} ≡ {3}
for Levi,

• {1, 2, 3, 4} > {2, 3, 4} > {1, 2, 4} ≡ {1, 3, 4} > {3, 4} > {2, 4} > {1, 4} > {1}
for Judah.

Again,we find that, in accordancewithCorollary 4.12, the only solution of the problem
is given by the grand coalition, with the payoffs allocated by the Shapley value:

�1[u] = 14.17, �2[u] = 19.17, �3[u] = 29.17 and �4[u] = 57.50.
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This solution coincides with the sharing proposed in the Talmud.
More generally, it is not difficult to see that any n-person bankruptcy game is

convex and cohesive, provided that d1, d2, . . . , dn > 0 and 0 < E <
∑

i∈N di . Thus,
Corollary 4.12 ensures that forming the grand coalition is the only solution for any
such game.

Example 6.7 (An oligopoly market) Three friends, Alan, Burt and Cynthia, have one
company each. They dominate the market of a certain product and obtain annual
benefits of 100, 200 and 300 monetary units (say, thousands of euros), respectively.
A market prospection predicts that, by merging companies, the increase of the joint
benefit would be 10% for Alan and Burt, 20% for Alan and Cynthia, and 30% for all
together. Finally, Burt and Cynthia might try to achieve a risk operation that would
give them an increase of 50% on their joint benefit, but only with a success probability
p (of course, 0 ≤ p ≤ 1). Otherwise, with probability 1 − p, they would fail and get
an increase of 5% only.

We first determine the cooperative game u played by the friends. Taking Alan = 1,
Burt = 2 and Cynthia = 3, we find as utility of coalition {2, 3} the expected joint
benefit in terms of p, i.e. u({2, 3}) = 750p + 525(1 − p), and therefore the game is
given (in thousands of euros) by

u(∅) = 0, u({1}) = 100, u({2}) = 200, u({3}) = 300,
u({1, 2}) = 330, u({1, 3}) = 480, u({2, 3}) = 525 + 225p, u({1, 2, 3}) = 780.

A complete analysis of coalition formation is as follows. By applying the Shapley
value to the involved games u, u{1,2}, u{1,3} and u{2,3}, we have all the necessary
information. First,

�1[u] = 170−75p, �2[u] = 242.50 + 37.50p and �3[u] = 367.50 + 37.50p,

and, moreover,

�1[u{1,2}] = 115, �2[u{1,2}] = 215, �3[u{1,3}] = 340,
�1[u{1,3}] = 140, �2[u{2,3}] = 212.50+112.50p, �3[u{2,3}] = 312.50+112.50p.

Then, the preferred options for each player in terms of p are given by the following
table:

If Alan prefers Burt prefers Cynthia prefers

0 ≤ p < 0.40 {1, 2, 3} {1, 2, 3} {1, 2, 3}
p = 0.40 {1, 2, 3} ≡ {1, 3} {1, 2, 3} ≡ {2, 3} {1, 2, 3}
0.40 < p < 0.7333 {1, 3} {2, 3} {1, 2, 3}
p = 0.7333 {1, 3} {2, 3} {1, 2, 3} ≡ {2, 3}
0.7333 < p ≤ 1 {1, 3} {2, 3} {2, 3}

Players’ behavior is clear when 0 ≤ p ≤ 0.40 (forming the grand coalition) and
when 0.7333 ≤ p ≤ 1 (forming {1} and {2, 3}), but not when 0.40 < p < 0.7333. In
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Fig. 5 Decomposition of a coalition

this case, it might be conceivable that Cynthia (player 3) convince or force the others
to form the grand coalition. Or either that she accepts to form {2, 3}, with a loss, with
respect to {1, 2, 3}, going from 0 (for p = 0.7333) to 25 (for p = 0.40), that is, with
a maximum loss of 6.5%.

Decomposable games were introduced by Shapley (1971). Assume that several
companies have their headquarters in different countries or work in different indus-
trial sectors. In both cases, there exists a coalition structure that reflects the different
locations. All companies may, in principle, joint to others. However, let us asume
that, due to strict regulations of the involved countries in the first case, or to the lack
of relation between goods produced in different sectors in the second, synergies (if
any) may appear only between companies lying in the same union (country or sector,
resp.). Then, the game that describes the utility of any coalition of companies is a
decomposable game.

Example 6.8 (Decomposable games) Let N be a player set (n ≥ 2) and D =
{D1, D2, . . . , Dm} be a coalition structure in N , with m ≥ 2. The unions of D will
be called here districts. If for any S ⊆ N we set Sk = S ∩ Dk for k = 1, 2, . . . ,m,
it follows that S can be uniquely written as S = S1 ∪ S2 ∪ · · · ∪ Sm (see Fig. 5 for
m = 4). Of course, Nk = Dk for all k.

