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Abstract A system that aggregates case-based linguistic decision rules using a
hybrid of the dominance-based rough set approach (DRSA) and the Dempster–Shafer
(DS) theory of evidence is proposed for multiple criterion-multiple participant sorting.
First, DRSA is employed to infer linguistic decision rules that estimate the preferences
of a few participants by means of their evaluations of representative case sets. Next,
DS theory is applied to aggregate the decision rules triggered by all participants’ eval-
uations of an alternative, thereby generating an overall decision recommendation for
the alternative. The method is demonstrated on a numerical example.

Keywords Group decision making · Multiple criteria-multiple participant sorting ·
Dominance-based rough set approach · Dempster–Shafer theory of evidence ·
Decision rule aggregation

1 Introduction

Increasingly complex economic, societal and environmental issues force humans to
tackle problems crossing many disciplines. Raiffa et al. (2002) categorized decision
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analysis methodologies as descriptive, normative, or prescriptive. Descriptive deci-
sion analysis addresses the actual decisions that are made in practice, normative deci-
sion analysis addresses how decisions should made, and prescriptive decision analysis
provides practical methods for improving decisions. As a research area devoted mainly
to perspective and normative analyses, group decision and negotiation (GDN) focuses
on a common but essential activity for individuals, corporations, governments, and
other organizations around the world. At its best, GDN can be an informative pro-
cess that results in judgements that are particularly effective for strategic planning,
for example by integrating expert feedback. Because organizational performance is
usually improved by consideration of multiple perspectives, such processes can be a
key to success for any enterprise.

GDN processes typically fall into one of two classes:

• Group decision making (GDM): A multi-party decision problem in which two or
more independent, concerned parties must make a joint decision.

• Negotiation: A multi-party decision problem in which two or more independent,
concerned parties may make a joint decision, or may choose to make no decision
at all. In other words, negotiators have the option of “walking away”.

Support for GDM consists mainly of procedures to aggregate opinions, since the
final result typically balances the points of view of the participants. Support for nego-
tiation, on the other hand, is usually based on interactive analysis of the choices
of different participants, and on the search for equilibria (stable outcomes) con-
sistent with some set of assumptions about human behavior. Obviously, a GDM
process is more controllable, and it is often assumed, explicitly or implicitly, that
a “leader” is in charge. This leader usually does not express preferences over the
alternatives under discussion, but rather controls the selection of analysis tools and
aggregation methods, and may even adjust the weight given to different stake-
holder inputs. In contrast, a negotiation is less controllable: There can be no leader,
and the final result may be that there is no agreement, and therefore no deci-
sion.

The applications of GDM and negotiation are different because of these dis-
tinctions. For example, GDM may be carried out democratically, according to
one of the many different voting procedures that can be used to determine group
choices on social issues. In contrast, negotiation follows a procedure only if
all participants accept it, and conflicts among individuals, corporations, or gov-
ernments often remain unresolved, and may even evolve, over long periods of
time.

The main theoretical tool for the analysis of negotiation is game theory, a set of
models and methods that attempts to capture mathematically the behavioral issues in
an interaction in which each side has preferences over all sides’ choices (Myerson
1997). Variants of game theory designed for the analysis of negotiation include meta-
game theory (Howard 1971), conflict analysis (Fraser and Hipel 1984), and the graph
model for conflict resolution (Fang et al. 1993).

Research on GDM has a long history. Over two hundred years ago, Condorcet
pioneered the mathematical analysis of social choice, asking how individual pref-
erences could be aggregated into a collective preference or group decision (Arrow
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1963). Condorcet’s voting paradox pinpoints a fundamental problem: Used to aggre-
gate preference, majority rule can fail to preserve transitivity if there are three or more
alternatives—from a set of three or more individuals, a majority can prefer A over B,
another majority can prefer B over C , and yet another majority can prefer C over A.

In a complex society, GDM processes must inevitably take many criteria (fac-
tors) into account. Thus, research on GDM that explicitly incorporates multiple
criteria has been a major focus, and has made significant progress with the rapid
development of operations research, management science, systems engineering, and
other disciplines. Hwang and Lin (1987) seems to have been the first study to
explore systematically how multiple criteria could be used in GDM. Very influ-
ential ideas on the use of multiple criteria decision analysis (MCDA) for GDM
appeared in a 1998 issue of the journal Group Decision and Negotiation, Vol.
7(1).

