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Abstract We propose the new compatibility of interval multiplicative preference
relations (IMPRs) in the group decision making (GDM) and apply it to determine
the weights of experts. Firstly, we introduce the operation of interval numbers and
define the new conception of logarithm compatibility degree of two interval multipli-
cative preference relations. Then, we prove the properties of logarithm compatibility
of IMPR. It is pointed that if IMPR provided by every expert and its characteristic
matrix are of acceptable compatibility, then the synthetic preference relation and the
synthetic characteristic matrix are also of acceptable compatibility. Furthermore, we
construct a mathematical programming model to determine the optimal weights of
experts by minimizing the square logarithm compatibility in the GDM with IMPR
and discuss the solution to the model. Finally, a numerical example is illustrated to
show that the model is feasible.
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1 Introduction

In the real decision making problems, decision makers usually use various types of
preference relations to express their views over alternatives. Xu (2007) presented a
survey of preference relations, such as fuzzy preference relation (Xu 2011; Xu and
Da 2005; Chiclana et al. 1998), multiplicative preference relation (Saaty 1980) lin-
guistic preference information (Chen et al. 2011), intuitionistic preference relation
(Atanassov 1986) etc.

Saaty (1980) introduced multiplicative preference relation which was defined as a
reciprocal matrix provided by the decision maker for each pair of alternatives. The
eigenvector method was developed to derive the priority vector from a multiplica-
tive preference relation in Saaty (1980). Because of the complexity and uncertainty
of problems and the limited amount of information available to decision makers, the
input information arguments provided by decision makers are given in the form of
interval numerical values rather than the real numerical values. Therefore, Saaty and
Vargas (1987) proposed the interval multiplicative preference relation (IMPR), which
was expressed by comparison ratios as intervals with lower and upper bounds. The
existing investigations on IMPR were mainly focused on obtaining the priority vector.
Saaty and Vargas (1987) derived the priority weight intervals from IMPR using a Monte
Carlo simulation method. Arbel (1989) built a linear programming model to obtain the
priority vector of IMPR. Salo and Hämäläinen (1995) presented a recursive algorithm
to get the priority weight intervals for an IMPR. Haines (1998) developed a statistical
approach to calculate the priority weight from IMPR. Islam et al. (1997) established
a goal programming to derive the weights from inconsistent IMPR. Mikhailov (2002)
established a fuzzy programming model to obtain the uncertain weights of partner-
ship selection criteria and uncertain scores of alternative partners. Wang et al. (2005)
utilized consistent IMPR to generate consistent interval weights by a linear program-
ming model and derived the interval weights by a nonlinear programming model based
on an eigenvector method. Fedrizzi and Brunelli (2009) indicated that the imposed
constraint, in which the components of the weight vector sum up to one, does not
obtain the proper priority vectors associated with multiplicative preference relations.
They proved that this normalization method is incompatible with additive transitivity
presented by Tanino (1984).

Group decision making (GDM) is regarded as a process for obtaining a collective
preference relation by a number of individual preference relations according to a finite
set of alternatives. In the GDM problems, the fundamental and important issue is how
to aggregate all individual preference relations into a collective one effectively. The
final solution must be derived from the synthesis of individual preferences (Kacprzyk
1986; Kacprzyk et al. 1992).

To achieve a collective preference relation with which the group is satisfied, the
individual multiplicative preference relation must be compatible with its characteris-
tic matrix generated by its priority vector. Therefore, Saaty (1994), Saaty and Vargas
(2007) introduced the compatibility to judge the difference between two multiplicative
preference relations.

Xu (2004) gave the concepts of compatibility degree and compatibility index of two
interval fuzzy preference relations based on the distance of two interval numbers and
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Logarithm Compatibility of Interval Multiplicative Preference Relations 761

obtained the properties of the synthetic interval fuzzy preference relation under the
condition that the interval fuzzy preference relations are of acceptable compatibility,
which provided a theoretic basis to apply the interval fuzzy preference relations in
group decision making.

Due to time pressure and lack of expertise knowledge, a decision maker usually
uses linguistic labels to provide his/her preference information. For example, linguis-
tic labels like fast, very fast, slow can be utilized to evaluate the design of a car.
Chen et al. (2011) presented the compatibility for the uncertain additive linguistic
preference relations based on lower index of additive linguistic label. They proved the
corresponding properties and constructed the optimal model for getting the weights
of experts in the group decision making (GDM).

