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Abstract In this paper, a generalized form of fuzzy multichoice games with fuzzy
characteristic functions is proposed, which can be seen as an extension of traditional
fuzzy games. Based on the extension Hukuhara difference, fuzzy multichoice games
with fuzzy characteristic functions are studied, and a Shapley function is discussed.
The notion of fuzzymultichoice populationmonotonic allocation scheme (FMPMAS)
is defined.When the given fuzzymultichoice gamewith fuzzy characteristic functions
is convex, we show that the proposed Shapley function is a FMPMAS. Furthermore,
two special kinds of fuzzy multichoice games with fuzzy characteristic functions
called fuzzy multichoice games with multilinear extension form and fuzzy character-
istic functions and fuzzy multichoice games with Choquet integral form and fuzzy
characteristic functions are researched.
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1 Introduction

Amultichoice game, proposed by Hsiao and Raghavan (1993), is a generalization of a
traditional game in which each player has several activity levels. There are main four
branches of solutions for this class of games that are extensions of the Shapley function
(Shapley 1953), whichwere introduced by philosophers (Derks and Peters 1993;Hsiao
and Raghavan 1993; Klijn et al. 1999; Peters and Zank 2005; van den Nouweland et al.
1995). The characterizations of the solutions for multichoice games can be seen in
the literature (Borkotokey 2008; Hsiao and Raghavan 1993; Hwang and Liao 2008,
2009). Moreover, van den Nouweland et al. (1995) showed the relationship between
core, dominant core andWeber set for multichoice games. Recently, Meng and Zhang
(2014) discussed multichoice games with a coalition structure and defined a payoff
value, and Meng et al. (2014) presented another multichoice coalition value named
the generalized symmetric coalitional Banzhaf value, and two axiomatic systems are
established.

There are some situations where some players do not fully participate in a coalition,
but to a certain degree. In this situation, a coalition is called a fuzzy coalition, which is
formed by some players with partial participations (that is, the player offers a part of
resources that he owns).Aubin (1974) first discussed in this area. The solution concepts
for fuzzygameshavebeen studiedbymany researchers:TheShapley function for fuzzy
games is studied by philosophers (Butnariu 1980; Butnariu and Kroupa 2008; Li and
Zhang 2009; Meng and Zhang 2010; Tsurumi et al. 2001). Specially, Li and Zhang
(2009) introduced a simplified expression of the Shapley value for fuzzy games, which
can be applied to all kinds of fuzzy games that were introduced by Aubin (1974). The
core for fuzzy games is focused by philosophers (Tijs et al. 2004; Yu and Zhang 2009).
The lexicographical solution for fuzzy games is discussed by Sakawa and Nishizaki
(1994).

As some researchers (Borkotokey 2008; Mares 2000; Mares and Vlach 2001; Yu
and Zhang 2010) noticed, there are many uncertain factors during the process of nego-
tiation and coalition forming, so in most situations players can only know imprecise
information regarding the real outcome of cooperation. Hence, it is unrealistic that the
players know the exacting payoff of every coalition. The crisp games with fuzzy char-
acteristic functions were researched by philosophers (Mares 2000; Mares and Vlach
2001; Yu and Zhang 2010). The fuzzy games with fuzzy characteristic functions were
discussed by Borkotokey (2008) and Yu and Zhang (2010).

In this paper we discuss the solution for fuzzy multichoice games with fuzzy char-
acteristic functions. A fuzzy multichoice game with fuzzy characteristic functions is
a generalization of a traditional fuzzy game in which each player has several activity
levels. Based on the extension Hukuhara difference, a Shapley value for this kind of
games is introduced, which is enlightened by van den Nouweland et al. (1995). An
axiomatic definition of the given Shapley value is offered, and its explicit form is
given. When fuzzy multichoice games with fuzzy characteristic functions are convex,
the given Shapley value belongs to the core, and it always derives a FMPMAS. To
better understand the given Shapley value, we study two particular kinds of fuzzy
multichoice games with fuzzy characteristic functions, which are extensions of fuzzy
games introduced by Meng and Zhang (2010) and Tsurumi et al. (2001).
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Fuzzy Multichoice Games with Fuzzy Characteristic Functions 567

This paper is organized as follows: in Sect. 2, we introduce the concepts of fuzzy
numbers and the extension Hukuhara difference on fuzzy numbers. Then, the model
of fuzzy multichoice games with fuzzy characteristic functions is proposed. In Sect. 3,
a Shapley value for fuzzy multichoice games with fuzzy characteristic functions is
proposed, and some properties of the given Shapley value are researched. In Sect. 4, we
mainly discuss two special kinds of fuzzy multichoice games with fuzzy characteristic
functions including the expressions of the Shapley values, the axiomatic systems, and
the numerical examples.

2 Preliminaries

Let us start by recalling the most general definition of a fuzzy number. Let R be
(−∞,∞), i.e., the set of all real numbers.

Definition 2.1 (Zadeh 1965) A fuzzy number, denoted by ũ, is a fuzzy subset of R

with membership function μũ : R → [0, 1] satisfying the following conditions:

(1) μũ is upper semi-continuous;
(2) there exists an interval number [a, d] such that μũ(x) = 0 for any x /∈ [a, d];
(3) there exist real numbers b, c such that a ≤ b ≤ c ≤ d and (1) μũ(x) is nonde-

creasing on [a, b] and nonincreasing on [c, d]; (2) μũ(x) = 1 for any x ∈ [b, c].
By R̃, we denote the set of all fuzzy numbers. Note that the definition of fuzzy

numbers represents heterogeneous data forms including crisp data, fuzzy numbers,
interval values and linguistic variables. They are represented by different membership
functions defined on their domains. An important type of fuzzy numbers in common
use is the trapezoidal fuzzy number (Dubois et al. 2000) whose membership function
has the form

μã(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−la
ha−la

la ≤ x ≤ ha
1 ha ≤ x ≤ pa
ra−x
ra−pa

pa ≤ x ≤ ra
0 otherwise

,

where la, ha, pa, ra ∈ R with la ≤ ha ≤ pa ≤ ra .
The set of all trapezoidal fuzzy numbers is denoted by R̃T . For any ã ∈ R̃T , we

use (la, ha, pa, ra) to denote ã, namely, ã = (la, ha, pa, ra).
For any ã ∈ R̃, the level set is defined as ãλ = {x ∈ R|μã(x) ≥ λ}, λ ∈ [0, 1]. It

follows from the properties of the membership function of a fuzzy number ã that each
of its λ-cut ãλ is an interval number, denoted by ãλ = [ãLλ , ã R

λ ], λ ∈ (0, 1], where ãLλ
and ã R

λ mean the lower and upper bounds of ãλ.
Let ã, b̃ ∈ R̃, from the extension principle on fuzzy sets proposed by Zadeh (1973),

we have

(ã + b̃)λ = ãλ + b̃λ =
[
ãLλ + b̃Lλ , ã R

λ + b̃Rλ

]
,
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(ã − b̃)λ = ãλ − b̃λ =
[
ãLλ − b̃Rλ , ã R

λ − b̃Lλ

]
,

(mã)λ = mãλ =
[
mãLλ ,mãR

λ

]
m ∈ R, m ≥ 0.

Definition 2.2 For any ã, b̃ ∈ R̃, we have

ã ≥ b̃ if and only if ãLλ ≥ b̃Lλ and ã R
λ ≥ b̃Rλ , ∀λ ∈ (0, 1];

ã = b̃ if and only if ãLλ = b̃Lλ and ã R
λ = b̃Rλ , ∀λ ∈ (0, 1].

From the extension principle on fuzzy sets (Zadeh 1973), in general, we cannot
have ã + b̃ − b̃ = ã for any ã, b̃ ∈ R̃. The Hukuhara difference on fuzzy sets (Banks
and Jacobs 1970) can well deal with this issue, described by Definition 2.3.

Definition 2.3 (Banks and Jacobs 1970) Let ã, b̃ ∈ R̃, if there exists c̃ ∈ R̃ such that
ã = b̃ + c̃, then c̃ is called the Hukuhara difference between ã and b̃, denoted by
c̃ = ã −H b̃.

From Definition 2.3, we can obtain ã −H ã = 0, ã + b̃ −H b̃ = ã and (ã −H b̃)λ =
ãλ−H b̃λ = [ãLλ − b̃Lλ , ã R

λ − b̃Rλ ] for any λ ∈ (0, 1]. Moreover, the Hukuhara difference
between ã and b̃ exists if and only if ãLλ − b̃Lλ ≤ ãLβ − b̃Lβ ≤ ã R

β − b̃Rβ ≤ ã R
λ − b̃Rλ for any

λ, β ∈ (0, 1] with λ ≤ β. Although the Hukuhara difference has some advantages for
the subtract operator on fuzzy sets, the necessary condition restricts its using scope.
For this reason, we omit the necessary condition of the Hukuhara difference, and give
the definition of the extension Hukuhara difference as follows:

Definition 2.4 For any ã, b̃ ∈ R̃ and λ ∈ (0, 1], ãλ −H b̃λ = [ãLλ − b̃Lλ , ã R
λ − b̃Rλ ] is

said to the extension Hukuhara difference between ã and b̃.
For any ã, b̃ ∈ R̃, in this paperwe adopt the extensionHukuhara difference between

ã and b̃. If there is no fear of conflict, we still use ã −H b̃ to denote the extension
Hukuhara difference between ã and b̃. Now, let us consider some desirable properties
of the extension Hukuhara difference on fuzzy numbers.

Proposition 1 Let ã, b̃ and c̃ be any three fuzzy numbers.

(I) Commutativity ã −H b̃ = −H b̃ + ã;
(II) Associativity ã −H b̃ −H c̃ = ã −H (b̃ + c̃);
(III) Identity ã −H ã = 0̃;
(IV) Monotonicity If b̃ ≤ c̃, then ã −H c̃ ≤ ã −H b̃, where we consider ẽ ≤ f̃ for

any two fuzzy numbers when ẽLλ ≤ f̃ Lλ and ẽRλ ≤ f̃ Rλ for all λ ∈ (0, 1].

Proof According to decomposition theorem of fuzzy numbers, for (I), we have

ã −H b̃ =
⋃

λ∈(0,1]
λ

(
ãλ −H b̃λ

)
=

⋃

λ∈(0,1]
λ

([
ãLλ − b̃Lλ , ã R

λ − b̃Rλ

])
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and

−H b̃ + ã =
⋃

λ∈(0,1]
λ

(
−H b̃λ

)
+

⋃

λ∈(0,1]
λãλ =

⋃

λ∈(0,1]
λ

(
−H b̃λ + ãλ

)

=
⋃

λ∈(0,1]
λ

([
−b̃Lλ + ãLλ ,−b̃Rλ + ã R

λ

])
=

⋃

λ∈(0,1]
λ

([
ãLλ − b̃Lλ , ã R

λ − b̃Rλ

])
.