Recent advances in information technology have made possible decision support
systems (DSSs) designed explicitly for multiple criteria GDM. An early approach
was Bui (1987), in which MCDA methods for individual preference elicitation and
preference aggregation were proposed for the analysis, design and implementation
of group DSSs to support GDM. More recently, Wallenius et al. (2008) provided a
comprehensive summary of advances in the application of multiple-criteria methods
to both negotiation and GDM.

This paper addresses multiple-criteria sorting, a fundamental problem of MCDA, in
a GDM context. The objective is to integrate the opinions of several participants into
a sorting. The hybrid approach proposed here combines dominance-based rough sets
with the Dempster–Shafer theory of evidence. Specifically, the major contributions of
this article include:

• Preference elicitation by means of holistic judgements on representative case sets:
With representative case sets, participants need only specify preference directions
over criteria. No measure of value (utility) is required. Then a DRSA generates lin-
guistic decision rules, which effectively represent preferences. This process greatly
eases preference elicitation.

• Flexible information aggregation: A procedure implementing three basic construc-
tion strategies is designed to capture decision information from decision rules. The
Dempster–Shafer (DS) theory of evidence then provides a flexible mechanism for
efficient information aggregation.

Thus, the proposed methodology sidesteps arguments about which specific models
of utility are appropriate, and at the same time simplifies the measurement of individual
preference.

The remainder of this paper is organized as follows: aggregation-based group DSSs
are discussed in Sect. 2; applicable principles from MCDA are described in Sect. 3;
the DRSA is explained in Sect. 4; and the Dempster–Shafer (DS) theory of evidence
is applied to aggregate the decision rules of different participants in Sect. 5. Sec-
tion 6 contains a demonstration of the method using a numerical example, and Sect. 7
presents some conclusions.
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2 Rule Aggregation-based Group Decision Support

2.1 Multiple Criteria-Multiple Participant Sorting

The paper proposes a decision rule that aggregates viewpoints in order to solve a
multiple criteria-multiple participant sorting (MCMPS) problem. An MCMPS prob-
lem is defined by the sets listed below (note that |X| represents the cardinality of the
set X):

• The set of alternatives, A = {
a1, . . . , ai , . . . , a|A|}, under assessment;

• The set of criteria, C = {
c1, . . . , c j , . . . , c|C|

}
, representing the measures by

which the alternatives are evaluated;
• The set of participants, E = {

e1, . . . , ek, . . . , e|E|
}
, who are considered to have

expert opinions;
• A set of classes, Cl = {

cl1, . . . , cll , . . . , cl|Cl|
}
, that constitute the pre-defined

groupings into which the alternatives of A are to be assigned. Note that the classes
of Cl are often associated with preference; for example, it may be assumed that if
1 ≤ g < h ≤ |Cl|, then the participants see every alternative in clg as preferable
to any alternative in clh .

To solve the MPMCS problem is to design a procedure that aggregates the views
of the participants, in E as to the class in Cl to which each alterative in A should be
assigned, consistent with the criteria in C. The procedure should be both theoretically
sound and practical. It is assumed that the decision makers (DMs) (or analysts), who
are in charge of the process for solving the MPMCS problem, do not have, or do
not express, any explicit preferences over A. Their role is to choose the aggregation
procedure and adjust the relative weightings of the participants.

MCMPS problems have a variety of practical applications (Zopounidis and
Doumpos 2002). For example, for efficient management of inventories, which may
include hundreds of items, it is usual to classify items into a few pre-defined categories
based on expert assessments of criteria such as criticality, cost, and replenishment time.
Then efficient inventory management can usually be achieved by following different
policies for items in each class (Chen et al. 2008a). For example, in ABC analysis, a
well-known inventory classification procedure, items are sorted into three groups, A
(greatest management effort and attention), B (less effort), and C (least effort) (Silver
et al. 1998).