However, no investigation has been devoted to the issue on the compatibility degree
of two interval multiplicative preference relations in the existing literatures. Motivated
by Xu (2004) and Chen et al. (2011), we propose the new concept of the logarithm
compatibility for two interval multiplicative preference relations. We also investigate
the properties of the logarithm compatibility and synthetic IMPRs. Its application is
to determine the optimal weights of experts by minimizing an incompatibility index
in the GDM with IMPRs.

This paper is organized as follows. In Sect. 2, we define the basic concepts of com-
patibility of IMPRs and give the main results. In Sect. 3, we construct the optimal
mathematical model to determine the optimal weights of experts based on logarithm
compatibility index of IMPR in the GDM. An illustrative example is discussed in
Sect. 4. Finally, we summarize the paper in Sect. 5.

2 Main Results

The input arguments are usually given in the form of interval numerical values rather
than non-negative real number values in the process of decision-making. Let’s look at
operations on interval number as follows.

Let a = [aL , aU
] = {x |aL ≤ x ≤ aU

}
, then a is called an interval number. Espe-

cially, a is a real number if aL = aU . For convenience of expression, let N =
{1, 2, . . . , n} and let � be the set of all positive interval numbers, i.e., if a = [aL , aU

] ∈
�, then aU ≥ aL > 0.

Definition 2.1 Let a, b ∈ �, a = [aL , aU
]
, b = [bL , bU

]
and p ≥ 0 is a non-neg-

ative real number, then
(1) a = b, if and only if aL = bL , aU = bU ;
(2) a + b = [aL + bL , aU + bU ];
(3) pa = [paL , paU

]
;

(4) a · b = [aL bL , aU bU
]
.

Definition 2.2 Let cbe a non-negative real number, a = [aL , aU
] ∈ �.

(1) If c ≥ 0, then ac =
[(

aL
)c

,
(
aU
)c]

, if c ≤ 0, then ac =
[(

aU
)c

,
(
aL
)c]

.

(2) If c > 1, then logc a = [logc aL , logc aU
]
. Especially, c = e, then

log a = [log aL , log aU
]
, and if 0 < c < 1, then logc a = [logc aU , logc aL

]
.
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762 Y. Wang et al.

Let X = (x1, x2, . . . , xn) be a finite set of alternatives. Saaty (1980) proposed the mul-
tiplicative preference relation to describe an expert’s preference, which was defined
as following:

Definition 2.3 Let A = (ai j
)

n×n be a matrix. If

ai j > 0, ai j a ji = 1, aii = 1, ∀i, j = 1, 2, . . . , n, (1)

then matrix A is called a multiplicative preference relation on the set X or reciprocal
matrix, where ai j denotes the preference degree of the alternative xi over x j .

Especially, ai j = 1 indicates indifference between xi and x j ; ai j > 1 indicates that
xi is preferred to x j , ai j < 1 indicates that x j is preferred to xi .

Saaty (1994), Saaty and Vargas (2007) proposed the notion of compatibility of two
multiplicative preference relations and developed a metric for ratio scales of the mul-
tiplicative preference relation. For simplicity of calculation and expression, we define
the logarithm compatibility degree of multiplicative preference relations as following.

Definition 2.4 Let A = (ai j )n×n and B = (bi j )n×n be two multiplicative preference
relations, and let

LC(A, B) =
n∑

i=1

n∑

j=1

∣∣log ai j − log bi j
∣∣, (2)

then LC(A, B) is called the logarithm compatibility degree of A and B.

However, decision makers may have vague knowledge about the preference degrees
of one alternative over another, so they cannot estimate their preference with a non-
negative real numerical value. Saaty and Vargas (1987) and Xu (2007) introduced the
notion of IMPR.

Definition 2.5 An interval multiplicative preference relation (IMPR) on the set X is

defined as matrix Ã = (ãi j
)

n×n , ãi j =
[
aL

i j , aU
i j

]
, satisfying

aU
i j aL

ji = 1, aU
ji a

L
i j = 1, i �= j, aU

ii = aL
ii = 1, ∀i, j = 1, 2, . . . , n, (3)

where ãi j indicates the interval-valued preference degree of the alternative xi over
x j , aU

i j ≥ aL
i j ≥ 0, aL

i j and aU
i j are the lower and upper bounds of ãi j , respectively.

Let Mn be the set of all interval multiplicative preference relations. We define the
logarithm compatibility degree of IMPR as following.

