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Abstract Scoring rules are a well-known class of positional voting systems where
fixed scores are assigned to the different ranks. Nevertheless, since the winners may
change according to the scores used, the choice of the scoring vector is not obvious.
For this reason several methods have been suggested so that each candidate may be
evaluated with the most favorable scoring vector for him/her. In this paper we propose
a new model that allows to use different scoring vector for each candidate and avoid
some shortcomings of other methods suggested in the literature. Moreover we give
a closed expression for the score obtained by each candidate and, in this way, it is
possible to rank the candidates without solving the proposed model.

Keywords Scoring rules · Data envelopment analysis · Convex sequences of
weights · Variable weights

1 Introduction

A classical problem in the decision-making field is how to get a collective ranking or
a winning candidate from individual rankings of a set of candidates or alternatives.
One usual way to tackle this problem is to consider scoring rules for aggregating
the individual rankings. In scoring rules, fixed scores are assigned to the different
ranks obtained by the candidates and these ones are ordered according to the total
number of points they receive. Notice that scoring rules are the best-known examples
of positional voting systems (see Llamazares and Peña 2015a), where voters rank order
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568 B. Llamazares

the candidates from best to worst and a set of winners is selected using the positions
of the candidates in the voters’ preference orders.

Due to their simplicity andgoodproperties, scoring rules have received considerable
attention in the literature (see, for instance, Llamazares and Peña 2015b and references
therein). Nowadays, scoring rules are used in sport competitions like the Formula One
World Championship, the IndyCar Series Championship or the Motorcycle World
Championship. Likewise, they are also used for awarding theFIFABallon d’OrAward,
the Baseball Writers Most Valuable Player Award or theMost Valuable Player of the
National Basketball Association (MVP of the NBA).

However, one of the most important issues in the field of scoring rules is the choice
of the scoring vector to use, because a candidate that is not the winner with the scoring
vector imposed initially could be it if another one is used. For instance, the scoring
vector used in the Formula One World Championship has changed several times.
Thus, from 2003 to 2009, the scoring vector used for selecting the winner of the
championship was (10, 8, 6, 5, 4, 3, 2, 1). In 2008, the winner was Lewis Hamilton,
followed by Felipe Massa. However, from 1991 to 2002, only the six first positions
were considered and the scoring vector used was (10, 6, 4, 3, 2, 1). If this scoring
vector had been used in 2008, then the winner would have been Felipe Massa (see
Llamazares and Peña 2013 for another example of this).

To avoid the previous problem, Cook and Kress (1990) introduced Data Envelop-
ment Analysis (DEA) in this context in order to evaluate each candidate with the most
favorable scoring vector for him/her. However, one important shortcoming of their
model is that several candidates are often efficient, i.e., they achieve the maximum
attainable score. For this reason, some procedures to discriminate efficient candidates
have appeared in the literature (see, for instance, Green et al. 1996; Hashimoto 1997;
Noguchi et al. 2002; Obata and Ishii 2003). Nevertheless, as it has been noticed by
Llamazares and Peña (2009), some of the previous models have a serious drawback
from the point of view of Social Choice Theory: the relative order between two candi-
dates may be altered when the number of first, second, …, kth ranks obtained by other
candidates changes, although there is not any variation in the number of first, second,
…, kth ranks obtained by both candidates.

On the basis of the pioneering work of Cook and Kress (1990), several models
have appeared in the literature to deal with this kind of problems (see, for instance,
Hashimoto and Wu 2004; Contreras et al. 2005; Foroughi et al. 2005; Foroughi and
Tamiz 2005; Wang and Chin 2007; Wang et al. 2007a, b, 2008; Wu et al. 2009; Amin
and Sadeghi 2010; Soltanifar et al. 2010; Contreras 2011; Hosseinzadeh Lotfi and
Fallahnejad 2011; Ebrahimnejad 2012; Foroughi and Aouni 2012; Hosseinzadeh Lotfi
et al. 2013; Llamazares and Peña 2013; Hadi-Vencheh 2014).