Majority voting may seem to be a good procedure to carry out sorting by aggre-
gating the views of different participants. In practical problems, however, it has two
major shortcomings:

• Quality of participants’ recommendations: Natural variability in participants’
backgrounds, such as education and experience, often reduces the number who
are experts in a particular sorting problem, though it may be useful to include
others’ judgements. Even if every participant has a realistic assessment of his or
her own knowledge, voting procedures in which voters signal level of uncertainty
along with assessment are difficult to design and implement. In MCDA it is com-
mon practice for the DM to assign a relative weight to each participant to reflect
competence and aggregate opinions taking that weight into account. However, it
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would be preferable if such input information came from the participants and not
the DM.

• Process Efficiency: Ties are common when participants have diverse opinions. For
example, if there are three participants and three classes, each participant may
assign an alternative to a different class, so that majority voting fails to determine
a class for the alternative. The alternative may then be assigned to the middle class
by default, or by some averaging procedure. Because the number of alternatives
is often much larger than the number of categories, ties are both likely and prob-
lematic. Another issue associated with large sets of alternatives is that participants
may be unable to assess them all consistently.

To make each input opinion meaningful while avoiding these problems, this paper’s
strategy is to identify the participants’ preference patterns over alternatives and then
aggregate them as they are applied to the entire alternative set to generate the final sort-
ing. This idea is related to the development of an expert system (or knowledge-based
system) that integrates knowledge from several experts (Ignizio 1991). Specifically,
a preference elicitation and aggregation system is designed to identify participants’
decision patterns in terms of linguistic decision rules; then these rules are aggregated
to produce final results. The proposed system works within a MCDA framework, as
presented next.

2.2 The Overall Framework

Figure 1 gives an overview of the group support system based on aggregation of
participants’ input. It includes two main components, the DRSA for decision rule
elicitation and the Dempster–Shafer (DS) theory of evidence for decision rule aggre-
gation. The steps, beginning with the basic MCDA structure (the set of alternatives,
A, the set of criteria, C)) and the MCMPS participants

(
E = {

e1, . . . , ek, . . . , e|E|
})

are all under the control of the analysts. They are now summarized:

1. Elicitation of Individual Participants’ Preferences
• Case Set Identification: For each participant, ek , a representative case set,

Tk =
{

t1
k , . . . , t i

k, . . . , t |Tk |
k

}
must be identified. Each participant may receive

a different case set; alternatively, a representative case set, T = T1 = T2 =
· · · = T|E|, may be assigned to all participants. Each participant’s sorting of
the case set is noted.

• DRSA Construction and Calculation: The DRSA is then applied to each par-
ticipant’s response to analyze the sorting.

• Linguistic Decision Rules: Linguistic decision rules are generated for each
participant. For i = 1, . . . , |E|, participant ek’s linguisitic rules are denoted

Rk =
{

r1
k , . . . , r i

k, . . . , r |Rk |
k

}
.

2. Preference Aggregation based on Decision Rules
• Triggered Decision Rules from Participants: To evaluate alternative ai , where

i = 1, . . . , |A|, apply all applicable linguistic decision rules and note which
of the participants’ decision rules are triggered.
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Fig. 1 The overall procedure of
rule aggregation-based group
decision support

• DS Rule Aggregation: Use DS theory to aggregate the triggered rules, consid-
ering such additional information as rule relative strength, rule approximation
quality, and participants’ relative importance.

• Final Aggregated Results: Select the most plausible result based on the out-
come of the aggregated rules.

A detailed explanation of the above procedure is given below, following a brief
introduction to MCDA. Descriptions of DRSA and DS theory, and their application
to MCMPS appear in Sects. 4 and 5, respectively.
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Fig. 2 Steps in multiple criteria decision analysis (Chen et al. 2008b)

3 Multiple Criteria Decision Analysis

3.1 General Description

The field of MCDA includes not only theory and methodological development but
also practical techniques to help a DM identify, compare and evaluate alternatives.
There are always two or more criteria, usually conflicting; for example, it is common
for social, economic and environmental criteria to be included in a decision prob-
lem. According to Roy (1996), MCDA has three fundamental decisions involving
alternatives from a set A:

• Choice. Choose the best alternative from A.
• Sorting. Sort the alternatives of A into relatively homogeneous groups, arranged

in preference order.
• Ranking. Rank the alternatives of A from best to worst.