Definition 2.6 Let Ã = (ãi j )n×n ∈ Mn, B̃ = (b̃i j )n×n ∈ Mn , and if

I LC( Ã, B̃) = 1

2

n∑

i=1

n∑

j=1

(∣∣∣log aL
i j − log bL

i j

∣
∣∣+
∣
∣∣log aU

i j − log bU
i j

∣
∣∣
)
, (4)
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Logarithm Compatibility of Interval Multiplicative Preference Relations 763

then I LC( Ã, B̃) is called the logarithm compatibility degree of interval multiplicative
preference relation Ã and B̃.

Definition 2.7 Let Ã = (ãi j )n×n ∈ Mn, B̃ = (b̃i j )n×n ∈ Mn . If ãi j = b̃i j , that is,
aU

i j = bU
i j , aL

i j = bL
i j , i, j = 1, 2, . . . , n, then Ã and B̃ are perfectly compatible.

It is obvious that we can obtain the following Remark 2.1 from Definition 2.6 and
Definition 2.7.

Remark 2.1 Let Ã = (ãi j )n×n ∈ Mn, B̃ = (b̃i j )n×n ∈ Mn , then

(1) I LC( Ã, B̃) ≥ 0; I LC( Ã, B̃) = 0 if and only if Ã and B̃ are perfectly compat-
ible.

(2) I LC( Ã, B̃) = I LC(B̃, Ã)

Following similar to the proofs from Chen et al. (2011), we can easily get the
triangle inequality of logarithm compatibility degree.

Remark 2.2 If Ã = (ãi j )n×n ∈ Mn, B̃ = (b̃i j )n×n ∈ Mn, C̃ = (c̃i j )n×n ∈ Mn , then

I LC( Ã, C̃) ≤ I LC( Ã, B̃) + I LC(B̃, C̃) (5)

From Remarks 2.1 and 2.2, we can see that ILC is a kind of distance, which reflects
the difference between two interval multiplicative preference relations.

Definition 2.8 Let Ã = (ãi j )n×n ∈ Mn, B̃ = (b̃i j )n×n ∈ Mn , if

I LC I ( Ã, B̃) = 1

n(n − 1)
I LC( Ã, B̃), (6)

then I LC I ( Ã, B̃) is called the logarithm compatibility index of IMPR Ã and B̃.

Definition 2.9 Let Ã = (ãi j )n×n ∈ Mn, B̃ = (b̃i j )n×n ∈ Mn , If

I LC I ( Ã, B̃) ≤ α, (7)

then Ã and B̃ are of acceptable compatibility, where α is the threshold of acceptable
compatibility. [in general α = 0.2 according to Chen et al. (2011)].

Let E = (e1, e2, . . . , em) be a finite set of experts, where m denotes the number

of experts in the GDM. Let Ã(k) =
(

ã(k)
i j

)

n×n
be the IMPR provided by kth expert,

k = 1, 2, . . . , m.

Definition 2.10 Let Ã(k) =
(

ã(k)
i j

)

n×n
∈ Mn, k = 1, 2, . . . , m, if

ãi j =
m∏

k=1

(
ã(k)

i j

)ω(k)

, ∀ i, j = 1, 2, . . . , n, (8)

then Ã = (ãij)n×n is called the synthetic preference relation of Ã(k), k = 1, 2, . . . , m.
ω(k) is the weight of the kth expert, ω(k) ≥ 0,

∑m
k=1 ω(k) = 1.
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Theorem 2.1 Let Ã(k) =
(

ã(k)
i j

)

n×n
∈ Mn, k = 1, 2, . . . , m, then the synthetic

preference relation Ã =
(

ãij

)

n×n
∈ Mn.

Proof Since Ã(k) =
(

ã(k)
i j

)

n×n
∈ Mn , where ã(k)

i j =
[
aL(k)

i j , aU (k)
i j

]
, according to

Definition 2.5, we have

aU (k)
i j aL(k)

j i = 1, aU (k)
j i aL(k)

i j = 1, i �= j, aU (k)
i i = aL(k)

i i = 1, ∀i, j = 1, 2, . . . , n

(9)

By the Eq. (8), Definitions 2.1 and 2.2, we get

ãi j =
m∏

k=1

(
ã(k)

i j

)ω(k)

=
m∏

k=1

([
aL(k)

i j , aU (k)
i j

])ω(k)

=
m∏

k=1

[(
aL(k)

i j

)ω(k)

,
(

aU (k)
i j

)ω(k)
]

=
[

m∏

k=1

(
aL(k)

i j

)ω(k) m∏

k=1

(
aU (k)

i j

)ω(k)
]

i.e,

āL
i j =

m∏

k=1

(
aL(k)

i j

)ω(k)

, āU
i j =

m∏

k=1

(
aU (k)

i j

)ω(k)

(10)

where āL
i j and āU

i j are the lower and upper bounds of ãi j , respectively.