Among this great variety of models, we would like to point out those of Hashimoto
(1997) and Llamazares and Peña (2013). Although Hashimoto’s model has the above-
described shortcoming (see Llamazares and Peña 2009), it is very interesting because
it uses the DEA super-efficiencymodel (see Andersen and Petersen 1993) for breaking
ties for first place. Moreover, this model also considers convex sequences of weights,
which is a very natural condition in this context (see Stein et al. 1994). For their
part, Llamazares and Peña (2013) avoid the above-described shortcoming by putting
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together in a single restriction the constraints of the candidates that are not being
evaluated.

In this paper we take into account both methodologies. So, we propose and analyze
amodel with convex sequences of weights where we put together in a single restriction
the constraints of the candidates that are not being evaluated. In this way, in our model,
the relative order between two candidates cannot be altered by variations in the number
of first, second,…, kth ranks obtained by the remaining candidates. Moreover, we also
give a closed expression for the scores assigned to the candidates, and thus we can
obtain the winning candidates without solving the proposed model.

The rest of the paper is organized as follows. In Sect. 2 we recall Cook and Kress’
model and Hashimoto’s model. In Sect. 3 we present our model and give a closed
expression for the scores obtained by the candidates. Finally, Sect. 4 is devoted to
conclusions. All proofs are in the “Appendix”.

2 Models of Cook and Kress (1990) and Hashimoto (1997)

Let A = {A1, . . . , Am} be a set of candidates and suppose that each voter selects k
candidates and ranks them from top to kth place. Under the scoring rule associated
with the scoring vector (w1, . . . , wk), the candidate Ai receives Zi = ∑k

j=1 vi jw j

points, where vi j is the number of j th place ranks that candidate Ai occupies, and the
candidates are ordered according to the score obtained. Two of the best known scoring
rules are the plurality rule, where w1 = 1 and w j = 0 for all j ∈ {2, . . . , k}, and the
Borda rule, where k = m and w j = m − j for all j ∈ {1, . . . ,m}.

One of the most important questions in this topic is the choice of the scoring
vector to use, given that this choice could determine the winning candidate. To avoid
this problem, Cook and Kress (1990) suggested to evaluate each candidate with the
most favorable scoring vector for him/her. The model DEA/AR (Data Envelopment
Analysis/Assurance Region) suggested by these authors was

Z∗
o(ε) = max

k∑

j=1

vojw j ,

s.t.
k∑

j=1

vi jw j ≤ 1, i = 1, . . . ,m,

w j − w j+1 ≥ d( j, ε), j = 1, . . . , k − 1,

wk ≥ d(k, ε),

(1)

where ε ≥ 0 and the functions d( j, ε), called the discrimination intensity functions,
are nonnegative and nondecreasing in ε. Moreover, d( j, 0) = 0 for all j ∈ {1, . . . , k}.

One important shortcoming of the previous model is that several candidates are
often efficient, i.e., they achieve the maximum attainable score (Z∗

o(ε) = 1). For this
reason, Hashimoto (1997) proposed to apply the DEA super-efficiency model (see
Andersen and Petersen 1993) to Cook and Kress’s model: By removing in Model (1)
the constraint relative to the candidate that is been evaluated, efficient candidates can
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achieve scores greater than one and, in this way, ties for first place can be broken.
Moreover, Hashimoto (1997) considered d( j, ε) = ε for all j ∈ {1, . . . , k}, with ε

small enough to guarantee a decreasing sequence of weights and to avoid the solution
of themodel depending on the discrimination intensity functions. On the other hand, he
added new constraints to the model to assure a convex sequence of weights (for more
on this, see Stein et al. 1994); that is,w j −w j+1 ≥ w j+1−w j+2 for j = 1, . . . , k−2
(or equivalently, w j − 2w j+1 + w j+2 ≥ 0 for j = 1, . . . , k − 2). So, the model
proposed by this author was

Z̃∗
o(ε) = max

k∑

j=1

vojw j ,

s.t.
k∑

j=1

vi jw j ≤ 1, i = 1, . . . ,m, i �= o (2a)

w j − w j+1 ≥ ε, j = 1, . . . , k − 1, (2b)

wk ≥ ε, (2c)

w j − 2w j+1 + w j+2 ≥ 0, j = 1, . . . , k − 2, (2d)

where ε is a positive non-archimedian infinitesimal.
Although Hashimoto’s model allows to discriminate efficient candidates, it has an

important drawback: the number of first, second, …, kth ranks obtained by inefficient
candidates may change the order of efficient candidates [see an example of this short-
coming in Llamazares and Peña (2009)]. For this reason in the next section we propose
a model that avoids the above drawback. This model is based on Hashimoto’s model
and in the methodology suggested by Llamazares and Peña (2013).