Thus, ã −H b̃ = −H b̃ + ã.

For (II): Similar to (I), we derive

ã −H b̃ −H c̃ =
⋃

λ∈(0,1]
λ

(
ãλ −H b̃λ −H c̃λ

)

=
⋃

λ∈(0,1]
λ

([
ãLλ − b̃Lλ − c̃Lλ , ã R

λ − b̃Rλ − c̃Rλ

])

and

ã −H (b̃ + c̃) =
⋃

λ∈(0,1]
λãλ −H

⋃

λ∈(0,1]
λ

(
b̃λ + c̃λ

)

=
⋃

λ∈(0,1]
λãλ −H

⋃

λ∈(0,1]
λ

([
b̃Lλ + c̃Lλ , b̃Rλ + c̃Rλ

])

=
⋃

λ∈(0,1]
λ

(
ãλ −H

([
b̃Lλ + c̃Lλ , b̃Rλ + c̃Rλ

]))

=
⋃

λ∈(0,1]
λ

([
ãLλ − b̃Lλ − c̃Lλ , ã R

λ − b̃Rλ − c̃Rλ

])
,

by which we get ã −H b̃ −H c̃ = ã −H (b̃ + c̃).

From Definition 2.4, we can easily show that (III) holds.
For (IV): From b̃ ≤ c̃, we derive b̃Lλ ≤ c̃Lλ and b̃Rλ ≤ c̃Rλ for all λ ∈ (0, 1]. Thus, we
have ãLλ − c̃Lλ ≤ ãLλ − b̃Lλ and ã R

λ − c̃Rλ ≤ ã R
λ − b̃Rλ for all λ ∈ (0, 1]. From ã −H b̃ =

⋃
λ∈(0,1] λ

([ãLλ − b̃Lλ , ã R
λ − b̃Rλ ]) and ã−H c̃ = ⋃

λ∈(0,1] λ
([ãLλ − c̃Lλ , ã R

λ − c̃Rλ ]), we
get ã −H c̃ ≤ ã −H b̃.

Example 2.1 Let ṽ0 be a multichoice game with the trapezoidal fuzzy charac-
teristic function defined on N = {1, 2}, where m = {2, 2}, namely, the play-
ers 1 and 2 both have three activity levels. The coalition values are given by
ṽ0(1, 0) = ṽ0(0, 1) = (1, 3, 4, 5), ṽ0(1, 1) = (2, 7, 10, 12), ṽ0(2, 0) = ṽ0(0, 2) =
(3, 6, 9, 11), ṽ0(1, 2)ṽ0(2, 1) = (6, 12, 15, 18) and ṽ0(2, 2) = (15, 20, 32, 34). By
ṽ0(2, 2)Lλ − ṽ0(1, 2)Lλ = ṽ0(2, 2)Lλ − ṽ0(2, 1)Lλ = 9− λ and ṽ0(2, 2)Rλ − ṽ0(1, 2)Rλ =
ṽ0(2, 2)Rλ − ṽ0(2, 1)Rλ = 16+ λ, we know the Hukuhara difference between ṽ0(2, 2)
and ṽ0(1, 2) as well as ṽ0(2, 2) and ṽ0(2, 1) do not exist. Hence, we cannot use the
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Hukuhara difference in this example. If we adopt the extension Hukuhara difference
and use the following equation

ψ̃ (N ,m, ṽ0) = �i∈N (mi !)
(∑

i∈N mi
)!

∑

σ

ṽσ
0 , (1)

which is a Shapley function introduced by van den Nouweland et al. (1995), and σ is
an admissible order for ṽ0.

From Eq. (1), we have ψ̃11 (N ,m, ṽ0) = ψ̃21 (N ,m, ṽ0) = (1.3, 3.8, 5, 6)
and ψ̃12 (N ,m, ṽ0) = ψ̃22 (N ,m, ṽ0) = (6.2, 6.2, 11, 11). It is easy to see that
(ψ̃i j )i∈N , j∈{1,2} satisfies individual rationality and efficiency. If we use the vector
(ψ̃i j )i∈N , j∈{1,2} as the players’ payoffs, then the players 1 and 2 can both accept.
Moreover, the players 1 and 2 are symmetric in this game, and they get the same
payoffs, which is consistent with the people’s intuition.

Remark 2.1 It is easy to see that the extension Hukuhara difference could deal with
more situations than the Hukuhara difference.

Example 2.2 In Example 2.1, if the coalition values are defined by ṽ0(1, 0) =
ṽ0(0, 1) = (1, 3, 4, 5), ṽ0(1, 1) = (2, 7, 10, 12), ṽ0(2, 0) = ṽ0(0, 2) = (3, 6, 9,
10), ṽ0(1, 2) = ṽ0(2, 1) = (6, 12, 15, 17) and ṽ0(2, 2) = (15, 20, 32, 33). Similar to
Example 2.1, we cannot use the Hukuhara difference either. When we adopt the exten-
sion Hukuhara difference, by Eq. (1) we have ψ̃11 (N ,m, ṽ0) = ψ̃21 (N ,m, ṽ0) =
(1.3, 3.8, 5, 6) and ψ̃12 (N ,m, ṽ0) = ψ̃22 (N ,m, ṽ0) = (6.2, 6.2, 11, 10.5).

By ψ̃12 (N ,m, ṽ0) = ψ̃22 (N ,m, ṽ0) = (6.2, 6.2, 11, 10.5), we know that the
extension Hukuhara difference is not suitable in this game. Namely, there exist games
with fuzzy characteristic functions that cannot apply the extension Hukuhara differ-
ence.

3 The General Form

In traditional multichoice games, we demand every player’s activity levels belong to
natural numbers set N, and the difference between two adjacent levels is 1, which is
somewhat unnatural in some situations. There is a class of cooperative games that every
player has several activity levels, and each level belongs to [0, 1]. We call this class
of games as fuzzy multichoice games. Calvo and Santos (2000) introduced a solution
for continuum fuzzy multichoice games and showed that the Aumann–Shapley value
for fuzzy continuum games is a special case of the given solution for continuum fuzzy
multichoice games. In this section, we introduce fuzzy multichoice games with fuzzy
characteristic functions.

Let N = {1, 2, . . . , n} be a set of players, and suppose that each player i ∈ N
has mi + 1 ∈ N activity options. We set FMi = {0, a1, . . . , ami } as the action level
space of player i ∈ N such that ak ∈ (0, 1] for all k = 1, 2, . . . ,mi and ap < ap+1
for all p = 1, 2, . . .,mi − 1. The action 0 means not participating. Let eS denote
the vector in N satisfying eSi = 0 if i /∈ S, and eSi = 1 if i ∈ S for any S ⊆ N .
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A function ṽ: �i∈NFMi → R̃ with ṽ(e∅) = 0 gives for each fuzzy coalition x̃ =
(x1, x2, . . . , xn) ∈ FM = �i∈NFMi the worth that the players can obtain when each
player i plays at level xi ∈ FMi . The set of all fuzzy multichoice games with fuzzy
characteristic functions on player set N is denoted by FMCN . For all x̃, ỹ ∈ FM, we
have x̃ ∨ ỹ = (xi ∨ yi )i∈N and x̃ ∧ ỹ = (xi ∧ yi )i∈N . Furthermore, we denote x̃ ≤ ỹ
for all x̃, ỹ ∈ FM if and only if xi ≤ yi for all i ∈ N . Let FM+

i denote FMi\{0} for
all i ∈ N . For any x̃ = (x1, x2, . . . , xn) ∈ FM, let x̃sub = (kx1, kx2 , . . . , kxn ), where
kxi denotes the subscript of the activity level of the player i in fuzzy coalition x̃ . For all
x̃ ∈ FM, let Supp x̃ = {i ∈ N |xi > 0}. m̃ = (am1 , am2 , . . . , amn ) is the “maximum
fuzzy coalition” in FM.

Example 2.3 Let N = {1, 2}, FM+
1 = {a1 = 0.2, a2 = 0.5} and FM+

2 = {a1 =
0.3, a2 = 0.4}. If x̃ = (0.5, 0.3), then x̃sub = (2, 1) and Supp x̃ = {1, 2}, namely,
x1 = 0.5, x2 = 0.3, kx1 = 2 and kx2 = 1.

Definition 2.5 A game ṽ ∈ FMCN is said to be convex if it satisfies

ṽ(x̃ ∨ ỹ) + ṽ(x̃ ∧ ỹ) ≥ ṽ(x̃) + ṽ(ỹ) ∀x̃, ỹ ∈ FM.

Definition 2.6 Let ṽ ∈ FMCN , the core C(N , m̃, ṽ) of ṽ is defined by

C(N , m̃, ṽ) =
⎧
⎨

⎩
w̃ ∈ R̃

∑

i∈N
mi

∣
∣
∣
∑

i∈N
w̃iami

= ṽ(m̃),
∑

i∈Suppx̃
w̃i xi ≥ ṽ(x̃), ∀x̃ ∈ FM

⎫
⎬

⎭
.

Obviously, Definitions 2.5 and 2.6 respectively degenerate to be the definitions of
the convexity and the core for traditional fuzzy games, when we restrict the domain
of ṽ ∈ FMCN in the setting of traditional fuzzy games (Aubin 1974).

Definition 2.7 A vector z̃ = ((z̃1ai1 )i1∈M+
1
, (z̃2ai2 )i2∈M+

2
, . . . , (z̃nain )in∈M+

n
) is called

an imputation of ṽ ∈ FMCN if it satisfies the following conditions:

(1)
∑

i∈N z̃iami
= ṽ(m̃),

(2) z̃ia j ≥ ṽ(a j ei ) ∀i ∈ N , a j ∈ FM+
i .

Note that the definition above can be applicable to traditional (fuzzy) games by
restricting the domain of ṽ ∈ FMCN in the setting of it.

Next, we dedicate to study a Shapley function for FMCN . First, we introduce a
Shapley value for multichoice games introduced by van den Nouweland et al. (1995):

ψ (N ,m, v) = �i∈N (mi !)
(∑

i∈N mi
)!

∑

σ

vσ , (2)

where σ is an admissible order for v, and vσ means the value of v with respect to σ .
Equation (2) is equivalent to the following equation.

ψi j (N ,m, v) =
∑

S∈M,Si= j

hi j (S)
(
v(S) − v(S − ei )

)
(3)
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for any i ∈ N and any j ∈ {1, 2, . . . ,mi }, where Si denotes the activity level of the

player i in coalition S, hi j (S) = ( (
∑

k:(S|Si−1)k �=0 Sk )!
�k: (S|Si−1)k �=0(Sk !)

(
∑

k∈N (mk−Sk ))!
�k∈N ((mk−Sk )!)