In similar way, ã j i =
[
∏m

k=1

(
aL(k)

j i

)ω(k)

,
∏m

k=1

(
aU (k)

j i

)ω(k)
]

, i.e,

āL
ji =

m∏

k=1

(
aL(k)

j i

)ω(k)

, āU
ji =

m∏

k=1

(
aU (k)

j i

)ω(k)

(11)

Therefore, according to the Eqs. (9)–(11), we have

āU
i j · āL

ji =
m∏

k=1

(
aU (k)

i j

)ω(k)

·
m∏

k=1

(
aL(k)

j i

)ω(k)

=
m∏

k=1

(
aU (k)

i j · aL(k)
j i

)ω(k)

=
m∏

k=1

1ω(k) = 1 (12)

āL
i j · āU

ji =
m∏

k=1

(
aL(k)

i j

)ω(k)

·
m∏

k=1

(
aU (k)

j i

)ω(k)

=
m∏

k=1

(
aL(k)

i j · aU (k)
j i

)ω(k)

=
m∏

k=1

1ω(k) = 1 (13)

āL
ii =

m∏

k=1

(
aL(k)

i i

)ω(k)

=
m∏

k=1

1ω(k) = 1, āU
ii =

m∏

k=1

(
aU (k)

i i

)ω(k)

=
m∏

k=1

1ω(k) = 1, (14)

From the Eqs. (12)–(14) and Definition 2.5, it follows that the synthetic preference

relation Ã =
(

ãij

)

n×n
is a IMPR, i.e, Ã =

(
ãij

)

n×n
∈ Mn , which completes the

proof. ��
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Logarithm Compatibility of Interval Multiplicative Preference Relations 765

Wang et al. (2005) proposed a two-stage logarithmic goal programming method for
generating weights from IMPR. They constructed the model to minimize the incon-
sistency of IMPR in the first stage and developed to generate priorities under the
condition of minimal inconsistency in the second stage. The weights are assumed to
be multiplicative rather than additive. A nonlinear programming method was used to
aggregate local interval weights into global interval weights.

Suppose that w̃ (k) =
(
w̃

(k)
1 , w̃

(k)
2 , . . . , w̃

(k)
n

)
is global interval weight vector

generated by two-stage logarithmic goal programming method weights from IMPR

Ã(k) =
(

ã(k)
i j

)

n×n
provided by kth expert in Saaty and Vargas (2007), where w̃

(k)
i =

[
w

L(k)
i , w

U (k)
i

]
, i = 1, 2, . . . , n, k = 1, 2, . . . , m.

Definition 2.11 Let

w̃
(k)
i j =

[
w

L(k)
i j , w

U (k)
i j

]
= w̃

(k)
i

w̃
(k)
j

=
[

w
L(k)
i

w
U (k)
j

,
w

U (k)
i

w
L(k)
j

]

(15)

Then W̃ (k) =
(
w̃

(k)
i j

)

n×n
is called the characteristic matrix corresponding to IMPR

Ã(k) =
(

ã(k)
i j

)

n×n
, k = 1, 2, . . . , m.

Definition 2.12 Let W̃ (k) =
(
w̃

(k)
i j

)

n×n
be the characteristic matrix corresponding to

IMPR Ã(k) =
(

ã(k)
i j

)

n×n
, k = 1, 2, . . . , m, if

w̃i j =
[
w̄L

i j , w̄
U
i j

]
=

m∏

k=1

(
w̃

(k)
i j

)ω(k)

=
[

m∏

k=1

(
w

L(k)
i j

)ω(k)

,

m∏

k=1

(
w

U (k)
i j

)ω(k)
]

,

∀ i, j = 1, 2, . . . , n, (16)

then W̃ =
(
w̃i j

)

n×n
is called the synthetic preference relation of W̃ (k), k =

1, 2, . . . , m. ω(k) is the weight of the kth expert, ω(k) ≥ 0,
∑m

k=1 ω(k) = 1.

According to Theorem 2.1, we know that W̃ =
(
w̃i j

)

n×n
∈ Mn .