3 Our Model

Consider Hashimoto’s model. Notice that constraints (2b) are equivalent to wk−1 −
wk ≥ ε due to the convex sequence of weights. Moreover, in this restriction, instead
of using the parameter ε, we consider the weight wk , which has been considered by
authors such as Stein et al. (1994) and Contreras et al. (2005).

Now, to avoid that the positions obtained by inefficient candidates may change the
order of efficient candidates, we put together in a single restriction the constraints of
the candidates that are not being evaluated (see Llamazares and Peña 2013). So, we
replace the constraints (2a) by their sum. Since

m∑

i=1
i �=o

k∑

j=1

vi jw j =
k∑

j=1

w j

m∑

i=1
i �=o

vi j =
k∑

j=1

w j (n − voj ),
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where n is the number of voters, we get the constraint

k∑

j=1

(n − voj )w j ≤ m − 1.

Therefore, our model can be expressed as follows:

Ẑ∗
o(ε) = max

k∑

j=1

vojw j ,

s.t.
k∑

j=1

(n − voj )w j ≤ m − 1,

wk−1 − wk ≥ wk,

wk ≥ ε,

w j − 2w j+1 + w j+2 ≥ 0, j = 1, . . . , k − 2,

(3)

where we maximize the score of each candidate under the assumption that the total
score of the remaining candidates is less than or equal to the number of candidates
minus 1. Moreover, we also suppose convex sequences of weights.

In order to make easier the analysis of this model, in the following lemma we give
an alternative representation of it. In this way, we get an equivalent model where we
have replaced the convexity restriction on the variables by nonnegativity.

Lemma 1 Model (3) can be expressed as

Ẑ∗
o(ε) = max

k∑

j=1

VojW j + εVok,

s.t.
k∑

j=1

(
nj ( j + 1)

2
− Voj

)

Wj ≤ δo(ε),

Wj ≥ 0, j = 1, . . . , k,

(4)

where

Wj = w j − 2w j+1 + w j+2, for all j ∈ {1, . . . , k − 2},
Wk−1 = wk−1 − 2wk,

Wk = wk − ε,

Voj =
j∑

l=1

( j + 1 − l)vol , for all j ∈ {1, . . . , k},

δo(ε) = (m − 1) −
(
nk(k + 1)

2
− Vok

)

ε.
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572 B. Llamazares

Notice that

Vok = kvo1 + (k − 1)vo2 + · · · + vok ≤ kn ≤ nk(k + 1)

2
.

Therefore, the function δo(ε) is nonincreasing in ε and, consequently, the feasible
set of Model (4) does not increase when the value of ε increases. Hence Ẑ∗

o(ε) is a
nonincreasing function; that is, if ε1 > ε2, then Ẑ∗

o(ε1) ≤ Ẑ∗
o(ε2).

In order to ensure that Model (4) is feasible, we need to impose the condition
δo(ε) ≥ 0. Given that the feasible set of the previous model depends on the evaluated
candidate, the condition mino=1,...,m δo(ε) ≥ 0 is necessary to guarantee that all the
feasible sets are non-empty.

On the other hand, it is worth noting that if a candidate Ao gets all the first ranks,
then he/she is thewinner. Given that Voj = jvo1+( j−1)vo2+· · ·+voj , when vo1 = n
(and, consequently, vo2 = · · · = vok = 0), we have Voj = jn for all j ∈ {1, . . . , k}.
Therefore, for this candidate, the feasible set of Model (4) is

S =
⎧
⎨

⎩
(W1, . . . ,Wk) ∈ Rk+ |

k∑

j=2

nj ( j − 1)

2
Wj ≤ δo(ε)

⎫
⎬

⎭
,

and Model (4) is unbounded. Consequently, candidate Ao is the winner.
In the following theoremwegive the optimal value of this program for the remaining

cases.