Let u be a game in N . According to Shapley (1971), game u is said to be decom-
posable (with respect to D) if

u(S) = u(S1) + u(S2) + · · · + u(Sm) for every S ⊆ N .

(IfD = Bn and hencem = n, the condition merely means that u is an additive game.)
For each k, let uk denote the restriction of u to Dk , and uk denote the null extension

of uk to N , defined by uk(S) = uk(Sk) for all S ⊆ N . All i /∈ Dk are null players in
uk . Games uk , and even games uk , are called the components of u with respect to D.
Clearly,

u = u1 + u2 + · · · + um,
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and hence, if i ∈ Dk ,

�i [u] = �i [uk] = �i [uk].

Game u is what we called in Section 4 a weakly additive game (here with regard toD).
Then it follows from Theorem 4.18(a) that BN is a solution for u if and only if so isD.
For example, it is easy to check that if all components are convex games then so is u, and
the converse is true because the condition is hereditary (this equivalence as to convexity
was already stated in Shapley (1971)); in this case these two coalition structures are
solution. However, the components of u are in general arbitrary games, and other
solutions may exist: if e.g. all uk are additive, then so is u, whence �i [u] = u({i})
for all i ∈ N , and any coalition structure B (included Bn) is a solution of u with these
trivial payoffs.

A special property of any decomposable game u is that, if S = S1 ∪ S2 ∪ · · · ∪ Sm
is any nonempty coalition, then the restriction of u to S is

uS = u1S1 + u2S2 + · · · + umSm = u1S1 + u2S2 + · · · + umSm .

As a consequence, if i ∈ S ∩ Dk = Sk then

�i [uS] = �i [ukSk ] = �i [ukSk ].

This is a key point for the analysis of coalition formation. It means that the payoff
received by i in uS does not depend on the members of S belonging to other districts,
but solely on his partners in Sk . Its implications are crucial in the study of the relation
between solutions of u and solutions of all uk . We complete our analysis with the four
following statements.

1. If B1,B2, . . . ,Bm are solutions for the component games u1, u2, . . . , um , respec-
tively, with their corresponding payoffs, then B = B1 ∪ B2 ∪ · · · ∪ Bm is a solution
for u with the same payoffs.

For each k = 1, 2, . . . ,m, let Bk = {Bk1, Bk2, . . . , Bkpk } be a stable coalition
structure in district Dk for game uk . ThenB = {B11, . . . , B21, . . . , Bmpm } is a coalition
structure in N (see Fig. 6(a) for m = 4).

We shall prove that B is stable for u in N . Let us consider e.g. player 1 ∈ D1 and
assume, without loss of generality, that 1 ∈ B11, the first union of B1. There are two
possibilities. If B11 = {{1}} is a (forced or not) singleton, the payoff for player 1 is
u1({1}). Otherwise, |B11| ≥ 2 and B11 is an optimal coalition for player 1 in u1, so
�1[u1B11] is the best payoff for player 1 in u1.

In the first case (singleton), there is no optimal coalition S ⊆ D1, with 1 ∈ S and
|S| ≥ 2, better than B11 for 1 in u1. Since u = u1 in D1, neither there exists an
analogous coalition S ⊆ D1 for u. Thus, B11 = {{1}} is a (forced or not) singleton
also for u. In the second case (optimal coalition), and again because u = u1 in D1, B11
is an optimal coalition for player 1 also in u. And, in both cases, joining any coalition
S � D1 cannot increase the payoff of player 1 in u because his payoff is independent
of the members of S\D1.

As this argument holds for all players of all districts, the proof is complete.
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N

D1 D2 D3 D4

B1 B2 B3 B4

B11

B12

B21

B22

B3

B41

B42

B43

N

D1 D2 D3 D4

B11
B12

B21 B22
B23

B32

B33 B34

B43 B44

(a) (b)

Fig. 6 a Construction of B; b construction of B1,B2, . . . ,Bm

2. If some uk lacks solution in Dk then u lacks solution in N .
The proof is based on an analogous reasoning.
3. If u has a solution in N then each uk has a solution in Dk .
This statement is logically equivalent to point 2, but we wish to detail here the

way by which a stable coalition structure B for u in N gives rise to stable coalition
structuresBk for uk in Dk for k = 1, 2, . . . ,m. The procedure is illustrated by Fig. 6(b)
for m = 4. The unions of B need not be compatible with the districts (unions of D),
but the intersections of all of them with each district define a coalition structure in this
district. Thus, for example, in Fig. 6(b) B1 gives B11 and B12, B2 gives B21, B22 and
B23, and similar intersections are given by B3 and B4. Collecting these intersections,
we obtain B1 = {B11, B21} in D1, B2 = {B12, B22, B32} in D2, B3 = {B23, B33, B43}
in D3 andB4 = {B34, B44} in D4. These coalition structures are stable by the argument
exposed in point 1 and they keep the payoffs allocated by B.