Theorem 2.2 If I LC I
(

Ã(k), W̃ (k)
)

≤ α, ∀k = 1, 2, . . . , m. Then I LC I ( Ã, W̃ ) ≤
α

Proof Since I LC I
(

Ã(k), W̃ (k)
)

≤ α. By the Eqs. (4) and (6), we have

1

n(n − 1)

⎡

⎣1

2

n∑

i=1

n∑

j=1

(∣∣∣log aL(k)
i j − log w

L(k)
i j

∣∣∣+
∣∣∣log aU (k)

i j − log w
U (k)
i j

∣∣∣
)
⎤

⎦ ≤ α,

∀k = 1, 2, . . . , m. (17)
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766 Y. Wang et al.

Therefore, according to Definitions 6, 8, 10, 12 and Eq. (17), we get

I LC I ( Ã, W̃ ) = 1

n(n − 1)
I LC( Ã, W̃ )

= 1

n(n − 1)

⎡

⎣1

2

n∑

i=1

n∑

j=1

(∣∣
∣log āL

i j − log w̄L
i j

∣∣
∣+
∣∣
∣log āU

i j − log w̄U
i j

∣∣
∣
)
⎤

⎦

= 1

n(n − 1)

⎡

⎣1

2

n∑

i=1

n∑

j=1

(∣∣∣
∣∣
log

m∏

k=1

(
aL(k)

i j

)ω(k)

− log
m∏

k=1

(
w

L(k)
i j

)ω(k)
∣
∣∣
∣∣

+
∣
∣∣
∣∣
log

m∏

k=1

(
aU (k)

i j

)ω(k)

− log
m∏

k=1

(
w

U (k)
i j

)ω(k)
∣
∣∣
∣∣

)]

= 1

n(n − 1)

⎡

⎣1

2

n∑

i=1

n∑

j=1

(|
m∑

k=1

ω(k)
(

log aL(k)
i j − log w

L(k)
i j

)∣∣∣
∣

+
∣∣
∣∣
∣

m∑

k=1

ω(k)
(

log aU (k)
i j − log w

U (k)
i j

)
∣∣
∣∣
∣

)]

≤ 1

n(n − 1)

⎡

⎣1

2

n∑

i=1

n∑

j=1

(
m∑

k=1

ω(k)
∣
∣∣log aL(k)

i j − log w
L(k)
i j

∣
∣∣+

m∑

k=1

ω(k)
∣
∣∣log aU (k)

i j − log w
U (k)
i j

∣
∣∣

)⎤

⎦

=
m∑

k=1

ω(k)

⎧
⎨

⎩
1

n(n − 1)

⎡

⎣1

2

n∑

i=1

n∑

j=1

(∣∣∣log aL(k)
i j − log w

L(k)
i j

∣
∣∣+
∣
∣∣log aU (k)

i j − log w
U (k)
i j

∣
∣∣
)
⎤

⎦

⎫
⎬

⎭

≤∑m
k=1 ω(k)α = α

∑m
k=1 ω(k) = α · 1 = α. i.e, I LC I ( Ã, W̃ ) ≤ α, which completes

the proof. ��
Theorem 2.2 shows that if Ã(k) and W̃ (k)are of acceptable compatibility, k =

1, 2, . . . , m, then the synthetic preference relation Ã and W̃ is also of acceptable
compatibility.

3 Determining the Optimal Weights of Experts Based on Square Logarithm
Compatibility Index of Interval Multiplicative Preference Relations
in the GDM

From Remark 2.1 and 2.2, we know that logarithm compatibility index reflects the
difference between two interval multiplicative preference relations. We assume that
the IMPR provided by kth expert is worse than its corresponding characteristic matrix
in the consistency. Therefore, we can use the logarithm compatibility index between
the IMPR and its corresponding characteristic to measure the reliability of informa-
tion given by kth expert. As a result, the criterion of determining the optimal weights

of experts is to minimize the difference between the synthetic preference relation Ã

and its corresponding characteristic matrix W̃ in the group decision making problems,
which leads to aggregate individual information with IMPRs effectively.
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Logarithm Compatibility of Interval Multiplicative Preference Relations 767

For the convenience of calculation, we define the new square logarithm compati-

bility index of the synthetic preference relation Ã and W̃ as following.