Theorem 1 Consider Model (4) and let Vo1 < n. Then Ẑ∗
o(ε) = δo(ε)V ∗

o + εVok,
where

V ∗
o = max

j=1,...,k
V j
o and V j

o = Voj
n j ( j + 1)

2
− Voj

.

In the following subsections we analyze the behavior of our model according to
whether the parameter ε is null or not.

3.1 The Case ε = 0

When ε = 0, Model (4) can be written as

Ẑ∗
o = max

k∑

j=1

VojW j ,

s.t.
k∑

j=1

(
nj ( j + 1)

2
− Voj

)

Wj ≤ m − 1,

Wj ≥ 0, j = 1, . . . , k.

(5)
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Table 1 Ranks obtained by
each candidate and values of Ẑ∗

o
Candidate vi1 vi2 vi3 vi4 Ẑ∗

o

A 3 3 4 3 0.9524

B 4 5 5 2 1.4516

C 6 2 3 2 2.1429

D 6 2 2 6 2.1429

E 0 4 3 4 0.6180

F 1 4 3 3 0.7143

By Theorem 1, the score obtained by the candidate Ao when Vo1 < n is

Ẑ∗
o = (m − 1)V ∗

o = (m − 1) max
j=1,...,k

Voj
n j ( j + 1)

2
− Voj

.

For instance, consider the example given in Table 1, taken from Cook and Kress
(1990, p. 1309). There is a tie for the first place between candidates C and D, and the
order of the remaining candidates is B, A, F and E. A way to break the tie between C
and D will be explained in the next subsection.

It is worth noting that the order obtained through the scores Ẑ∗
o is the same as

obtained by using a model proposed by Contreras et al (2005, Prop. 3.4).

Proposition 1 The rank given by Model (5) is the same as the obtained by using the
expression

Zo = max
j=1,...,k

Voj
j ( j + 1)

2

.

As Contreras et al. (2005) have pointed out, the score Zo can be interpreted as the
result of evaluating the candidates by using the normalized truncated Borda rules (on
this, see Fishburn 1974) and choosing the maximum value. Moreover, the model
proposed by these authors has some interesting properties such as monotonicity,
Pareto-optimality and immunity to the absolute winner paradox (see Contreras et al.
2005; Llamazares and Peña 2015a). Therefore, Model (5) also satisfies these proper-
ties.

3.2 The Case ε > 0

By Theorem 1, when Vo1 < n we can express the score obtained by the candidate Ao

as
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574 B. Llamazares

Ẑ∗
o(ε) = (m − 1)V ∗

o + ε

(

Vok − V ∗
o

(
nk(k + 1)

2
− Vok

))

= (m − 1)V ∗
o + ε

(

Vok(1 + V ∗
o ) − V ∗

o
nk(k + 1)

2

)

. (6)

As we can see, the graph of Ẑ∗
o(ε) is a straight line. Moreover, given that Ẑ∗

o(ε) is a
nonincreasing function, the slope of this straight line is negative or null.

Notice that since

V k
o = Vok

nk(k + 1)

2
− Vok

,

we get

V k
o
nk(k + 1)

2
= Vok(1 + V k

o ).

Therefore, when V ∗
o = V k

o then

Vok(1 + V ∗
o ) − V ∗

o
nk(k + 1)

2
= 0

and, consequently,

Ẑ∗
o(ε) = (m − 1)V k

o ,

that is, the value Ẑ∗
o(ε) does not depend on the choice of ε.

Consider now the following example, taken from Obata and Ishii (2003) (see
Table 2).

In this case m = 7, n = 150 and k = 2. Therefore

Ẑ∗
o(ε) = 6V ∗

o + ε
(
Vok(1 + V ∗

o ) − 450V ∗
o

)
.