)
/

(
∑

k∈N mk )!
�k∈N (mk !) and

S|Si − 1 = (S1, . . . , Si−1, Si − 1, Si+1, . . . , Sn).
(
∑

k: (S|Si−1)k �=0 Sk)!/�k:(S|Si−1)k �=0(Sk !) is the number of admissible orders from
coalition∅ to the coalition S, where Si is the last step, and (

∑
k∈N (mk − Sk))!/�k∈N

((mk − Sk)!) is the number of admissible orders from coalition S to the maximum
coalition m = (m1, . . . ,mn).

If we adopt Eq. (3) in the framework of fuzzy multichoice games with fuzzy char-
acteristic functions, then we have

ψ̃ia j (N , m̃, ṽ) =
∑

x̃∈FM,kxi = j

hi j (x̃sub)(ṽ(x̃)

−H ṽ(x̃ − (a j − a j−1)e
i ))∀i ∈ N , j ∈ {1, 2, . . . ,mi } , (4)

where hi j (x̃sub) is the potential weight for x̃sub = (kx1, kx2 , . . . , kxn ), which is denoted

by hi j (x̃sub) = ( (
∑

p: (x̃ |kxi −1)p �=0 kxp )!
�p: (x̃ |kxi −1)p �=0(kxp !)

(
∑

p∈N (mp−kxp ))!
�p∈N (mp−kxp )!

)
/

(
∑

p∈N mp)!
�p∈N (mp !) with x |kxi − 1 =

(x1, . . . , xi−1, xkxi −1, xi+1, . . . , xn) and kxi = j .

For any i ∈ N and any j ∈ {1, 2, . . . ,mi } , ψ̃ia j (N , m̃, ṽ) denotes the player i’s
increasing fuzzy payoff from participation level a j−1 to a j .

Definition 3.1 Let ṽ ∈ FMCN , ỹ ∈ FM is called a carrier for ṽ in FM if ṽ(x̃ ∧ ỹ) =
ṽ(x̃) for all x̃ ∈ FM.

From Definition 3.1, we know that a carrier for ṽ ∈ FMCN degenerates to be a
carrier for traditional fuzzy games when the domain of ṽ ∈ FMCN is limited to it.

Definition 3.2 A function f̃ : FMCN → R̃
∑

i∈N mi is said to be a Shapley function
on FMCN if it satisfies the following axioms:

Axiom 1 Let ṽ ∈ FMCN , and ỹ ∈ FM be a carrier of ṽ,
∑

i∈Supp ỹ f̃iyi (N , m̃, ṽ) =
ṽ(ỹ).

Axiom 2 Let ṽ ∈ FMCN , and all i1, i2 ∈ N ,

∑

ỹ≤x̃,kxi2
=kyi2

hi2kyi2
(x̃sub) f̃i1yi1 (N , m̃, u ỹ)

=
∑

ỹ≤x̃,kxi1
=kyi1

hi1kyi1
(x̃sub) f̃i2 yi2 (N , m̃, u ỹ),

where ỹ ∈ FM\{e∅}, kyi1 ∈ FM+
i1
and kyi2 ∈ FM+

i2
. u ỹ(x̃) = 1 for any x̃ ∈ FM with

ỹ ≤ x̃ , otherwise, u ỹ(x̃) = 0.

Axiom 3 Let ṽ, w̃ ∈ FMCN , f̃ (N , m̃, ṽ + w̃) = f̃ (N , m̃, ṽ) + f̃ (N , m̃, w̃).

It is easy to see that the above axioms can be seen as the extensions on traditional
(fuzzy) games. Namely, when the domain of ṽ ∈ FMCN is restricted in the setting of
traditional (fuzzy) games, then they are the axioms on them.
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For any ṽ ∈ FMCN , in order to eliminate the situation in Example 2.2, we always
assume that the fuzzy payoff of every player in each activity level obtained by Eq. (5)
is a fuzzy number.

Lemma 3.1 Let ṽ ∈ FMCN , define the function ψ̃(N , m̃, ṽ) as shown in Eq. (4), then
we have

∑

i∈Supp ỹ

kyi∑

j=1

ψ̃ia j (N , m̃, ṽ) = ṽ(ỹ),

where ỹ ∈ FM is a carrier of ṽ.

Proof Since ỹ ∈ FM is a carrier, for any x̃ ∈ �k∈N\{i}FMk we have

ṽ
(
x̃ ∨ a j e

i
)

= ṽ
((

x̃ ∨ a j e
i
)

∧ ỹ
)

= ṽ
(
(x̃ ∧ ỹ) ∨

(
a j e

i ∧ ỹ
))

= ṽ
(
(x̃ ∧ ỹ) ∨ yi e

i
)

,

where j > kyi .
By Eq. (4), we have ψ̃ia j (N , m̃, ṽ) = 0 for any i ∈ N and any j ∈ {1, 2, . . . ,mi }
with j > kyi .
From efficiency of Eq. (4), we have

∑

i∈Supp ỹ

kyi∑

j=1

ψ̃ia j (N , m̃,
�
v) =

∑

i∈Suppỹ

mi∑

j=1

ψ̃ia j (N , m̃, ṽ)

=
∑

i∈N

mi∑

j=1

ψ̃ia j (N , m̃, ṽ)

= ṽ(m̃)

= ṽ(m̃ ∧ ỹ)

= ṽ(ỹ).

�
Lemma 3.2 Let ṽ ∈ FMCN , define the function ψ̃(N , m̃, ṽ) as shown in Eq. (4), then
we have

∑

ỹ≤x̃,kxi2
=kyi2

hi2kyi2
(x̃sub)ψ̃i1yi1

(
N , m̃, u ỹ

)

=
∑

ỹ≤x̃,kxi1
=kyi1

hi1kyi1
(x̃sub)ψ̃i2 yi2

(
N , m̃, u ỹ

)
,

where ỹ ∈ FM\{e∅}, kyi1 ∈ FM+
i1
, kyi2 ∈ FM+

i2
, and u ỹ as shown in Definition 3.2.
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Proof By Eq. (4), we have

ψ̃i1yi1

(
N , m̃, u ỹ

)

=
∑

x̃∈FM,kxi1
=kyi1

hi1kyi1
(x̃sub)

(
u ỹ(x̃) − u ỹ(x̃ − (akyi1

− akyi1 −1)e
i )

)

=
∑

ỹ≤x̃,kxi1
=kyi1

hi1kyi1
(x̃sub)

(
u ỹ(x̃) − u ỹ(x̃ − (akyi1

− akyi1 −1)e
i )

)

=
∑

ỹ≤x̃,kxi1
=kyi1

hi1kyi1
(x̃sub).

Similarly, we have ψ̃i2 yi2
(N , m̃, u ỹ) = ∑

ỹ≤x̃,kxi2
=kyi2

hi2kyi2
(x̃sub). The proof is fin-

ished. �

Theorem 3.1 Define a function ϕ̃:FMCN → R̃

∑

i∈N
mi

by

ϕ̃ia j (N , m̃, ṽ) =
∑

1≤h≤ j

∑

x̃∈FM,kxi =h

hih(x̃sub)(ṽ(x̃)

−H ṽ(x̃ − (ah − ah−1)e
i ))∀ i ∈ N , j ∈ {1, 2, . . . ,mi } , (5)

where hih(x̃sub) is the potential weight for fuzzy coalition x̃ as shown in Eq. (4). Then
ϕ̃ is the unique Shapley function on FMCN .

Proof Existence. Axiom 1: From Eqs. (4) and (5), we have ϕ̃ia j (N , m̃, ṽ) =
∑

1≤k≤ j ψ̃iak (N , m̃, ṽ). From Lemma 3.1, we obtain

∑

i∈Supp ỹ
ϕ̃iyi (N , m̃, ṽ) =

∑

i∈Supp ỹ

∑

1≤k≤ky j

ψ̃iak (N , m̃, ṽ) = ṽ(ỹ).

From ϕ̃iyi (N , m̃, u ỹ) = ∑
1≤ j≤kyi

ψ̃ia j (N , m̃, u ỹ) = ψ̃iyi (N , m̃, u ỹ) and Lemma 3.2,
one can easily get Axiom 2.
Axiom 3: From Eq. (5), it obviously holds.
Uniqueness. Hypothesis, Eq. (5) satisfies these axioms. According to Hwang and Liao
(2009), for any ṽ ∈ FMCN it can be expressed by

ṽ =
∑

ỹ∈FM\{e∅ }
c̃ỹu ỹ,

where
�
c ỹ = ṽ(ỹ) −H

∑
x̃≤ỹ,x̃ �=ỹ c̃x̃ , and u ỹ as shown in Definition 3.2.

By Axiom 3, we only need to prove the uniqueness of Eq. (5) for u ỹ , where ỹ ∈
FM\{e∅}.
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By Axiom 2, we have

ϕ̃ j y j (N , m̃, u ỹ) =
∑

ỹ≤x̃,kx j =ky j
h jky j

(x̃sub)
∑

ỹ≤x̃,kxi =kyi
hikyi (x̃sub)

ϕ̃iyi (N , m̃, u ỹ).

Since ỹ is a carrier for u ỹ , by axiom 1 we derive

1 = u ỹ(ỹ) =
∑

j∈Supp ỹ
ϕ̃ j y j (N , m̃, u ỹ).

If we fix i ∈ Supp ỹ, then we have

1 =
∑

j∈Supp ỹ
ϕ̃ j y j (N , m̃, u ỹ)

= ϕ̃iyi (N , m̃, u ỹ) +
∑

j∈Supp ỹ\{i}

∑
ỹ≤x̃,kx j =ky j

h jky j
(x̃sub)

∑
ỹ≤x̃,kxi =kyi

hikyi (x̃sub)
ϕ̃iyi (N , m̃, u ỹ)

=
∑

j∈Supp ỹ
∑

ỹ≤x̃,kx j =ky j
h jky j

(x̃sub)
∑

ỹ≤x̃,kxi =kyi
hikyi (x̃sub)

ϕ̃iyi (N , m̃, u ỹ).

Since
∑

j∈Supp ỹ
∑

ỹ≤x̃,kx j =ky j
h jky j

(x̃sub) = 1,weget ϕ̃iyi (N , m̃, u ỹ) = ∑
ỹ≤x̃,kxi =kyi

hikyi (x̃sub) and ϕ̃iyi (N , m̃, u ỹ) = 0, otherwise. The proof is finished. �
Obviously, Eq. (5) degenerates to be the Shapley value for traditional fuzzy games,

when we limit the domain of ṽ ∈ FMCN in the framework of it.
Sprumont (1990) proposed a PMAS as a reasonable solution concept for traditional

games, which specifies not only how to allocate the maximum coalition but also how
to allocate the worth of every coalition. Tsurumi et al. (2001) extended PMAS to fuzzy
games, and defined a FPMAS, which is as an extension of PMAS. Here, we further
extend PMAS to FMCN and give the following definition for FMPMAS. As will be
seen later, FMPMAS is an extension of PMAS and FPMAS.