SI LC I ( Ã, W̃ ) = 1

n(n − 1)

⎡

⎣ 1

2

n∑

i=1

n∑

j=1

((
log āL

i j − log w̄L
i j

)2 +
(

log āU
i j − log w̄U

i j

)2
)⎤

⎦

= 1

2n(n − 1)

n∑

i=1

n∑

j=1

⎡

⎣
(

m∑

k=1

ω(k)
(

log aL
i j

(k) − log w
L(k)
i j

))2

+
(

m∑

k=1

ω(k)
(

log aU (k)
i j − log w

U (k)
i j

))2
⎤

⎦

= 1

2n(n − 1)

n∑

i=1

n∑

j=1

⎛

⎝
m∑

k=1

m∑

l=1

ω(k)ω(l)

⎡

⎣

(
log aL(k)

i j − log w
L(k)
i j

) (
log aL(l)

i j − log w
L(l)
i j

)

+
(

log aU (k)
i j − log w

U (k)
i j

) (
log aU (l)

i j − log w
U (l)
i j

)

⎤

⎦

⎞

⎠

=
m∑

k=1

m∑

l=1

ω(k)ω(l)

⎛

⎝ 1

2n(n − 1)

n∑

i=1

n∑

j=1

⎡

⎣

(
log aL

i j
(k) − log wL

i j
(k)
) (

log aL
i j

(l) − log wL
i j

(l)
)

+
(

log aU
i j

(k) − log wU
i j

(k)
) (

log aU
i j

(l) − log wU
i j

(l)
)

⎤

⎦

⎞

⎠

(18)

Let � = (
ω(1), ω(2), . . . , ω(m)

)T
, � is the weight vector of experts, D = (dkl)m×m

is a matrix, where

dkl = 1
2n(n−1)

∑n
i=1
∑n

j=1

⎡

⎣

(
log aL(k)

i j − log w
L(k)
i j

) (
log aL(l)

i j − log w
L(l)
i j

)

+
(

log aU (k)
i j − log w

U (k)
i j

) (
log aU (l)

i j − log w
U (l)
i j

)

⎤

⎦.

Thus, Eq. (18) is rewritten as SI LC I ( Ã, W̃ ) = �T D�. Therefore, the optimal
model of determining weights of experts based on square logarithm compatibility
index of IMPR in the GDM is expressed as following:

Min SI LC I ( Ã, W̃ ) = �T D�

s.t

⎧
⎨

⎩

m∑

k=1
ω(k) = 1,

ω(k) ≥ 0, k = 1, 2, . . . , m

(19)

Let RT = (1, 1, . . . , 1)1×m , Problem (19) is rewritten as following:

SI LC I ( Ã, W̃ ) = �T D�

s.t

{
RT� = 1,

� ≥ 0
(20)

If we don’t consider the constraint that � ≥ 0 in Problem (20), then

SI LC I ( Ã, W̃ ) = �T D�

s.t. RT� = 1,
(21)

Theorem 3.1 If Ã and W̃ are not perfectly compatible, the solution to Problem (21)
is

�∗ = D−1 R

RT D−1 R
(22)
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Proof Since Ã and W̃ are not perfectly compatible, then Ã �= W̃ , i.e., there ex-
ists i0, j0 ∈ {1, 2, . . . , n} , i0 �= j0, satisfying ãi0 j0 �= w̃i0 j0 , where ãi0 j0 =
[
āL

i0 j0
, āU

i0 j0

]
, w̃i0 j0 =

[
wL

i0 j0
, w̄U

i0 j0

]
. Therefore, we have

(
log āL

i0 j0
− log w̄L

i0 j0

)2 +
(

log āU
i0 j0

− log w̄U
i0 j0

)2
> 0. Thus,

SI LC I ( Ã, W̃ ) = 1

n(n − 1)

×
⎡

⎣1

2

n∑

i=1

n∑

j=1

((
log āL

i j − log w̄L
i j

)2 +
(

log āU
i j − log w̄U

i j

)2
)⎤

⎦ > 0 (23)

Obviously, D = (dkl)m×m is a symmetric matrix. By Eq. (23), we have SI LC I ( Ā,

W̄ ) = �T D� > 0. Since � is the weight vector of experts, � ≥ 0,� �= 0. Thus,
D = (dkl)m×m is a positive definite matrix, and it is also a nonsingular matrix. We
construct the Lagrange function corresponding to the Problem (21),

L(�, λ) = �T D� + λ(RT� − 1) (24)

where λ is the Lagrange multiplier.
Setting these partial derivatives equal to zero by differentiating Eq. (24) with respect

to � and λ, we have ∂L(�,λ)
∂�

= 0,
∂L(�,λ)

∂λ
= 0. i.e.,

{
2D� + λR = 0
RT� − 1 = 0

, (25)

We find the optimal solution by solving Eq. (25) �∗ = D−1 R
RT D−1 R

. Since ∂2 L(�,λ)

∂�2 = D
is a positive definite matrix, L(�, λ) is a strictly convex function. Therefore �∗ =

D−1 R
RT D−1 R

is the unique optimal solution to Problem (21), which completes the proof. ��

Theorem 3.1 indicates that Problem (24) has the analytical solutions �∗. However,
�∗ is not necessarily non-negative. If �∗ ≥ 0, it is also the optimal solution to Problem
(23). Otherwise, we can use the software for optimization problems (such as LINGO)
to solve the Problem (23).