Table 2 First and second ranks
obtained by each candidate

Candidate vi1 vi2

A 32 10

B 28 20

C 13 36

D 20 27

E 27 19

F 30 8

G 0 30
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When we focus on candidates A and B we have

Ẑ∗
A(ε) = 96

59
− 1650

59
ε, Ẑ∗

B(ε) = 84

61
− 600

61
ε.

Both functions appear drawn in Fig. 1 (note that we have considered different scales
on both axes; a hundredth on the x-axis is equal to one unit on the y-axis).

As we can see in Fig. 1, when we take values of ε less than 2/145 we have A � B.
However, if the values of ε are greater than 2/145, then B � A. In Table 3 we
show this behavior for two specific values of ε, ε = 0.01 and ε = 1/70. This last
value is the maximum possible value for ε, that is, the maximum value for which
mino=1,...,m δo(ε) ≥ 0.

In the light of the previous example, it does not seem obvious how to choose a
specific value of ε. One possibility would be to consider a value of ε small enough
to avoid that the winner depends on the choice of ε (this is the solution proposed
by some authors in their models; see, for instance, Hashimoto 1997; Foroughi and
Tamiz 2005). If we consider in our model an infinitesimal positive value of ε, then, by

Fig. 1 Graphs of the functions
Ẑ∗
A(ε) and Ẑ∗

B(ε)

1
70

2
145

ε

Z∗
o (ε)

84
61

96
59

A

B

Table 3 Values of δo(ε) and
Ẑ∗
o (ε) for the candidates of

Table 2

Candidate ε = 0.01 ε = 1/70

δo(ε) Ẑ∗
o (ε) δo(ε) Ẑ∗

o (ε)

A 2.24 1.3475 0.6286 1.2276

B 2.26 1.2787 0.6571 1.2365

C 2.12 0.9588 0.4571 0.9588

D 2.17 1.0496 0.5286 1.0496

E 2.23 1.2195 0.6143 1.1777

F 2.18 1.2250 0.5429 1.1071

G 1.8 0.7143 0.0000 0.4286
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Table 4 New ranks and values
of δo(ε) and Ẑ∗

o (ε) for ε = 1/73
Candidate vi1 vi2 δo Ẑ∗

o (ε)

A 32 10 0.8493 1.2440

B 28 20 0.8767 1.2423

C 13 46 0.8219 1.1176

D 20 35 0.8630 1.1784

E 27 19 0.8356 1.1834

F 30 8 0.7671 1.1233

G 0 12 0.0000 0.1644

expression (6), the candidates are ordered according to the score (m − 1)V ∗
o ; that is,

the score obtained by the candidates when ε = 0. If for ε = 0 there is a tie between
two candidates, Ai and Ap, then this means that V ∗

i is equal to V ∗
p . Therefore,

1 + V ∗
i = 1 + V ∗

p and V ∗
i
nk(k + 1)

2
= V ∗

p
nk(k + 1)

2
,

and, consequently,

Ẑ∗
i (ε) > Ẑ∗

p(ε) ⇔ Vik > Vpk .

Therefore, the use of an infinitesimal positive value of ε in our model is equivalent
to ranking the candidates according to the score Ẑ∗

o (that is, to consider ε = 0) and
breaking the ties between the candidates according to the value of Vok . For instance,
if we consider again Table 1, the tie between C and D can be broken by taken into
account the values VC4 = 38 and VD4 = 40. So, in this case, D � C.

Another possibility would be to take the maximum possible value for ε (in the
same spirit that in Cook and Kress’ model), although in the previous example (see
Fig. 1), it does seem the best choice. On the other hand, this solution has a serious
shortcoming: the order between two candidates may depend on the ranks obtained by
other candidates. For instance, suppose that candidates C, D and G obtain the ranks
shown in Table 4, which are different from those shown in Table 2. Now, themaximum
possible value for ε is 1/73, and, with this value, A � B (Ẑ∗

A(ε) and Ẑ∗
B(ε) are still

the functions of Fig. 1 and 1/73 < 2/145; see also Table 4).
To avoid taking a fixed value of ε, Llamazares and Peña (2013) propose a model

where the average value of the objective functions is considered (in our case, the aver-
age of the functions Ẑ∗

o(ε)). In the sequel we follow this methodology. Moreover, for
each candidate Ao we only consider the constraint δo(ε) ≥ 0 instead of the restric-
tion mino=1,...,m δo(ε) ≥ 0. This prevents that the average of the function Ẑ∗

o(ε) may
depend on the results obtained for the remaining candidates.