Definition 3.3 A vector z̃ = ((z̃1ai1 )i1∈M+
1
, (z̃2ai2 )i2∈M+

2
, . . . , (z̃nain )in∈M+

n
) is said to

be a FMPMAS for ṽ ∈ FMCN if it satisfies the following conditions:

(1)
∑

i∈N z̃iami
(x̃) = ṽ(x̃), ∀x̃ ∈ FM,

(2) z̃ia j (ỹ) ≥ z̃ia j (x̃) ∀i ∈ Supp x̃, 0 < j ≤ kxi , x̃, ỹ ∈ FM s. t . x̃ ≤ ỹ, kxi = kyi ,

where z̃ia j (x̃) and z̃ia j (ỹ) respectively denote the player i’s payoffs at level a j for the
fuzzy coalitions x̃ and ỹ.

Remark 3.1 For any i ∈ Supp x̃ and all x̃, ỹ ∈ FM satisfying x̃ ≤ ỹ, the condi-
tion kxi = kyi must be satisfied, otherwise, we cannot guarantee that the conclusion
z̃ia j (ỹ) ≥ z̃ia j (x̃) holds for all x̃, ỹ ∈ FM with x̃ ≤ ỹ.
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FromDefinition 3.3, we know that the definition of FMPMAS degenerates to be the
definition of FPMAS, when we limit the domain of ṽ ∈ FMCN in the framework of
traditional fuzzy games. Moreover, the definition of FMPMAS degenerates to be the
definition of PMAS, when the domain of ṽ ∈ FMCN is restricted in the framework of
traditional games.

Lemma 3.3 Let ṽ ∈ FMCN be convex, and ṽ(a j ei ) ≥ ṽ(a j−1ei ) for any i ∈ N and
any j ∈ {1, 2, . . .,mi }, then
(1)

∑
i∈N

∑mi
j=1 ψ̃ia j (N , m̃, ṽx̃ ) = ṽ(x̃) ∀x̃ ∈ FM,

(2) ψ̃ia j (N , m̃, ṽx̃ ) ≤ ψ̃ia j (N , m̃, ṽỹ)∀i ∈ Suppx̃, 0 < j ≤ kxi , x̃, ỹ ∈ FM s.t.x̃ ≤
ỹ, kxi = kyi ,

where ψ̃(N , m̃, ṽ) as shown in Eq. (4), ṽx̃ and ṽỹ respectively denote the restriction
of ṽ in x̃ and ỹ.

Proof From Eq. (4), we have

ψ̃ia j (N , m̃, ṽx̃ ) =
∑

z̃≤x̃,kzi = j

hx̃i j (z̃sub)
(
ṽ(z̃) −H ṽ

(
z̃ − (a j − a j−1)e

i
))

,

where hx̃i j (z̃sub) is the restriction of hi j (z̃sub) in x̃ , namely, hx̃i j (z̃sub) =
(

(
∑

g:(z̃|kzi −1)g �=0 kzg )!
�g:(z̃|kzi −1)g �=0(kzg !)

(
∑

g∈Supp x̃ (kxg−kzg ))!
�g∈Supp x̃ (kxg−kzg )!

)
/

(
∑

g∈Supp x̃ kxg )!
�g∈Supp x̃ (kxg !) , and z̃|kzi − 1 = (z p1 , . . . ,

zkzi −1, . . . , z pt ) such that {p1, . . . , i, . . . , pt } ⊆ Supp x̃ .

From Eq. (3), it is easy to get
∑

i∈N
∑mi

j=1 ψ̃ia j (N , m̃, ṽx̃ ) = ṽ(x̃) for any x̃ ∈ FM.
In the following, we show the second condition in Lemma 3.3.
When x̃ = ỹ, the result obviously holds.
When x̃ �= ỹ, there only exist three cases.

Case (I): If Supp x̃ = Suppỹ, and there exists q ∈ Supp x̃ such that kxq < kyq ,

where q �= i . In the following, we prove ψ̃ia j (N , m̃, ṽx̃ ) ≤ ψ̃ia j (N , m̃, ṽỹ) by using
induction.
From the convexity of ṽ, we have

ṽ
(
x̃ ∨ a j e

i
)

−H ṽ
(
x̃ ∨ (a j − a j−1)e

i
)

≤ ṽ
(
ỹ ∨ a j e

i
)

−H ṽ
(
ỹ ∨ (a j − a j−1)e

i
)

(6)
for all x̃, ỹ ∈ �k∈N\{i}FMk with x̃ ≤ ỹ.
1© When

∑
p∈Supp ỹ kyp − ∑

p∈Supp x̃ kxp = 1, Since

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub) ≤
∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub) (7)

for any i ∈ Supp x̃ , any 0< j ≤ kxi and any z̃ ≤ x̃ , where h ỹ
i j (r̃sub) denotes the

restriction of hi j (r̃sub) in ỹ.
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(i) When z̃ = x̃ , by Eq. (6) we have

∑

x̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub)

(
ṽ(r̃) −H ṽ

(
(r̃ − a j e

i ) ∨ a j−1e
i
))

≥
∑

x̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub)

(
ṽ(x̃) −H ṽ((x̃ − a j e

i ) ∨ a j−1e
i )

)

≥
∑

r̃=x̃,kri = j

hx̃i j (x̃sub)
(
ṽ(x̃) −H ṽ((x̃ − a j e

i ) ∨ a j−1e
i )

)
.

(ii) When
∑

p∈Supp x̃
kxp − ∑

p∈Supp z̃
kz p = 1, by Eq. (5) we have

∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub)

(
ṽ(r̃) −H ṽ((r̃ − a j e

i ) ∨ a j−1e
i )

)

−H

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub)
(
ṽ(r̃) −H ṽ

(
(r̃ − a j e

i ) ∨ a j−1e
i
))

≥
⎛

⎝
∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub) −

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub)

⎞

⎠ (ṽ(z̃)

−H ṽ
(
(z̃ − a j e

i ) ∨ a j−1e
i
))

.

(iii) Hypothesis, we have

∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub)

(
ṽ(r̃) −H ṽ

(
(r̃ − a j e

i ) ∨ a j−1e
i
))

−H

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub)
(
ṽ(r̃) −H ṽ

(
(r̃ − a j e

i ) ∨ a j−1e
i
))

≥
⎛

⎝
∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub) −

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub)

⎞

⎠ (ṽ(z̃)

−H ṽ
(
(z̃ − a j e

i ) ∨ a j−1e
i
))

, (8)

where
∑

p∈Supp x̃ kxp − ∑
p∈Supp z̃ kz p = h and 1 ≤ h ≤ ∑

p∈Supp x̃ kxp − 1.
In the following, we show Eq. (8) for

∑
p∈Supp x̃ kxp − ∑

p∈Supp z̃ kz p = h + 1. Let

W =
⎧
⎨

⎩
w ∈ N|

∑

p∈Supp x̃
kxp −

∑

p∈Supp z̃w
kzwp = h,Supp z̃w ⊆ Supp x̃, z̃w ∈ FM

⎫
⎬

⎭
.
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From the convexity of ṽ, Eqs. (6) and (8), we have

∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub)

(
ṽ (r̃) −H ṽ

((
r̃ − a j e

i
)

∨ a j−1e
i
))

−H

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub)
(
ṽ (r̃) −H ṽ

((
r̃ − a j e

i
)

∨ a j−1e
i
))

≥
⎛

⎝
∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub) −

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub)

⎞

⎠ (ṽ (z̃)

−H ṽ
((

z̃ − a j e
i
)

∨ a j−1e
i
))

.

Thus,

∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub)

(
ṽ (r̃) −H ṽ

((
r̃ − a j e

i
)

∨ a j−1e
i
))

−H

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub)
(
ṽ (r̃) −H ṽ

((
r̃ − a j e

i
)

∨ a j−1e
i
))

≥
⎛

⎝
∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub) −

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub)

⎞

⎠ (ṽ (z̃)

−H ṽ
((

z̃ − a j e
i
)

∨ a j−1e
i
))

(9)

for any z̃ ≤ x̃ .
From Eqs. (6), (7) and (9), for any z̃ ≤ x̃ we get

∑

z̃≤r̃≤ỹ,kri = j

h ỹ
i j (r̃sub)

(
ṽ (r̃) −H ṽ

((
r̃ − a j e

i
)

∨ a j−1e
i
))

−H

∑

z̃≤r̃≤x̃,kri = j

hx̃i j (r̃sub)
(
ṽ (r̃) −H ṽ

((
r̃ − a j e

i
)

∨ a j−1e
i
))

≥ 0 (10)

Since

ψ̃ia j (N , m̃, ṽx̃ ) =
∑

z̃≤x̃,kzi = j

hx̃i j (z̃sub)
(
ṽ (z̃) −H ṽ

(
z̃ − (

a j − a j−1
)
ei

))

and

ψ̃ia j

(
N , m̃, vỹ

) =
∑

z̃≤ỹ,kzi = j

h ỹ
i j (z̃sub)

(
ṽ (z̃) −H ṽ

(
z̃ − (

a j − a j−1
)
ei

))
,
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from the arbitrariness of z̃ and Eq. (10) we obtain

ψ̃ia j (N , m̃, ṽx̃ ) ≤ ψ̃ia j (N , m̃, ṽỹ)

for any i ∈ Supp x̃ and all 0< j ≤ kxi .
2© For all x̃, ỹ ∈ FM with x̃ ≤ ỹ and kxi = kyi , without out loss of generality, let

∑

p∈Supp ỹ
kyp −

∑

p∈Supp x̃
kxp = h,

where 1 ≤ h ≤ ∑
p∈Supp ỹ m p − ∑

p∈Supp x̃ kxp .
From 1©, we have

ψ̃ia j

(
N ,m, ṽx̃1

)
≤ ψ̃ia j

(
N ,m, ṽx̃2

)
≤ . . . ≤ ψ̃ia j

(
N ,m, ṽx̃h

)
,

where x̃1 = x̃, x̃ h = ỹ,
∑

i∈Supp x̃ l kxli + 1 = ∑
i∈Supp x̃ l+1 kxl+1

i
and Supp x̃ l =

Suppx̃ for any l ∈ {1, 2, . . . , h − 1}.
Thus, for any i ∈ Supp x̃ and any 0 < j ≤ kxi , ψ̃ia j (N , m̃, ṽx̃ ) ≤ ψ̃ia j (N , m̃, ṽỹ),
where

∑
p∈Supp ỹ kyp − ∑

p∈Supp x̃ kxp = h and 1 ≤ h ≤ ∑
p∈Supp ỹ m p −

∑
p∈Supp x̃ kxp .

Case (II): If Supp x̃ ⊂ Supp ỹ and kxq = kyq for any q ∈ Supp x̃ .

