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Abstract In this paperwe present an extended version of theXC-model (Xu andCai in
Group Decis Negot 21:863–875, 2012) for group multiple attribute decision making
problem. The proposed model is a linear programming model based on deviation
function to find the optimal expert weights. An illustrative example is given to compare
our results with XC-model.

Keywords Expert weights · Group multiple attribute decision making · Linear
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1 Introduction

In a recent paper in this journal Xu and Cai (2012) described a method to determine
expert weights in GMADM problem, hereafter called the XC-model. They first nor-
malized all individual decisionmatrices of experts. Then the collective decisionmatrix
is constructed by the weighted arithmetic averaging of individual decision matrices
and the nonlinear optimization model based on deviation function between individual
decisionmatrices and collective decisionmatrix is defined. Based on the derived expert
weights, they aggregated the individual decision matrices to collective matrix and the
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weighted additive of each alternative values considered as the score of that alternatives.
The best alternative and rank of all alternatives computed with these scores.
The authors of XC-model employ genetic algorithm (GA) to find the solution. As we
know the GA algorithms are typically used to provide approximate solutions to prob-
lems that cannot be solved easily using other analytical techniques.Many optimization
problems fall into this category. It may be too computationally-intensive to find an
exact solution but sometimes a near-optimal solution can be effective. Due to their
random nature, GA algorithms are never guaranteed to find an optimal solution for
any problem. On the other hand, the famous simplex method for linear programming
(LP) assumes that the objective function and constraints are linear functions of the
variables. A linear function expresses proportionality—its graph is a straight line. For
such problems, the simplex method is highly accurate, very fast—often hundreds of
times faster than other methods—and yields the globally optimal solution in virtually
all cases.
The purpose of this short paper is to present an improved version of the XC-model to
determine the expert weights in GMADM problem. For this purpose, we convert the
proposed nonlinear programming model in XC-model to a linear one and apply the
simplex method to solve the problem instead of using the GA algorithm.

2 XC-Model (Xu and Cai 2012)

Assume that the GMADM problem is composed of n alternatives {x1, x2, . . . , xn}, m
attributes {u1, u2, . . . , um} which their weights are {w1, w2, . . . , wm}, where wi ≥
0, i = 1, 2, . . . ,m, and

∑m

i=1
wi = 1. Also suppose that there is a group of s experts

{e1, e2, . . . , es} with the weights {λ1, λ2, . . . , λs}, where λk ≥ 0, k = 1, 2, . . . , s,

and
∑s

k=1
λk = 1. The preferences of the kth expert consider as the entries of kth

matrix that shows with Ak . The (i, j)th entry of this matrix that shows with aki j is the
preference of kth expert about j th alternative with respect to i th attribute.
In GMADMproblemwe have two attribute types, benefit attributes and cost attributes.
For comparing and use the values of attributes all values must be normalized such that
they do not have dimensions and units. In the XC-model the authors use the following
transformation to normalize data

rki j = aki j

/ n∑

h=1

akih, for benefit attribute ui , j = 1, 2, . . . , n

rki j = (1/aki j )

/ n∑

h=1

(1/akih), for cost attribute ui , j = 1, 2, . . . , n

(1)

Next, the deviation variable eki j is defined in XC-model as below:

eki j =
∣∣∣∣∣r

k
i j −

s∑

k=1

λkr
k
i j

∣∣∣∣∣ , for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , s

(2)
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where
∑s

k=1
λkr

k
i j is considered as collective decisionmatrix of all individual decision

matrices. Now construct the following deviation function:

F(λ) =
s∑

k=1

n∑

j=1

m∑

i=1

wi e
k
i j =

s∑

k=1

n∑

j=1

m∑

i=1

wi

∣∣∣∣∣r
k
i j −

s∑

k=1

λkr
k
i j

∣∣∣∣∣ (3)

Clearly, the above deviation should be as small as possible. So the following non-linear
model should be solved:

min F(λ) =
s∑

k=1

n∑

j=1

m∑

i=1

wi

∣∣∣∣∣r
k
i j −

s∑

k=1

λkr
k
i j

∣∣∣∣∣

s.t. λk > 0, k = 1, 2, . . . , s,
s∑

k=1

λk = 1

(4)

To solve the above model, Xu and Cai adopt a GA that can be described as follows:
GA algorithm
Step 1 Predefine the maximum iteration number t*, and randomly generate an
initial population �(t) = {λ(1), λ(2), . . . , λ(p)} , where t = 0, and λ(l) =
{λ(1)

1 , λ
(l)
2 , . . . , λ

(l)
s } (l = 1, 2, . . . , p) are the expertweight vectors (or chromosomes).