4 Numerical Example

In this section, we offer a numerical example which is used to determine the experts
weights based on square logarithm compatibility index of interval multiplicative pref-
erence relations in the GDM. Suppose that X = (x1, x2, x3, x4) is a finite set of
alternatives and E = (e1, e2, e3) is a finite set of experts. Every expert provides his
own interval multiplicative preference relation on X in Wang et al. (2005), respectively.
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Let

A1 =

⎡

⎢⎢
⎣

[1, 1] [2, 5] [2, 4] [1, 3]
[1/5, 1/2] [1, 1] [1, 3] [1, 2]
[1/4, 1/2] [1/3, 1] [1, 1] [1/2, 1]
[1/3, 1] [1/2, 1] [1, 2] [1, 1]

⎤

⎥⎥
⎦

A2 =

⎡

⎢⎢
⎣

[1, 1] [1, 2] [1, 2] [2, 3]
[1/2, 1] [1, 1] [3, 5] [4, 5]
[1/2, 1] [1/5, 1/3] [1, 1] [6, 8]
[1/3, 1/2] [1/5, 1/4] [1/8, 1/6] [1, 1]

⎤

⎥⎥
⎦

A3 =

⎡

⎢⎢
⎣

[1, 1] [2, 4] [3, 5] [3, 5]
[1/4, 1/2] [1, 1] [1/2, 1] [2, 5]
[1/5, 1/3] [1, 2] [1, 1] [1/3, 1]
[1/5, 1/3] [1/5, 1/2] [1, 3] [1, 1]

⎤

⎥⎥
⎦

Wang et al proposed a two-stage logarithmic goal programming method for generating

weights w̃(1) =
(
w̃

(1)
1 , w̃

(1)
2 , w̃

(1)
3 , w̃

(1)
4

)
from A1 in the table 3 of Wang et al. (2005),

where

w̃
(1)
1 =

[
w

L(1)
1 , w

U (1)
1

]
= [1.6818, 2.4495], w̃

(1)
2 =

[
w

L(1)
2 , w

U (1)
2

]
= [0.7598, 1.1067],

w̃
(1)
3 =

[
w

L(1)
3 , w

U (1)
3

]
= [0.5000, 0.8409], w̃

(1)
4 =

[
w

L(1)
4 , w

U (1)
4

]
= [0.6866, 1.0000],

Similarly, weights w̃(2) =
(
w̃

(2)
1 , w̃

(2)
2 , w̃

(2)
3 , w̃

(2)
4

)
is obtained from A2 in the table 6

of Wang et al. (2005).

w̃
(2)
1 =

[
w

L(2)
1 , w

U (2)
1

]
= [1.1583, 1.7783], w̃

(2)
2 =

[
w

L(2)
2 , w

U (2)
2

]
= [1.4142, 2.2361],

w̃
(2)
3 =

[
w

L(2)
3 , w

U (2)
3

]
= [0.7071, 1.4953], w̃

(2)
4 =

[
w

L(2)
4 , w

U (2)
4

]
= [0.2991, 0.4855],

weights w̃(3) = (w̃
(3)
1 , w̃

(3)
2 , w̃

(3)
3 , w̃

(3)
4 ) is generated from A3 in the table 9 of Saaty

and Vargas (2007).

w̃
(3)
1 =

[
w

L(3)
1 , w

U (3)
1

]
= [2.0598, 3.1623], w̃

(3)
2 =

[
w

L(3)
2 , w

U (3)
2

]
= [0.7071, 1.1892],

w̃
(3)
3 =

[
w

L(3)
3 , w

U (3)
3

]
= [0.5623, 0.8633], w̃

(3)
4 =

[
w

L(3)
4 , w

U (3)
4

]
= [0.4949, 0.7598],
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According to the Eq. (15), we have the characteristic matrix W̃ (k) =
(
w̃