(1) When Supp x̃ ∪ {l} = Suppỹ and kyl = 1, where l ∈ N\ Supp x̃ . Since

hx̃i j (z̃) = h ỹ
i j (z̃) + h ỹ

i j (z̃ ∨ a1e
k)

for any i ∈ Supp x̃ , any 0 < j ≤ kxi and any z̃ ≤ x̃ , we have

ψ̃ia j

(
N , m̃, ṽỹ

) =
∑

z̃≤ỹ,kzi = j

h ỹ
i j (z̃sub)

(
ṽ (z̃) −H ṽ

(
z̃ − (

a j − a j−1
)
ei

))

≥
∑

z̃≤x̃,kzi = j

hx̃i j (z̃sub)
(
ṽ (z̃) −H ṽ

(
z̃ − (

a j − a j−1
)
ei

))

= ψ̃ia j (N , m̃, ṽx̃ )

for any i ∈ Supp x̃ and any 0 < j ≤ kxi .
(2) When Supp x̃∪{l} = Suppỹ and kyl = h, where l ∈ N\ Supp x̃ and 2 ≤ h ≤ mk .

From case (I), it gets ψ̃ia j (N , m̃, ṽx̃ ) ≤ ψ̃ia j (N , m̃, ṽỹ) for anyi ∈ Supp x̃ and
any 0 < j ≤ kxi .

(3) When Supp x̃ ∪ {l p}p∈P = Supp ỹ, where 1 ≤ kylp ≤ mlp , P ⊆ {1, 2, . . ., n-
Supp x̃} and l p ∈ N\ Supp x̃ for any p ∈ P . |Supp x̃ | is the cardinality of Supp
x̃ . From case (I), (1) and (2), for any i ∈Suppx̃ and any 0 < j ≤ kxi , we have
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ψ̃ia j (N , m̃, ṽx̃ ) ≤ ψ̃ia j (N , m̃, ṽỹ),

where Supp x̃ ⊂ Supp ỹ and kxq = kyq for any q ∈ Supp x̃ .

Case (III): If Supp x̃ ⊂ Supp ỹ, and there exists q ∈ Supp x̃ such that kxq < kyq , where
q �= i . From cases (I) and (II), one can easily get the result. The proof is finished. �
Theorem 3.2 Let ṽ ∈ FMCN be convex, and ṽ(a j ei ) ≥ ṽ(a j−1ei ) for any i ∈ N and
any j ∈ {1, 2, . . . ,mi }, then the vector

(
ϕ̃ia j (N , m̃, ṽ)

)

i∈N , j∈{1,2,...,mi } is a FMPMAS.

Proof Since ϕ̃ia j (N , m̃, ṽ) = ∑
1≤k≤ j ψ̃iak (N , m̃, ṽ) for any i ∈ N and any j ∈

{1, 2, . . .,mi }. From Lemma 3.3, the conclusion is obtained. �
From Theorem 3.2, we know Eq. (5) degenerates to be a FPMAS, when we limit

the domain of ṽ ∈ FMCN in the framework of traditional fuzzy games. Moreover,
Eq. (5) degenerates to be a PMAS, when the domain of ṽ ∈ FMCN is restricted in the
framework of traditional games.

Theorem 3.3 Let ṽ ∈ FMCN be convex, then the vector
(
ϕ̃ia j (N , m̃,

ṽ)
)

i∈M, j∈{1,2,...,mi } ∈ C(N , m̃, ṽ), where ϕ̃(N , m̃, ṽ) as shown in Eq. (5).

Proof From the relationship between the Shapley value and the core for multichoice
games discussed by van den Nouweland et al. (1995), for any x̃ ∈ FM, we have

∑

i∈N

mi∑

j=1

ψ̃ia j (N , m̃, ṽ) = ṽ(m̃)

and

∑

i∈Supp x̃

kxi∑

j=1

ψ̃ia j (N , m̃, ṽ) ≥ ṽ(x̃),

where ψ̃(N , m̃, ṽ) as shown in Eq. (4).
For any i ∈ N and any j ∈{1, 2, . . . ,mi }, by ϕ̃ia j (N , m̃, ṽ) = ∑

1≤k≤ j ψ̃iak (N , m̃, ṽ)

we get

∑

i∈N
ϕ̃iami

(N , m̃, ṽ) = ṽ(m̃)

and

∑

i∈Supp x̃
ϕ̃i xi (N , m̃, ṽ) ≥ ṽ(x̃)

for any x̃ ∈ FM.
Namely,

(
ϕ̃ia j (N , m̃, ṽ)

)

i∈M, j∈{1,2,...,mi } ∈ C(N , m̃, ṽ). �
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Corollary 3.1 Let ṽ ∈ FMCN be convex, then the vector
(
ϕ̃ia j (N , m̃,

ṽ)
)

i∈M, j∈{1,2,...,mi } is an imputation of ṽ ∈ FMCN .

Corollary 3.2 Let ṽ ∈ FMCN be convex, then C(N , m̃, ṽ) �= ∅.

4 Two Special Cases

In this section, we mainly discuss two kinds of FMCN named fuzzy multichoice
games with multilinear extension form and fuzzy characteristic functions and fuzzy
multichoice games with Choquet integral form and fuzzy characteristic functions.
These two classes of FMCN are extensions of fuzzy games proposed by Meng and
Zhang (2010) and Tsurumi et al. (2001), respectively. The fuzzy coalition values for
these two kinds of fuzzy games (Meng and Zhang 2010; Tsurumi et al. 2001) are
written as:

v(U ) =
∑

T0⊆SuppU

{
�i∈T0U (i)�i∈SuppU\T0 (1 −U (i))

}
v0(T0),

v(U ) =
q(U )∑

l=1

v0([U ]hl )(hl − hl−1),

where U is a fuzzy coalition given in (Aubin 1974), T0 is a crisp coalition as usual.
Q (U ) = {U (i) |U (i) > 0, i ∈ N } and q(U ) = |Q(U )|, The elements in Q(U ) are
written in the increasing order as 0 = h0 ≤ h1 ≤ · · · ≤ hq(U ) and [U ]hl = {i |U (i) ≥
hl , i ∈ N , l = 1, 2, . . ., q(U )}, and v0 is a crisp game defined in N .

4.1 Fuzzy Multichoice Games with Multilinear Extension Form and Fuzzy
Characteristic Functions

In the following, we discuss fuzzy multichoice games with multilinear extension form
and fuzzy characteristic functions.ByOFMCN , we denote this class of games.Accord-
ing to Meng and Zhang (2010), the fuzzy coalition value for OFMCN is given as
follows:

ṽ(x̃) =
∑

T0⊆Supp x̃

(�i∈T0xi�i∈Supp x̃\T0(1 − xi ))ṽ0(T0), (11)

where x̃ = (x1, x2, . . . , xn) ∈ FM and ṽ ∈ OFMCN .

Theorem 4.1 Define a function ϕ̃O :OFMCN → R̃

∑

i∈N
mi

by

ϕ̃O
ia j

(N , m̃, ṽ)

=
∑

1≤p≤ j

∑

x̃∈FM,kxi =p

hip(x̃sub)

⎛

⎝
∑

T0⊆Supp x̃

(�k∈T0 xk�k∈Supp x̃\T0 (1 − xk))ṽ0(T0)

−H

∑

T0⊆Supp x̃ ′
(�k∈T0 x ′

k�k∈Supp x̃ ′\T0 (1 − x ′
k))ṽ0(T0)

⎞

⎠ ∀i ∈ N , j ∈ {1, 2, . . .,mi }, (12)
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where x̃ ′ = x̃ − (ap − ap−1)ei , x ′
k is the participation level of player k ∈ N in fuzzy

coalition x̃ ′, hip(x̃sub) is the potential weight for fuzzy coalition x̃ as shown in Eq. (4),
and ṽ0 is the associated game with fuzzy characteristic functions defined in N. Then
ϕ̃O is the unique Shapley function on OFMCN .

Proof The proof Theorem 4.1 is similar to that of Theorem 3.1. �
Obviously, Eq. (12) degenerates to be the Shapley value for fuzzy games with

multilinear extension form when the domain of ṽ ∈ OFMCN is restricted in setting
of it, namely,

Shi (U, v) =
∑

S⊆U,i∈SuppS

(|SuppS| − 1)!(|SuppU | − |SuppS|)!
|SuppU |!

×
⎛

⎝
∑

T0⊆SuppS

{
� j∈T0U ( j)� j∈SuppS\T0 (1 −U ( j))

}

× v0(T0) −
∑

T0⊆SuppS\{i}

{
� j∈T0U ( j)� j∈SuppS\{T0∪i} (1 −U ( j))

}
v0(T0)

⎞

⎠

∀i ∈ Supp U, (13)

where U is a fuzzy coalition introduced by Aubin (1974), v is a fuzzy games with
multilinear extension form. S ⊆ U if and only if S(i) = U (i) or S(i) = 0 for any
i ∈ SuppU = {i ∈ N |U (i) > 0}. |SuppU | and |SuppS| denote the cardinalities of
SuppU and SuppS, respectively. Similar to Definition 3.2, one can get the associated
axiomatic system for Eq. (13), and show its existence and uniqueness.

It is worth pointing out that the Shapley value for fuzzy games with multilinear
extension form, given by Eq. (13), is different to that proposed by Meng and Zhang
(2010).

Theorem 4.2 If the associated game ṽ0 of ṽ ∈ OFMCN is convex, then the vector(
ϕ̃O
ia j

(N , m̃, ṽ)
)

i∈N , j∈{1,2,...,mi } is an imputation of ṽ ∈ OFMCN , where ϕ̃O(N , m̃, ṽ)

as shown in Eq. (12).

Proof From Definition 2.7 and Theorem 4.1, we only need to show ϕ̃O
ia j

(N , m̃, ṽ) ≥
ṽ(a j ei ) for any i ∈ N and any j ∈ {1, 2, . . .,mi }. From the convexity of the associated
game ṽ0 and Eq. (12), we have

ϕ̃O
ia j

(N , m̃, ṽ) ≥
∑

1≤p≤ j

∑

x̃∈FM,kxi =p

hip(x̃sub)ṽ0(i)(xi − xh−1
i )

=
∑

1≤p≤ j

∑

x̃∈FM,kxi =p

hip(x̃sub)ṽ0(i)(ap − ap−1)

=
∑

1≤d≤ j

ṽ0(i)(ad − ad−1)
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= ṽ0(i)(a j − a0)

= ṽ(a j e
i ),

where a0 = h0 = 0. �
In the following, we discuss FMPMAS in OFMCN . Let us show the next lemmas

preliminary to the following contents.

Lemma 4.1 If the associated game ṽ0 of ṽ ∈ OFMCN is convex, then we have
ṽ(x̃) −H ṽ(x̃ ′) ≥ 0 for any x̃ ∈ FM, any i ∈ N and any j ∈ {1, 2, . . .,mi }, where
x̃ ′ = x̃ − (a j − a j−1)ei and kxi = j.