4. When compounding solutions of the components uk to obtain a solution for u,
optimal coalitions and forced singletons of any district can join optimal coalitions and
forced singletons of any other district without modifying the payoffs to the involved
players.

For example, let N = {1, 2, 3, 4, 5}, D1 = {1, 2} and D2 = {3, 4, 5}. If B1 =
{{1}, {2}} is the only solution for u1 and B′

2 = {{3, 4}, {5}} and B′′
2 = {{3, 4, 5}} are

the solutions for u2, then eight solutions appear for game u, namely:

{{1}, {2}, {3, 4}, {5}}, {{1}, {2}, {3, 4, 5}}, {{1, 3, 4}, {2}, {5}}, {{1, 3, 4, 5}, {2}},
{{1}, {2, 3, 4}, {5}}, {{1}, {2, 3, 4, 5}}, {{1, 5}, {2}, {3, 4}}, {{1}, {2, 5}, {3, 4}}.

As a preface for our final example, we recall an important class of cooperative
games. A monotonic game u in N is simple if u(S) = 0 or 1 for each S ⊆ N .9 The
family of winning coalitions, which determines the game, is

W (u) = {S ⊆ N : u(S) = 1}.

9 As we do not impose u(N ) = 1, we accept as simple the null game u = 0, because the restriction of a
simple game may well be a null subgame.
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The family of minimal winning coalitions, which also determines the game and is, in
general, quite smaller, is

Wm(u) = {S ∈ W (u) : R ⊂ S ⇒ R /∈ W (u)}.

A simple game u is aweighted majority game if there exist weightsw1, w2, . . . , wn ≥
0 attached to the players and a quota q > 0 such that

S ∈ W (u) if and only if
∑

i∈S
wi ≥ q.

In this case we say that [q;w1, w2, . . . , wn] is a representation of u. Such a represen-
tation, if it exists, is never unique, so we write u ≡ [q;w1, w2, . . . , wn].

If T ⊂ N then the restricted game of a simple game u is uT = 0 if T /∈ W (u),
the unanimity game in T if T ∈ Wm(u), or a more complicated game if T ∈
W (u)\Wm(u). If u ≡ [q;w1, w2, . . . , wn] and, say, T = {1, 2, . . . , t}, then the
restricted game is uT ≡ [q;w1, w2, . . . , wt ].

Simple games, and in particular weightedmajority games, are often used in Political
Science to describe binary decision-makingmechanismswhenproposals are submitted
to the approval of a set of agents. They are also useful to represent access structures
in Cryptography (cf. Carreras et al. 2004) or semi-coherent structures in Reliability
(cf. Carreras et al. 2006). In all these cases, the Shapley value becomes an interesting
individual measure of “power” (in a generic sense).

However, these alternative uses of simple games do not prevent to study them as
cooperative games. We present below an interesting case where there exists a main
player (without veto power) and the others are symmetric. Utilities are taken, quite
conventionally, equal to 0 or 1.

Example 6.9 (Apex games) An apex game u in N is a weighted majority game of the
form

u ≡ [n − 1; n − 2, 1, 1, . . . , 1] with n ≥ 4.

These games were introduced by Von Neumann and Morgenstern (1953). The quota
q is the least integer greater than half the total of weights,

∑
i∈N wi = 2n − 3, so the

family of minimal winning coalitions is

Wm(u) = {{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}}.

All apex games are clearly superadditive. However, none of them is convex and
neither it is cohesive. There exist an apex player (player 1) and n − 1 peripheral
players (players 2 to n). Correspondingly, there are n − 1 radial minimal winning
coalitions and a peripheral one which prevents player 1 to enjoy veto power (see
Fig. 7). The application of the Shapley value yields

�1[u] = 1 − 2

n
and �i [u] = 2

n(n − 1)
for each i 
= 1.