(k)
i j

)

n×n
corresponding

to IMPR Ã(k) =
(

ã(k)
i j

)

n×n
, k = 1, 2, 3, i.e,

W̃ (1) =

⎡

⎢
⎢
⎣

[1, 1] [1.5197, 3.2239] [2, 4.8990] [1.6818, 3.5676]
[0.3102, 0.6580] [1, 1] [0.9036, 2.2134] [0.7598, 1.6119]

[0.2041, 0.5] [0.45179, 1.1067] [1, 1] [0.5, 1.2247]
[0.2803, 0.5946] [0.6204, 1.3161] [0.81651, 2] [1, 1]

⎤

⎥
⎥
⎦ ;

W̃ (2) =

⎡

⎢
⎢
⎣

[1, 1] [0.518, 1.2575] [0.7746, 2.5149] [2.3858, 5.9455]
[0.7953, 1.9305] [1, 1] [0.9458, 3.1624] [2.9129, 7.4761]
[0.3976, 1.2909] [0.3162, 1.0573] [1, 1] [1.4564, 4.9993]
[0.1682, 0.4192] [0.1338, 0.3433] [0.2000, 0.6866] [1, 1]

⎤

⎥
⎥
⎦ ;

W̃ (3) =

⎡

⎢
⎢
⎣

[1, 1] [1.7321, 4.4722] [2.386, 5.6239] [2.711, 6.3898]
[0.2236, 0.5773] [1, 1] [0.8191, 2.1149] [0.9306, 2.4029]
[0.1778, 0.4191] [0.4728, 1.2209] [1, 1] [0.7400, 1.7444]
[0.1565, 0.3689] [0.4162, 1.0745] [0.5733, 1.3512] [1, 1]

⎤

⎥
⎥
⎦ ;

According to the Problem (20), we have

D =
⎡

⎣
0.0729 0.0669 0.0172
0.0669 0.4413 −0.1732
0.0172 −0.1732 0.2536

⎤

⎦

By the Eq. (22), we get

�∗ = D−1 R

RT D−1 R
=
⎡

⎣
0.5545
0.1562
0.2893

⎤

⎦

Since �∗ > 0, Therefore �∗ is the optimal solution of the Problem (20). i.e, the experts
e1, e2, e3 have their optimal weights

ω(1) = 0.5545, ω(2) = 0.1562, ω(3) = 0.2893

Furthermore, we calculate the logarithm compatibility index of IMPR Ãk and W̃ (k)by the Eq.
(6), k = 1, 2, 3, then

I LC I
(

Ã1, W̃ (1)
)

= 0.2256

I LC I
(

Ã2, W̃ (2)
)

= 0.5571

I LC I
(

Ã3, W̃ (3)
)

= 0.4203

If α = 0.25, then

I LC I
(

Ã1, W̃ (1)
)

< α, I LC I
(

Ã2, W̃ (2)
)

> α, I LC I
(

Ã2, W̃ (3)
)

> α

i.e.,
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IMPR Ã1 provided by the 1st expert and its characteristic matrix W̃ (1) are of acceptable
compatibility. However, Ã2 provided by the 2nd expert and W̃ (2), Ã3 provided by the 3rd expert
and W̃ (3) are not of acceptable compatibility.

From the computational result, we can see that

I LC I
(

Ã2, W̃ (2)
)

> I LC I
(

Ã3, W̃ (3)
)

> I LC I
(

Ã1, W̃ (1)
)

and ω(1) > ω(3) > ω(2)

i.e., The less the logarithm compatibility index of IMPR and its characteristic matrix is, the
more weight expert corresponding to the IMPR has.

5 Concluding Remarks

In this paper, we have presented the new logarithm compatibility degree of IMPR in which the
input information arguments provided by experts are given in the form of interval numerical
values rather than the non-negative real values.

we have been able to obtain the properties of logarithm compatibility degree. Especially, we
prove that the synthetic preference relation and the synthetic characteristic matrix are also of
acceptable compatibility under the condition that the IMPR provided by every expert and its
characteristic matrix are of acceptable compatibility, which provided the scientific base of using
the synthetic characteristic matrix for priority instead of the synthetic characteristic matrix in
the GDM. Furthermore, we have introduced square logarithm compatibility degree and utilized
it for determining the optimal weights of experts. We have also illustrated a numerical example
to show the feasibility and effectiveness of the new approach. The result shows that the optimal
weights of experts are related to the reliability of information provided by them, which gives
the objective approach for weighting the experts by the mathematical model.

In the future, we expect to develop the compatibility of interval linguistic preference infor-
mation and its properties and applications in the GDM.
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