Proof From Eq. (11), we have

ṽ (x̃) −H ṽ
(
x̃ ′) =

∑

T0⊆Supp x̃

(
�k∈T0 xk�k∈Supp x̃\T0 (1 − xk)

)
ṽ0 (T0)

−H

∑

T0⊆Supp x̃ ′

(
�k∈T0 x ′

k�i∈Supp x̃ ′\T0
(
1 − x ′

k

))
ṽ0 (T0)

=
∑

T0⊆Supp x̃\{i}
xi

(
�k∈T0 xk�k∈Supp x̃\{T0∪i} (1 − xk)

)
ṽ0 (T0 ∪ i)

+
∑

T0⊆Supp x̃\{i}
(1 − xi )

(
�k∈T0 xk �k∈Supp x̃\{T0∪i} (1 − xk)

)
ṽ0 (T0)

−H

∑

T0⊆Supp x̃ ′\{i}
x ′
i

(
�k∈T0 x ′

k�k∈Supp x̃ ′\{T0∪i}
(
1 − x ′

k

))

ṽ0 (T0 ∪ i) −H

∑

T0⊆Supp x̃ ′\{i}

(
1 − x ′

i

) (
�k∈T0 x ′

k�k ∈ Supp x̃ ′\ {T0 ∪ i} (
1 − x ′

k

))
ṽ0 (T0)

=
∑

T0⊆Supp x̃\{i}
xi

(
�k∈T0 xk�k∈Supp x̃\{T0∪i} (1 − xk)

)
ṽ0 (T0 ∪ i)

+
∑

T0⊆Supp x̃\{i}
(1 − xi )

(
�k∈T0 xk �k∈Supp x̃\{T0∪i} (1 − xk)

)
ṽ0 (T0)

−H

∑

T0⊆Supp x̃\{i}
x ′
i

(
�k∈T0 xk�k∈Supp x̃\{T0∪i} (1 − xk)

)

× ṽ0 (T0 ∪ i) −H

∑

T0⊆Supp x̃\{i}

(
1 − x ′

i

) (
�k∈T0 xk�k∈Supp x̃\{T0∪i} (1 − xk)

)
ṽ0 (T0)

=
∑

T0⊆Supp\{i}

(
xi − x ′

i

) (
�k∈T0 xk�k∈Supp x̃\{T0∪i} (1 − xk)

)
ṽ0 (T0 ∪ i)

+
∑

T0⊆Supp x̃\{i}

(
x ′
i − xi

) (
�k∈T0 xk�k∈Supp x̃\{T0∪i} (1 − xk)

)
ṽ0 (T0)

=
∑

T0⊆Supp x̃\{i}

(
xi − x ′

i

) (
�k∈T0 xk�k∈Supp x̃\{T0∪i} (1 − xk)

)
(ṽ0 (T0 ∪ i) −H ṽ0 (T0)) .

From xi − x ′
i = (a j − a j−1)ei > 0 and the convexity of the associated game ṽ0, we

get ṽ(x̃) −H ṽ(x̃ ′) ≥ 0. �
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Lemma 4.2 Let x̃, ỹ ∈ FM such that kxq + 1 = kyq for some q ∈ Suppx̃ and
kxi = kyi for any i ∈ Suppx̃\{q}, if the associated game ṽ0 of ṽ ∈ OFMCN is convex,
then we have

ṽ(ỹ) −H ṽ(ỹ′) ≥ ṽ(x̃) −H ṽ(x̃ ′),

where Suppx̃ = Suppỹ, kxi = kyi = j, x̃ ′ = x̃ − (a j − a j−1)ei , ỹ′ = ỹ − (a j −
a j−1)ei and j ∈ {1, 2, . . .,mi }.

Proof From Lemma 4.1, we obtain

ṽ (ỹ) −H ṽ
(
ỹ′) =

∑

T0⊆Supp ỹ\{i}

(
yi − y′

i

) (
�k∈T0 yk�k∈Supp ỹ\{T0∪i}

× (1 − yk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

=
∑

T0⊆Supp ỹ\{i,q}
yq

(
yi − y′

i

) (
�k∈T0 yk�k∈Supp ỹ\{T0∪{i,q}}

× (1 − yk)) (ṽ0 (T0 ∪ {i, q}) −H ṽ0 (T0 ∪ q))

+
∑

T0⊆Supp ỹ\{i,q}

(
1 − yq

) (
yi − y′

i

) (
�k∈T0 yk�k∈Supp ỹ\{T0∪{i,q}}

× (1 − yk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

=
∑

T0⊆Supp x̃\{i,q}
yq

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪{i,q}}

× (1 − xk)) (ṽ0 (T0 ∪ {i, q}) −H ṽ0 (T0 ∪ q))

+
∑

T0⊆Supp x̃\{i,q}

(
1 − yq

) (
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪{i,q}}

× (1 − xk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

and

ṽ (x̃) −H ṽ
(
x̃ ′)

=
∑

T0⊆Supp x̃\{i}

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪i}

× (1 − xk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

=
∑

T0⊆Supp x̃\{i,q}
xq

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪{i,q}}

× (1 − xk)) (ṽ0 (T0 ∪ {i, q}) −H ṽ0 (T0 ∪ q))

+
∑

T0⊆Supp x̃\{i,q}

(
1 − xq

) (
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪{i,q}}

× (1 − xk)
)
(ṽ0 (T0 ∪ i) −H ṽ0 (T0)) .
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Thus,

ṽ (ỹ) −H ṽ
(
ỹ′) −H

(
ṽ (x̃) −H ṽ

(
x̃ ′))

=
∑

T0⊆Supp x̃\{i,q}

(
yq − xq

) (
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪{i,q}}

× (1 − xk)) (ṽ0 (T0 ∪ {i, q}) −H ṽ0 (T0 ∪ q))

+
∑

T0⊆Supp x̃\{i,q}

(
xq − yq

) (
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪{i,q}}

× (1 − xk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

=
∑

T0⊆Supp x̃\{i,q}

(
yq − xq

) (
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪{i,q}}

× (1 − xk)) (ṽ0 (T0 ∪ {i, q}) + ṽ0 (T0) −H ṽ0 (T0 ∪ i) −H ṽ0 (T0 ∪ q)) .

From kxq < kyq , we have yq − xq > 0. From xi − x ′
i = (a j − a j−1)ei > 0 and the

convexity of the associated game ṽ0, we get ṽ(ỹ) −H ṽ(ỹ′) ≥ ṽ(x̃) −H ṽ(x̃ ′). �
Lemma 4.3 Let x̃, ỹ ∈ FM such that kxq = kyq for any q ∈ Suppx̃ and Suppx̃∪{l} =
Suppỹ with kyl = 1, if the associated game ṽ0 of ṽ ∈ OFMCN is convex, then we
have

ṽ(ỹ) −H ṽ(ỹ′) ≥ ṽ(x̃) −H ṽ(x̃ ′),

where kxi = kyi = j, x̃ ′ = x̃ − (a j − a j−1)ei , ỹ′ = ỹ − (a j − a j−1)ei and j ∈
{1, 2, . . .,mi }.
Proof From Lemma 4.1, we have

ṽ (ỹ) −H ṽ
(
ỹ′)

=
∑

T0⊆Supp ỹ\{i}

(
yi − y′

i

) (
�k∈T0 yk�k∈Supp ỹ\{T0∪i}

× (1 − yk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

=
∑

T0⊆Supp ỹ\{i,l}
yl

(
yi − y′

i

) (
�k∈T0 yk�k∈Supp ỹ\{T0∪{i,l}}

× (1 − yk)) (ṽ0 (T0 ∪ {i, l}) −H ṽ0 (T0 ∪ l))

+
∑

T0⊆Supp ỹ\{i,l}
(1 − yl)

(
yi − y′

i

) (
�k∈T0 yk�k∈Supp ỹ\{T0∪{i,l}}

× (1 − yk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

=
∑

T0⊆Supp ỹ\{i,l}
yl

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp ỹ\{T0∪{i,l}}

× (1 − xk)) (ṽ0 (T0 ∪ {i, l}) −H ṽ0 (T0 ∪ l))

+
∑

T0⊆Supp ỹ\{i,l}
(1 − yl)

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp ỹ\{T0∪{i,l}}
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× (1 − xk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

=
∑

T0⊆Supp x̃\{i}
yl

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪i}

× (1 − xk)) (ṽ0 (T0 ∪ {i, l}) −H ṽ0 (T0 ∪ l))

+
∑

T0⊆Supp x̃\{i}
(1 − yl)

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪i}

× (1 − xk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

≥
∑

T0⊆Supp x̃\{i}
yl

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪i}

× (1 − xk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

+
∑

T0⊆Supp x̃\{i}
(1 − yl)

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪i}

× (1 − xk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

=
∑

T0⊆Supp x̃\{i}

(
xi − x ′

i

) (
�k∈T0xk�k∈Supp x̃\{T0∪i}

× (1 − xk)) (ṽ0 (T0 ∪ i) −H ṽ0 (T0))

= ṽ (x̃) −H ṽ
(
x̃ ′) .

�
Theorem 4.3 If the associated game ṽ0 of ṽ ∈ OFMCN is convex, then the vector(
ϕ̃O
ia j

(N , m̃, ṽ)
)

i∈N , j∈{1,2,...,mi } is a FMPMAS for ṽ ∈ OFMCN , where ϕ̃O(N , m̃, ṽ)

as shown in Eq. (12).

Proof From Theorem 3.2, Lemmas 4.1, 4.2 and 4.3, the conclusion is obtained. �
Obviously, Eq. (12) degenerates to be a FPMAS for fuzzy games with multilinear

extension form when we limit the domain of ṽ ∈ OFMCN in the framework of it, and
its associated crisp game is convex.

In the following we show that Eq. (12) is an element in the core for OFMCN when
the associated game ṽ0 of ṽ ∈ OFMCN is convex.

Definition 4.1 Let ṽ ∈ OFMCN , the core CO(N , m̃, ṽ) of ṽ is denoted by

CO(N , m̃, ṽ) =
{

w̃ ∈ R̃

∑

i∈N
mi |

∑

i∈N
w̃iami

=
∑

T0⊆Supp m̃

(�i∈T0ami �i∈Supp m̃\T0(1 − ami ))ṽ0(T0),

∑

i∈Supp x̃
w̃i xi ≥

∑

T0⊆Supp x̃

(�i∈T0xi�i∈Supp x̃\T0(1 − xi ))ṽ0(T0),∀x̃ ∈ FM

⎫
⎬

⎭
.
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Theorem 4.4 If the associated game ṽ0 of ṽ ∈ OFMCN is convex, then we have
(ϕ̃O

ia j
(N , m̃, ṽ))i∈N , j∈{1,...,mi } ∈ CO(N , m̃, ṽ), where ϕ̃O(N , m̃, ṽ) as shown in Eq.

(12).