The maximum value for which the feasible set of Model (4) is not-empty is

ε∗
o = sup {ε ≥ 0 | δo(ε) ≥ 0} .
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Since

δo(ε) = (m − 1) −
(
nk(k + 1)

2
− Vok

)

ε,

we have

ε∗
o = m − 1

nk(k + 1)

2
− Vok

.

Once known the value of ε∗
o , the score assigned to the candidate Ao is

Zo = 1

ε∗
o

∫ ε∗
o

0
Ẑ∗
o(ε) dε,

that is, the average of the function Ẑ∗
o(ε). In the following theorem we show explicitly

the value of Zo.

Theorem 2 Consider Model (4). Then

Zo = (m − 1)
V ∗
o + V k

o

2
.

Notice that Zo is the average of Ẑ∗
o and (m − 1)V k

o , and that, given two candidates
Ai and Ap,

V k
i > V k

p ⇔ Vik
nk(k + 1)

2
− Vik

>
Vpk

nk(k + 1)

2
− Vpk

⇔ Vik
nk(k + 1) − 2Vik

>
Vpk

nk(k + 1) − 2Vpk

⇔ Vik
(
nk(k + 1) − 2Vpk

)
> Vpk

(
nk(k + 1) − 2Vik

)

⇔ Vik > Vpk .

Therefore, if several candidates have the same score Ẑ∗
o , then ranking these can-

didates according to the values Zo gives the same result as breaking the ties with the
values Vok .

It is also worth noting that, in general, Zo and Ẑ∗
o provide different ranks. For

instance, consider Table 5. The rank obtained with Ẑ∗
o is

A � F � B � E � D � C � G.

while the rank obtained with Zo is

A � B � F � E � D � C � G.
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578 B. Llamazares

Table 5 Values of Ẑ∗
o and Zo

for the candidates of Table 2 Candidate Ẑ∗
o Zo

A 1.6271 1.4040

B 1.3770 1.2982

C 0.9588 0.9588

D 1.0496 1.0496

E 1.3171 1.2394

F 1.5000 1.2840

G 0.4286 0.4286

4 Concluding Remarks

In the last years, increasing attention has been devoted to the study of ranked voting
systems where each candidate is evaluated with the most favorable scoring vector for
him/her. However, some of them have an important shortcoming: the relative order
between two candidates may be altered when the number of first, second,…, kth ranks
obtained by other candidates changes, although there is not any variation in the number
of first, second, …, kth ranks obtained by both candidates. Likewise, some models are
formulated using functions depending on a parameter ε, and the order between two
candidates may change according to the value of ε.

In this paperwe have proposed amodel that avoids the above problems and that con-
siders convex sequences of weights. Moreover, an important advantage of our model
against other methods suggested in the literature is that we give a closed expression for
the scores assigned to the candidates. Thus, we can obtain the order of the candidates
without solving the proposed model and, in this way, it could be easy to implement in
some contexts (for instance, in academic environments).
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Appendix

Proof of Lemma 1 Given Model (3), we consider the following change of variables:

{
s j = w j − w j+1, for all j ∈ {1, . . . , k − 1},
sk = wk .

It is easy to check that w j = ∑k
p= j sp for all j ∈ {1, . . . , k} and that the set of

constraints
⎧
⎪⎨

⎪⎩

w j − w j+1 ≥ w j+1 − w j+2, j = 1, . . . , k − 2,

wk−1 − wk ≥ wk,

wk ≥ ε.
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is equivalent to the set

{
s j ≥ s j+1, j = 1, . . . , k − 1,

sk ≥ ε.

Let us make yet another change of variables:

{
Wj = s j − s j+1, for all j ∈ {1, . . . , k − 1},
Wk = sk − ε.