123



Coalition Formation and Stability 499

1

2

3

45

6

7

Fig. 7 Apex configuration for n = 7

Thus, if S = N\{1} then u(S) = 1 and
∑

i∈S
�i [u] = 2/n, so, as n ≥ 4, we find

u(S) >
∑

i∈S �i [u]. Hence, Theorem 4.16(a) applies and we conclude that BN is

never a solution for an apex game.
As to subgames, there are different possibilities. Let T ⊂ N . If T ⊂ N\{1} then

uT = 0 and �i [uT ] = 0 for all i ∈ T . If T = N\{1} then t = |T | = n − 1, uT is
the unanimity game in T , and �i [uT ] = 1/(n − 1) for all i ∈ T . Otherwise, that is, if
1 ∈ T , wefind two cases. If t = |T | = 1 thenuT = 0 and�1[uT ] = 0. If 2 ≤ t ≤ n−1

then u ≡ [n−1; n−2, 1, 1,
t−1
. . ., 1], and henceWm(uT ) = {{1, 2}, {1, 3}, . . . , {1, t}};

thus,

�1[uT ] = 1 − 1

t
and �i [uT ] = 1

t (t − 1)
for each i ∈ T \{1}.

Now the analysis of coalition formation can be completed. Omitting the details and
having in mind that all minor players are symmetric and hence interchangeable, player
1’s preferences are as follows:

• If n = 4 then {1, 2, 3} > {1, 2} ≡ N > {1}.
• If n ≥ 5 then {1, 2, . . . , n − 1} > · · · > N > · · · > {1, 2} > {1}.

Instead, for any other player (player 2, say, to ease the description) the preferences
are:

• If n = 4 then {1, 2} > N\{1} > {1, 2, 3} ≡ N > {2}.
• If n = 5 then {1, 2} > N\{1} > {1, 2, 3} > N > {1, 2, 3, 4} > {2}.
• If n = 6 then {1, 2} > N\{1} > {1, 2, 3} > · · · > N > · · · > {2}.
• If n = 7 then {1, 2} > N\{1} ≡ {1, 2, 3} > · · · > N > · · · > {2}.
• If n ≥ 8 then {1, 2} > {1, 2, 3} > N\{1} > · · · > N > · · · > {2}.
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Then, player 1 strictly prefers a payoff of 1 − 1

n − 1
forming {1, 2, . . . , n − 1} or,

in words, joining any n−2 minor players. Instead, each minor player i strictly prefers
a payoff of 1/2 joining player 1 and forming {1, i}. The final conclusion is clear: Any
apex game lacks solution. This is a general statement. It differs from the results found
by Hart and Kurz (1984) because these authors studied these games from Owen’s
approach (1977), whereas ours is Aumann–Drèze’s approach (1974).

7 Conclusions and Future Work

In this work we have discussed coalition formation in any cooperative game, assuming
that the Shapley value is the universal sharing rule in the sense that it applies to the
game and also to all its subgames. A solution notion has been proposed, consisting of
a stable coalition structure, which determines a strategy for each one of the players,
and the corresponding payoffs they will receive. Essentially, what we have in mind is
the analogue of the stability of the AD value. We have been especially interested in
the grand coalition as a solution.

Five main results have been provided. The first (Theorem 4.5) establishes convex-
ity as a sufficient condition for the grand coalition to be a solution (existence). The
second (Theorem 4.10) establishes cohesiveness as a sufficient condition for the grand
coalition to be the only solution if any (uniqueness). The third (Theorem 4.14) estab-
lishes a rather qualitative sufficient condition for the grand coalition to be a solution
(existence) or even the only solution (existence and uniqueness). The fourth (Theo-
rem 4.16) essentially establishes, under monotonicity, a practical sufficient condition
for the grand coalition to be the only solution (existence and uniqueness). The fifth
(Theorem 4.18) discusses weakly additive games. Different examples and counterex-
amples have been included, and examples related to economic problems have been
also studied and generalized when possible.

As to future work in this research line, we suggest, among others, the following
points:

• The search of necessary conditions for existence and/or uniqueness of the grand
coalition as a solution.

• The possibility of disregarding the use of the Shapley value for subgames and to
allow every coalition to use its own sharing rule (cf. Example 4.2 in Carreras and
Magaña 1997).

• The enlargement of the scope of the analysis by considering special relationships
among players, due to ideological or strategic affinities and/or incompatibili-
ties, which can influence coalition formation strongly. The introduction in the
evaluation of games of additional information not stored in the characteristic func-
tion goes back to Myerson (1977, 1980) (affinities) and others (Carreras 1991;
Bergantiños et al. 1993) (incompatibilities) and was widely generalised by using
cooperation indices (Amer and Carreras 1995a, b, 1997, 2001, 2013).

• The enlargement of the scope of the analysis by considering games with level
coalition structures, a natural extension of the domain of coalitional values already
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mentioned byOwen (1977) and developed by other authors (Winter 1989; Alonso-
Meijide and Carreras 2011; Alonso-Meijide et al. 2015).
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