Proof Similar to Shapley (1971), let

w̃′
1a1 = ṽ

(
a1e

1
)

, . . . , w̃′
1am1

= ṽ
(
am1e

1
)

−H ṽ
(
am1−1e

1
)

, . . . ,

w̃′
na1 = ṽ

(
m̃ − (

amne
n − a1e

n)) −H ṽ
(
m̃ − amne

n) , . . . ,

w̃′
namn

= ṽ (m̃) −H ṽ
(
m̃ − (

amne
n − amn−1e

n)) .

For any i ∈ N and any j ∈ {1, 2, . . .,mi }, let w̃ia j = ∑
1≤h≤ j w̃

′
iah

.
Obviously, we have

∑
i∈N w̃iami

= ṽ(m̃) = ∑
T0⊆Supp m̃(�i∈T0ami

�i∈Supp m̃\T0(1 − ami ))ṽ0(T0).
For any x̃ ∈ FM\{e∅}, without loss of generality, suppose

FM\x̃ =
{{

ap1+1, . . . , am j1

}
,
{
ap2+1, . . . , am j2

}
, . . . ,

{
apt+1, . . . , am jt

}}
,

where j1 < j2 < · · · < jt , pk + 1 ≤ m jk and kx̃ jk = pk for any k ∈ {1, 2, . . ., t}.
Let r̃ = (am1e

1, am2e
2, . . . , am j1−1e

j1−1, ap1+1e j1), then we have

r̃ ∨ x̃ = x̃ ∨ ap1+1e
j1 and r̃ ∧ x̃ = r̃ − (ap1+1 − ap1)e

j1 .

From Lemmas 4.2, 4.3 and induction, we have

w̃′
j1ap1+1

= ṽ(r̃) −H ṽ(r̃ − (ap1+1 − ap1)e
j1) ≤ ṽ(x̃ ∨ ap1+1e

j1) −H ṽ(x̃)

and

⎛

⎝
∑

i∈Supp x̃

∑

1≤h≤kx̃i

w̃′
iakx̃i

+ w̃′
j1ap1+1

⎞

⎠ −H

∑

i∈Supp x̃

∑

1≤h≤kx̃i

w̃′
iakx̃i

≤ ṽ(x̃ ∨ ap1+1e
j1) −H ṽ(x̃).

Namely,

⎛

⎝
∑

i∈Supp x̃

∑

1≤h≤kx̃i

w̃′
iakx̃i

+ w̃′
j1ap1+1

⎞

⎠ −H ṽ(x̃ ∨ ap1+1e
j1)

≤
∑

i∈Supp x̃

∑

1≤h≤kx̃i

w̃′
iakx̃i

−H ṽ(x̃)
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and

⎛

⎝
∑

i∈Supp x̃\{ j1}
w̃iakx̃i

+ w̃ j1ap1+1

⎞

⎠ −H ṽ(x̃ ∨ a j1+1e
j1)

≤
∑

i∈Supp x̃
w̃iakx̃i

−H ṽ(x̃).

Repeat the above process
∑

i∈N mi − ∑
i∈N kx̃i times, we have

∑
i∈Supp x̃ w̃iakx̃i

−H

ṽ(x̃) ≥ 0. Namely,

∑

i∈Supp x̃
w̃i xi ≥

∑

T0⊆Supp x̃

(�i∈T0xi�i∈Supp x̃\T0(1 − xi ))ṽ0(T0).

From the construction of Eq. (12), we derive (ϕ̃O
ia j

(N , m̃, ṽ))i∈N , j∈{1,...,mi } ∈
CO(N , m̃, ṽ). �
Corollary 4.1 If the associated game ṽ0 of ṽ ∈OFMCN is convex, then CO(N , m̃, ṽ)

�= ∅.

Example 4.1 Consider a joint productionmodel in which two decisionmakers, named
1 and 2, pool two resources to make some product. As is in the real life, each decision
maker is not willing to supply all its resources to a particular cooperation, and their
participation levels are usually not unique.

It is natural for the two decision makers to try to evaluate their venue of the joint
project in the early period of the project in order to decide whether the project can
be realized or not. However, the profit is dependent on a number of actors such as
product market price, product cost, consumer demand, the relation of commodity sup-
ply and demand, etc. Hence, the profit of each coalition is an approximate evaluation,
which is represented by trapezoidal fuzzy numbers. Thus, we have to consider a fuzzy
multichoice game with a trapezoidal fuzzy characteristic function. Let N = {1, 2}.

If the decision makers 1 and 2 have four and three action levels, respectively, where
FM1 = {a0 = 0, a1 = 0.2, a2 = 0.5, a3 = 0.6} and FM2 = {a0 = 0, a1 =
0.3, a2 = 0.8}. The coalition fuzzy values of the associated game ṽ0 of ṽ ∈ FMCN

are given as follows:

ṽ0(1) = (2, 3, 4, 6), ṽ0(2) = (2, 4, 5, 7), ṽ0(1, 2) = (6, 10, 14, 15).

When the fuzzy coalition values for ṽ ∈ FMCN can be expressed by Eq. (11), namely,
ṽ ∈ OFMCN . From Eq. (12), we have

ϕ̃O
1a1(N , m̃, ṽ) = (0.468, 0.702, 0.97, 1.268),

ϕ̃O
1a2(N , m̃, ṽ) = (1.284, 1.926, 2.71, 3.284),
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ϕ̃O
1a3(N , m̃, ṽ) = (1.598, 2.394, 3.395, 3.998),

ϕ̃O
2a1(N , m̃, ṽ) = (0.732, 1.398, 1.832, 2.232),

ϕ̃O
2a2(N , m̃, ṽ) = (2.162, 4.043, 5.405, 6.162).

Since the associated game ṽ0 is convex, we get (ϕ̃O
ia j

(N , m̃, ṽ))i∈{1,2}, j∈{1,...,mi } ∈
CO(N , m̃, ṽ), and (ϕ̃O

ia j
(N , m̃, ṽ))i∈{1,2}, j∈{1,...,mi } is a FMPMAS forṽ ∈ OFMCN in

this example.
If we restrict Eq. (4) in the setting of OFMCN , then we have

ψ̃1a1(N , m̃, ṽ) = ϕ̃O
1a1(N , m̃, ṽ),

ψ̃1a2(N , m̃, ṽ) = (0.816, 1.224, 1.74, 2.016),

ψ̃1a3(N , m̃, ṽ) = (0.314, 0.468, 0.685, 0.714),

ψ̃2a1(N , m̃, ṽ) = ϕ̃O
2a1(N , m̃, ṽ),

ψ̃2a2(N , m̃, ṽ) = (1.43, 2.645, 3.575, 3.93).

From Eq. (11), we know the game ṽ ∈ OFMCN given by Example 4.1 is strictly
monotone increasing corresponding to the players’ participations. But we have

ψ̃1a3(N , m̃, ṽ) < ψ̃1a1(N , m̃, ṽ) and ψ̃1a3(N , m̃, ṽ) < ψ̃1a2(N , m̃, ṽ),

which contradicts with the people’s intrusion. This is also the season that we use Eq.
(5) to denote the Shapley value for FMCN . Furthermore, the Hukuhara difference
cannot be used in this example since it does not satisfy the necessary condition of the
Hukuhara difference.

4.2 Fuzzy Multichoice Games with Choquet Integral Form and Fuzzy
Characteristic Functions

In this section, we discuss fuzzy multichoice games with Choquet integral form and
fuzzy characteristic functions. By CFMCN , we denote this kind of games. According
to Tsurumi et al. (2001), the fuzzy coalition value for CFMCN is written as:

ṽ(x̃) =
q(x̃)∑

l=1

ṽ0([x̃]hl )(hl − hl−1), (14)

where x̃ = (x1, x2, . . . , xn) ∈ FM, Q(x̃) = {x j |x j > 0, j ∈ N }, q(x̃) = |Q(x̃)|
and [x̃]hl = {i |xi ≥ hl , i ∈ N , l = 1, 2, . . . , q(x̃)}, the elements in Q(x̃) are written
in the increasing order as 0= h0 ≤ h1 ≤ · · · ≤ hq(x̃), and [x̃]hl is a crisp coalition as
usual.
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Theorem 4.5 Define a function ϕ̃C : CFMCN → R̃

∑

i∈N
mi

by

ϕ̃C
ia j

(N , m̃, ṽ) =
∑

1≤g≤ j

q(FM)∑

l=1

∑

x̃∈FM,kxi =g

hig (x̃sub)
(
ṽ0

([x̃]hl
)

−H ṽ0
([x̃ ′]hl

))
(hl − hl−1) ∀i ∈ N , j ∈ {1, 2, . . .,mi } ,

(15)

where q(FM) = |Q(FM)|, Q(FM) = FM = {h1, . . ., hq(FM)}, 0 = h0 ≤ h1 ≤
· · · ≤ hq(FM) and x̃ ′ = x̃ − (ag − ag−1)ei , and hig(x̃sub) is the potential weight
for fuzzy coalition x̃ as shown in Eq. (4). Then ϕ̃C is the unique Shapley function on
CFMCN .

Proof The proof Theorem 4.5 is similar to that of Theorem 3.1. �
Obviously, Eq. (15) degenerates to be the Shapley value for fuzzy games with

Choquet integral form when we restrict the domain of ṽ ∈ CFMCN in the setting of
it.

Theorem 4.6 If the associated game ṽ0 of ṽ ∈ CFMCN is convex, then the

vector
(
ϕ̃C
ia j

(N , m̃, v)
)

i∈N , j∈{1,2,...,mi }
is an imputation for ṽ ∈ CFMCN , where

ϕ̃C (N , m̃, v) as shown in Eq. (15).

Proof From Definition 2.7 and Theorem 4.5, we only need to show ϕ̃C
ia j

(N , m̃, ṽ) ≥
ṽ(a j ei ) for any i ∈ N and any j ∈ {1, 2, . . .,mi }. Since [x̃]hl �= [x̃ ′]hl for any x̃ ∈ FM
and any l ∈ {1, 2, . . ., q(FM)} if and only if x ′

i < hl ≤ xi . Without loss of generality,
suppose x ′

i = hl1 and xi = hl2 .
From the convexity of the associated game ṽ0 and Eq. (15), we have

ϕ̃C
ia j

(N , m̃, ṽ) =
∑

1≤g≤ j

q(FM)∑

l=1

∑

x̃∈FM,kxi =g

hig (x̃sub)
(
ṽ0

([x̃]hl
)

−H ṽ0
([x̃ ′]hl

))
(hl − hl−1)

=
∑

1≤g≤ j

∑

l1+1≤l≤l2

∑

x̃∈FM,kxi =g

hig (x̃sub)
(
ṽ0

([x̃]hl
)

−H ṽ0
([x̃ ′]hl

))
(hl − hl−1)

≥
∑

1≤g≤ j

∑

l1+1≤l≤l2

∑

x̃∈FM,kxi =g

hig (x̃sub)ṽ0 (i) (hl − hl−1)

=
∑

1≤g≤ j

∑

x̃∈FM,kxi =g

hig (x̃sub)

⎛

⎝
∑

l1+1≤l≤l2

ṽ0 (i) (hl − hl−1)

⎞

⎠

=
∑

1≤g≤ j

∑

x̃∈FM,kxi =g

hig (x̃sub)
(
ṽ0 (i)

(
hl2 − hl1

))
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=
∑

1≤g≤ j

∑

x̃∈FM,kxi =g

hig (x̃sub)
(
ṽ0 (i)

(
ag − ag−1

))

=
∑

1≤g≤ j

ṽ0 (i)
(
ag − ag−1

)

= ṽ0 (i) a j

= ṽ
(
a j e

i
)

,

where a0 = h0 = 0 and x̃ ′ as shown in Theorem 4.5. �

Theorem 4.7 If the associated game ṽ0 of ṽ ∈ CFMCN is convex, then the vector
(ϕ̃C

ia j
(N , m̃, ṽ))i∈N , j∈{1,...,mi } is a FMPMAS for ṽ ∈ CFMCN , where ϕ̃C (N , m̃, v) as

shown in Eq. (15).