From the previous relationships, variables Wj can be expressed as functions of
variables w j in the following way:

⎧
⎪⎨

⎪⎩

Wj = s j − s j+1 = w j − 2w j+1 + w j+2, for all j ∈ {1, . . . , k − 2},
Wk−1 = sk−1 − sk = wk−1 − 2wk,

Wk = wk − ε.

Furthermore, it is easy to see that s j = ∑k
l= j Wl + ε for all j ∈ {1, . . . , k}.

Therefore,

w j =
k∑

p= j

sp =
k∑

p= j

⎛

⎝
k∑

l=p

Wl + ε

⎞

⎠ =
∑

j≤p≤k
p≤l≤k

Wl +
k∑

p= j

ε =
∑

j≤p≤l≤k

Wl + (k + 1 − j)ε

=
k∑

l= j

l∑

p= j

Wl + (k + 1 − j)ε =
k∑

l= j

(l + 1 − j)Wl + (k + 1 − j)ε.

Next we write the remaining expressions of Model (3) as functions of the variables
Wj :

k∑

j=1

vojw j =
k∑

j=1

voj

⎛

⎝
k∑

l= j

(l + 1 − j)Wl + (k + 1 − j)ε

⎞

⎠

=
∑

1≤ j≤k
j≤l≤k

(l + 1 − j)vojWl + ε

k∑

j=1

(k + 1 − j)voj

=
∑

1≤ j≤l≤k

(l + 1 − j)vojWl + ε

k∑

j=1

(k + 1 − j)voj

=
∑

1≤l≤k
1≤ j≤l

(l + 1 − j)vojWl + ε

k∑

j=1

(k + 1 − j)voj
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=
k∑

l=1

Wl

⎛

⎝
l∑

j=1

(l + 1 − j)voj

⎞

⎠ + ε

k∑

j=1

(k + 1 − j)voj

=
k∑

j=1

Wj

⎛

⎝
j∑

l=1

( j + 1 − l)vol

⎞

⎠ + ε

k∑

l=1

(k + 1 − l)vol ,

where the last equality is obtained by changing the role of j and l. If we denote
∑ j

l=1( j + 1 − l)vol by Voj for all j ∈ {1, . . . , k}, then we have

k∑

j=1

vojw j =
k∑

j=1

VojW j + εVok .

Analogously,

k∑

j=1

(n − voj )w j = n
k∑

j=1

w j −
k∑

j=1

vojw j = n
k∑

j=1

w j −
k∑

j=1

VojW j − εVok .

Given that

k∑

j=1

w j =
k∑

j=1

⎛

⎝
k∑

l= j

(l + 1 − j)Wl + (k + 1 − j)ε

⎞

⎠

=
∑

1≤ j≤k
j≤l≤k

(l + 1 − j)Wl + ε

k∑

j=1

(k + 1 − j) =
∑

1≤ j≤l≤k

(l + 1 − j)Wl + ε
k(k + 1)

2

=
∑

1≤l≤k
1≤ j≤l

(l + 1 − j)Wl + ε
k(k + 1)

2
=

k∑

l=1

Wl

⎛

⎝
l∑

j=1

(l + 1 − j)

⎞

⎠ + ε
k(k + 1)

2

=
k∑

l=1

l(l + 1)

2
Wl + ε

k(k + 1)

2
,

we have

k∑

j=1

(n − voj )w j =
k∑

j=1

nj ( j + 1)

2
Wj + ε

nk(k + 1)

2
−

k∑

j=1

VojW j − εVok

=
k∑

j=1

(
nj ( j + 1)

2
− Voj

)

Wj +
(
nk(k + 1)

2
− Vok

)

ε.
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Therefore, the constraint

k∑

j=1

(n − voj )w j ≤ m − 1

can be written as

k∑

j=1

(
nj ( j + 1)

2
− Voj

)

Wj +
(
nk(k + 1)

2
− Vok

)

ε ≤ m − 1.

If we consider

δo(ε) = (m − 1) −
(
nk(k + 1)

2
− Vok

)

ε,

then Model (3) can be expressed as

Ẑ∗
o(ε) = max

k∑

j=1

VojW j + εVok,

s.t.
k∑

j=1

(
nj ( j + 1)

2
− Voj

)

Wj ≤ δo(ε),

Wj ≥ 0, j = 1, . . . , k.