Then input the attribute weights wi (i = 1, 2, . . . ,m) and all the normalized individ-
ual decision matrices Rk = (rki j )m×n (k = 1, 2, . . . , s).
Step 2 By the optimization model (4), define the fitness function as:

F(λ(l)) =
s∑

k=1

n∑

j=1

m∑

i=1

wi |rki j −
s∑

k=1

λ
(l)
k rki j | (5)

and then compute the fitness value F(λ(l)) of each λ(l) in the current population �(t),

where λk ≥ 0, k = 1, 2, . . . , s, and
∑s

k=1
λk = 1.

Step 3 Create new weight vectors (or chromosomes) by mating the current weight
vectors, and apply mutation and recombination as the parent chromosomes mate.
Step 4Delete members of the current population�(t) to make room for the newweight
vectors.
Step 5 Utilize (5) to compute the fitness values of the new weight vectors, and insert
these vectors into the current population �(t).
Step 6 If there is no further decrease of the minimum fitness value, or t = t∗, then go
to Step 7; otherwise, let t = t + 1, and go to Step 3.
Step 7 Output the minimum fitness value F(λ∗) and the corresponding weight vector
λ∗.
Based on the optimal weight vector λ∗, they get the collective decision matrix R =
(ri j )m×n :

ri j =
s∑

k=1

λ∗
kr

k
i j , for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n (6)
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Then utilize the weighted arithmetic averaging operator:

r j =
m∑

i=1

wi ri j , for all j = 1, 2, . . . , n (7)

to aggregate all the attribute values in j th column of R, and get the overall attribute
value r j corresponding to the alternative x j . Afterthat, they rank all the alternatives
x j , ( j = 1, 2, . . . , n) and select the best one according to r j , ( j = 1, 2, . . . , n).

3 The Proposed Method

As mentioned before Xu and Cai solve the model (4) using genetic algorithm. But as
we know the main disadvantage of GA is that there is no guarantee of finding global
optimal solution. Indeed in GA the optimal solution heavily depends on the fitness
function, hence it must be determined accurately. There are no standard method to
define a fitness function and it is the sole responsibility of the user to define it. Besides,
sometimes premature convergence may occur. Thus the diversity in the population is
lost,which is one of themajor objectives ofGA.Finally, note that inGA the termination
criteria are also not standardized. Until now no effective single terminator criterion
has been identified. To address these issues, we recommend another strategy to solve
model (4). For this purpose, we convert model (4) to an LPmodel which can be solved
easily using any LP solver. To show that the non-linear model can be linearized, let

aki j = 1
2

(∣∣∣∣∣r
k
i j −

s∑

k=1

λkr
k
i j

∣∣∣∣∣ + rki j −
s∑

k=1

λkr
k
i j

)
,

bki j = 1
2

(∣∣∣∣∣r
k
i j −

s∑

k=1

λkr
k
i j

∣∣∣∣∣ −
(
rki j −

s∑

k=1

λkr
k
i j

)) (8)

Then, the model (4) is transformed to the following LP model:

min F(λ) =
s∑

k=1

n∑

j=1

m∑

i=1

wi (a
k
i j + bki j )

s.t.
s∑

k=1

λk = 1

aki j − bki j = rki j −
s∑

k=1

λkr
k
i j , i = 1, 2, . . . ,m, j = 1, 2, . . . , n

aki j ≥ 0, bki j ≥ 0, λk > 0, k = 1, 2, . . . , s, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