Proof From Eq. (15), we know that the first condition in Definition 3.3 holds. In the
following, we show the second condition in Definition 3.3. Let

η̃ia j (N , m̃, ṽ) =
∑

1≤g≤ j

∑

x̃∈FM,kxi =g

hig(x̃sub)
(
ṽ0

([x̃]hl
) −H ṽ0(

[
x̃ ′]hl

))

for any i ∈ N and any j ∈ {1, 2, . . .,mi }.
Then, we have

ϕ̃C
ia j

(N , m̃, ṽ) =
q(FM)∑

l=1

η̃ia j (N , m̃, ṽ)(hl − hl−1) ∀i ∈ N , j ∈ {1, 2, . . .,mi } .

(16)

From Eq. (16), for any l ∈ {1, 2, . . ., q(FM)}, it is sufficient to show

η̃ia j

(
N , m̃, ṽỹ

) ≥ η̃ia j (N , m̃, ṽx̃ ) ,

where i ∈ Supp x̃ and 0 < j ≤ kxi .
For all x̃, ỹ ∈ FM with x̃ ≤ ỹ and kxi = kyi , we have

η̃ia j

(
N , m̃, ṽỹ

) =
∑

1≤g≤ j

∑

z̃≤ỹ,kzi =g

h ỹ
ig(z̃sub)

(
ṽ0

([z̃]hl
) −H ṽ0([z̃′]hl )

)

and

η̃ia j (N , m̃, ṽx̃ ) =
∑

1≤g≤ j

∑

z̃≤x̃,kzi =g

hx̃ig(z̃sub)
(
ṽ0([z̃]hl ) −H ṽ0([z̃′]hl )

)
.
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From Lemma 3.3, for any given g ∈ {1, 2, . . ., j}, any l ∈ {1, 2, . . ., q(FM)} and any
z̃ ≤ x̃ , we have

∑

z̃≤r̃≤ỹ,kzi =g

h ỹ
ig(r̃sub)(ṽ0([r̃ ]hl ) −H ṽ0([r̃ ′]hl )) −H

×
∑

z̃≤r̃≤x̃,kzi =g

hx̃ig(r̃sub)(ṽ0([r̃ ]hl ) −H ṽ0([r̃ ′]hl ))

≥
⎛

⎝
∑

z̃≤r̃≤ỹ,kri =g

h ỹ
ig(r̃sub) −

∑

z̃≤r̃≤x̃,kri =g

hx̃ig(r̃sub)

⎞

⎠ (ṽ0([z̃]hl ) −H ṽ0([z̃′]hl )).

Form the convexity of the associated game ṽ0 and
∑

z̃≤r̃≤x̃,kri =g h
x̃
ig(r̃sub) ≤

∑
z̃≤r̃≤ỹ,kri =g h

ỹ
ig(r̃sub), we obtain

∑

z̃≤r̃≤ỹ,
kzi =g

h ỹ
ig (r̃sub)

(
ṽ0

([r̃]hl
) −H ṽ0

([r̃ ′]hl
)) −H

×
∑

z̃≤r̃≤x̃,
kzi =g

hx̃ig (r̃sub)
(
ṽ0

([r̃ ]hl
) −H ṽ0

([r̃ ′]hl
)) ≥ 0.

Thus, for any l ∈ {1, 2, . . ., q(FM)}, any i ∈ Supp x̃ and any 0 < j ≤ kxi , η̃ia j

(N , m̃, ṽỹ) ≥ η̃ia j (N , m̃, ṽx̃ ). �
Definition 4.2 The core CC (N , m̃, ṽ) for ṽ ∈ CFMCN is denoted by

CC (N , m̃, ṽ) =
⎧
⎨

⎩
w̃ ∈ R̃

∑
i∈N mi |

∑

i∈N
w̃iami

=
q(FM)∑

l=1

ṽ0([m̃]hl )(hl − hl−1),

×
∑

i∈Supp x̃
w̃i xi ≥

q(x̃)∑

l=1

ṽ0([x̃]hl )hl − hl−1),∀x̃ ∈ FM

⎫
⎬

⎭
.

Theorem 4.8 If the associated game ṽ0 of ṽ ∈ CFMCN is convex, then

(
ϕ̃C
ia j

(N , m̃, ṽ)
)

i∈N , j∈{1,...,mi }
∈ CC (N , m̃, ṽ) ,

where ϕ̃C (N , m̃, ṽ) as shown in Eq. (15).

Proof The proof Theorem 4.8 is similar to that of Theorem 4.4. �
From Theorems 4.6 and 4.7, we know that ϕ̃C (N , m̃, ṽ) degenerates to be an impu-

tation and a FPMAS for fuzzy games with Choquet integral form, when the domain of
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ṽ ∈ CFMCN is restricted in the framework of it, and its the associated crisp game is
convex. Furthermore, by Theorem 4.8, we know that ϕ̃C (N , m̃, ṽ) degenerates to be
an element in the core for fuzzy games with Choquet integral form when the domain
of ṽ ∈ CFMCN is restricted in the setting of it, and its associated crisp game is convex.

Corollary 4.2 If the associated game ṽ0 of ṽ ∈ CFMCN is convex, then CC (N , m̃, ṽ)

�= ∅.

Example 4.2 Similar toExample 4.1, if there are three decisionmakers, named1, 2 and
3, cooperate to complete some project, namely, N = {1, 2, 3}. The decision makers
1, 2 and 3 have three, three and two activity levels, respectively, where FM1 = {a0 =
0, a1 = 0.2, a2 = 0.4}, FM2 = {a0 = 0, a1 = 0.3, a2 = 0.4} and FM3 = {a0 =
0, a1 = 0.6}. If the coalition fuzzy values of the associated game ṽ0 of ṽ ∈ FMCN

are given as follows:

ṽ0(1) = (1, 2, 3, 5), ṽ0(2) = (1, 3, 4, 5), ṽ0(3) = (2, 3, 4, 5),

ṽ0(1, 2) = (3, 6, 8, 12), ṽ0(1, 3) = (4, 7, 10, 15),

ṽ0(2, 3) = (5, 9, 15, 17), ṽ0(1, 2, 3) = (8, 15, 31, 35).

When the fuzzy coalition values of ṽ ∈ FMCN can be expressed by Eq. (14), namely,
ṽ ∈ CFMCN . From Eq. (15), we have

ϕ̃C
1a1(N , m̃, ṽ) = (0.367, 0.68, 1.322, 1.815),

ϕ̃C
1a2(N , m̃, ṽ) = (0.833, 1.58, 3.355, 4.378),

ϕ̃C
2a1(N , m̃, ṽ) = (0.617, 1.374, 2.529, 2.775),

ϕ̃C
2a2(N , m̃, ṽ) = (0.9, 1.964, 3.805, 4.082),

ϕ̃C
3a1(N , m̃, ṽ) = (1.867, 3.057, 6.045, 6.575).

Since the associated game ṽ0 is convex, we have (ϕ̃C
ia j

(N , m̃, ṽ))i∈{1,2,3}, j∈{1,...,mi } ∈
CC (N , m̃, ṽ), and (ϕ̃C

ia j
(N , m̃, ṽ))i∈{1,2,3}, j∈{1,...,mi } is a FMPMAS for ṽ ∈ CFMCN

in this example.
If we restrict Eq. (4) in the setting of CFMCN , then

ψ̃1a1(N , m̃, ṽ) = ϕ̃C
1a1(N , m̃, ṽ),

ψ̃1a2(N , m̃, ṽ) = (0.467, 0.9, 2.033, 2.533),

ψ̃2a1(N , m̃, ṽ) = ϕ̃C
2a1(N , m̃, ṽ),

ψ̃2a2(N , m̃, ṽ) = (0.283, 0.59, 1.276, 1.306),

ψ̃3a1(N , m̃, ṽ) = ϕ̃C
3a1(N , m̃, ṽ).

FromEq. (14), we know that the game ṽ ∈ CFMCN given in Example 4.2 is strictly
monotone increasing with respect to the players’ participations. But we have

ψ̃2a2(N , m̃, ṽ) < ψ̃2a1(N , m̃, ṽ) and ψ̃2a2(N , m̃, ṽ) < ṽ(a2e
2),
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which contradicts with the people’s intrusion.
This is also the season that we use Eq. (5) to denote the Shapley value for FMCN .

Furthermore, it is not difficult to know the Hukuhara difference cannot be used in this
example.

This section has researched two kinds of FMCN , which are extensions of fuzzy
games introduced by Meng and Zhang (2010) and Tsurumi et al. (2001). Since these
classes of FMCN build the specific relationship with the associated games, the prop-
erties for these kinds of FMCN can be obtained by researching the associated games,
which are much simpler.

However, we only study two kinds of FMCN , and it will be interesting to discuss
other kinds of FMCN , such as fuzzy multichoice games with proportional values and
fuzzy characteristic functions and fuzzy multichoice games with weighted functions
and fuzzy characteristic functions, which are extensions of fuzzy games given by
Butnariu (1980) and Butnariu and Kroupa (2008).

5 Conclusions

Based on the extension Hukuhara difference, the model for fuzzy multichoice games
with fuzzy characteristic functions has been introduced. A Shapley value is studied,
which is an extension of the Shapley value for fuzzy games presented by Li and Zhang
(2009). Moreover, we show that the defined Shapley value is a MFPMAS when the
given fuzzy multichoice games are convex. In order to better understand this kind
of multichoice games, we pay more attention to research two special kinds of fuzzy
multichoice games with fuzzy characteristic functions, which are extensions proposed
by Meng and Zhang (2010) and Tsurumi et al. (2001). However, we only study a
Shapley value for fuzzy multichoice games with fuzzy characteristic functions, and it
will be interesting to discuss other Shapley values.
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