	


Proof of Theorem 1 Model (4) is equivalent to the following one:

Ẑ ′
o(ε) = max

k∑

j=1

VojW j ,

s.t.
k∑

j=1

(
nj ( j + 1)

2
− Voj

)

Wj ≤ δo(ε),

Wj ≥ 0, j = 1, . . . , k.

Moreover Ẑ∗
o(ε) = Ẑ ′

o(ε) + εVok . It is well known that if a linear program has an
optimal solution, then its dual also has an optimal solution and the optimal values for
both problems are equal. Therefore, it is sufficient to solve the dual of the previous
problem, that is,
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min δo(ε)X,

s.t.

(
nj ( j + 1)

2
− Voj

)

X ≥ Voj , j = 1, . . . , k,

X ≥ 0.

It is easy to check that the optimal solution is

X∗ = V ∗
o = max

j=1,...,k

Voj
n j ( j + 1)

2
− Voj

.

Therefore, Ẑ ′
o(ε) = δo(ε)V ∗

o and Ẑ∗
o(ε) = δo(ε)V ∗

o + εVok . 	


Proof of Proposition 1 We distinguish two cases:

1. If a candidate Ao gets all the first ranks, then he/she is the winner according with
Model (5). On the other hand, since vo1 = n, we have Voj = jvo1 + ( j − 1)vo2 +
· · · + voj = jn. Therefore,

Zo = max
j=1,...,k

Voj
j ( j + 1)

2

= max
j=1,...,k

2n

j + 1
= n.

Let Ai be a different candidate. Then vi1 = 0, Vi j = ( j − 1)vi2 + · · · + vi j ≤
( j − 1)n, and

Zi = max
j=1,...,k

Vi j
j ( j + 1)

2

≤ max
j=1,...,k

2( j − 1)n

j ( j + 1)
< n.

Therefore Zo > Zi .
2. If no candidate obtains all the first ranks, let Ao and Ai be two candidates such

that Vo1 < n and Vi1 < n. Given that

Voj
n j ( j + 1)

2
− Voj

>
Vil

nl(l + 1)

2
− Vil

⇔ nl(l + 1)

2
Voj − VilVoj >

nj ( j + 1)

2
Vil − Voj Vil

⇔ l(l + 1)

2
Voj >

j ( j + 1)

2
Vil ⇔ Voj

j ( j + 1)

2

>
Vil

l(l + 1)

2
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for all j, l ∈ {1, . . . , k}, we have

max
j=1,...,k

Voj
n j ( j + 1)

2
− Voj

> max
j=1,...,k

Vi j
n j ( j + 1)

2
− Vi j

⇔ max
j=1,...,k

Voj
j ( j + 1)

2

> max
j=1,...,k

Vil
l(l + 1)

2

;

that is,
Ẑ∗
o > Ẑ∗

i ⇔ Zo > Zi .

	

Proof of Theorem 2

Zo = 1

ε∗
o

∫ ε∗
o

0
Ẑ∗
o(ε) dε

= 1

ε∗
o

∫ ε∗
o

0

(

(m − 1)V ∗
o + ε

(

Vok − V ∗
o

(
nk(k + 1)

2
− Vok

)))

dε

= (m − 1)V ∗
o +

(

Vok − V ∗
o

(
nk(k + 1)

2
− Vok

))
1

ε∗
o

∫ ε∗
o

0
ε dε

= (m − 1)V ∗
o +

(

Vok − V ∗
o

(
nk(k + 1)

2
− Vok

))
ε∗
o

2

= (m − 1)V ∗
o +

(

Vok − V ∗
o

(
nk(k + 1)

2
− Vok

))
m − 1

2

(
nk(k + 1)

2
− Vok

)

= (m − 1)V ∗
o + m − 1

2

Vok

2

(
nk(k + 1)

2
− Vok

) − m − 1

2
V ∗
o

= m − 1

2

⎛

⎜
⎝V ∗

o + Vok
nk(k + 1)

2
− Vok

⎞

⎟
⎠ = (m − 1)

V ∗
o + V k

o

2
.
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