(9)
The model (9) is linear and can be solved easily. Evidently, using an LP solver leads
to the optimal and exact solution of this model.
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Table 1 Decision matrix A1 x1 x2 x3 x4

u1 6.5 11 6.5 11

u2 6 7.5 5 6.5

u3 6 7 4.5 5

u4 0.7 1.7 0.5 1.4

Table 2 Decision matrix A2 x1 x2 x3 x4

u1 7 10 7 9

u2 5.5 7 5 6

u3 6.5 6 4 5.5

u4 0.6 1.5 0.4 1.3

Table 3 Decision matrix A3 x1 x2 x3 x4

u1 6 12 7 10

u2 5 6.5 4.5 6.5

u3 6 7.5 5 4

u4 0.6 1.3 0.5 1.5

4 Illustrative Example

We applied our method, to the same GMADM problem as discussed in Xu and Cai
(2012).An investment company is planning to exploit a newmodel of cars and there are
four feasible alternatives x j , ( j = 1, 2, 3, 4). When making a decision, the attributes
considered are as follows: u1: investment amount ($100,000.000); u2: expected net-
profit amount ($100,000.000); u3: venture profit amount ($100,000.000); and u4:
venture-loss amount ($100,000.000). Among these four attributes, u2 and u3 are of
benefit type; u1 and u4 are of cost type. The weight vector of the attributes ui , (i =
1, 2, 3, 4) isw = (0.3, 0.2, 0.2, 0.3).An expert group is formedwhich consists of three
experts ek (k = 1, 2, 3). These experts evaluate the alternatives x j ( j = 1, 2, 3, 4)
with respect to the attributes ui (i = 1, 2, 3, 4), and construct the following three
decision matrices (see Tables1, 2, 3):
By (1), we first normalize the decision matrices Ak (k = 1, 2, 3) into the normalized
decision matrices Rk (k = 1, 2, 3) (see Tables4, 5, 6):
Based on the normalized decisionmatrices Rk (k = 1, 2, 3), theweight vector obtained
by XC-model is λ∗ = (0.445, 0.318, 0.237) while solving our proposed linear model
provides the expert weights as λ∗ = (0.7006, 0.1437, 0.1557). As we see the first
expert e1 has the maximum weight with both methods. So e1 plays an important
role in decision making process. With XC-model e2 and e3 ranked second and third
expert, respectively. But using proposed method they ranked third and second expert,
respectively. Now we rank the alternatives based on the derived weights.
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Table 4 Decision matrix R1 x1 x2 x3 x4

u1 0.314 0.186 0.314 0.186

u2 0.240 0.300 0.200 0.260

u3 0.267 0.311 0.200 0.222

u4 0.302 0.124 0.423 0.151

Table 5 Decision matrix R2 x1 x2 x3 x4

u1 0.288 0.201 0.288 0.224

u2 0.234 0.298 0.213 0.255

u3 0.295 0.273 0.182 0.250

u4 0.297 0.119 0.446 0.137

Table 6 Decision matrix R3 x1 x2 x3 x4

u1 0.338 0.169 0.290 0.203

u2 0.222 0.289 0.200 0.289

u3 0.267 0.333 0.222 0.178

u4 0.327 0.151 0.392 0.131

Table 7 Collective decision
matrix R with proposed model

x1 x2 x3 x4

u1 0.314 0.186 0.307 0.194

u2 0.236 0.298 0.202 0.264

u3 0.271 0.309 0.201 0.219

u4 0.305 0.127 0.421 0.146

The collective decision matrix based on our model is shown in Table7. The overall
attribute values r j ( j = 1, 2, 3, 4) are r1 = 0.287, r2 = 0.215, r3 = 0.299 and
r4 = 0.199. Based on which we get the ranking of the alternatives x j ( j = 1, 2, 3, 4)
as x3 � x1 � x2 � x4 which is same as XC-model.

5 Conclusion

In this paper we presented an improvement of the XC-model for group multiple
attribute decision making problem. The contribution of this paper is to provide a
model for deriving expert weights using a linear optimization which can be solved
easily. The proposed model provide an exact optimal solution. An illustrative example
is presented to compare our model with the XC-model.
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