A typical MCDA analysis procedure is illustrated in Fig. 2. There are three key
steps:

1. Problem construction: Define the DM’s objectives, translate them into criteria
by which alternatives can be measured, identify all available alternatives, and
measure the consequence of each alternative on each criterion. Criteria may be
qualitative or quantitative, but all consequences are expressed numerically.

2. Preference elicitation and aggregation: Model the DM’s preferences for perfor-
mance on each criterion and the DM’s relative weights for the different criteria,
thereby obtaining an overall evaluation of each alternative.

3. Implementation: Use the evaluations to assess all alternatives in order to choose
from, sort, or rank the set A.

3.2 Case-Based Preference Elicitation

The DM’s preferences are a fundamental input to any MCDA problem, so their elici-
tation and representation are obviously important. Generally speaking, there are two
methodologies for preference elicitation: direct input and holistic elicitation. In direct
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input methods such as the multiattribute utility theory (MAUT) (Keeney and Raiffa
1976) and analytic hierarchy process (AHP) (Saaty 1980), the DM supplies explicit
preference information that is used to calibrate a model of preference, so that all
preference parameters are known explicitly.

Holistic elicitation methods, especially case-based methods, have been investigated
extensively in recent years. They include the DRSA (Greco et al. 2001), the UTA
method (Jacquet-Lagrèze and Siskos 1982), ELECTRE TRI Assistant (Mousseau and
Slowinski 1998), UTADIS (UTilités Additives DIScriminantes) and MHDIS (Multi-
group Hierarchical DIScrimination) (Doumpos and Zopounidis 2002), and the case-
based distance approach (Chen et al. 2007). Most case-based elicitation methods are
well-suited to sorting problems.

In a case-based holistic elicitation method, the DM furnishes a holistic (global)
judgement on representative cases, which are then input to an optimization program
that calibrates a preference model to approximate the DM’s decisions as closely as
possible. Generally, case-based approaches to preference elicitation in MCDA include
three steps:

1. Representation: Identify representative cases from the full set of alternatives, or
elsewhere, and present them to the DM for preference assessment.

2. Inference: Find preference parameters that reproduce the DM’s judgement on the
case set as accurately as possible.

3. Application: If the best-fit preference parameters reproduce the DM’s judgement
with sufficient clarity and accuracy, apply them to obtain preferences on the full
set of alternatives. If there is too much ambiguity, add more cases to the case set
and repeat. If the reproduction of the DM’s judgement is too inaccurate, query the
DM about possible contradictions in the judgements on the case set.

4 The Dominance-Based Rough Set Approach (DRSA)

4.1 Rough Set Theory

Pawlak (1982) introduced rough sets as a tool to describe dependencies among attri-
butes and to evaluate the significance of individual attributes. Because of its ability to
handle the inherent uncertainty or vagueness of data, rough set theory complements
probability theory, evidence theory, fuzzy set theory, and other approaches. Recent
advances in rough set theory have made it a powerful tool for data mining, pattern
recognition, and information representation. Pawlak and Skowron (2007) is a compre-
hensive literature review of rough set theory, including summaries of research issues
and applications.

As pointed out by Greco et al. (2001), the original rough set approach cannot
efficiently extract information (DMs’ preferences) from the analysis of a DM’s judge-
ments on a case set. The DRSA, an extension of rough set theory, works well in
MCDA by replacing the indiscernibility relation with dominance, thereby allowing
for inconsistent preference comparisons of alternatives over criteria and of orderings
over sorting classes (groups). The main ideas of DRSA are summarized next.
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Fig. 3 The DRSA procedure

4.2 The Structure of DRSA

In the standard MCDA sorting problem, a DM assigns each alternative in the set
A = {

a1, . . . , ai , . . . , a|A|} to a member of Cl = {
cl1, . . . , cll , . . . , cl|Cl|

}
in accor-

dance with the set of criteria C = {
c1, . . . , c j , . . . , c|C|

}
. The subset of A assigned to

each of the classes in Cl must be non-empty, and for 1 ≤ g < h ≤ |Cl|, the DM must
prefer every alternative in clg to any alternative in clh . Hence, Cl is often written as
cl1 � cl2 � · · · � cl|Cl|, where � is pronounced “is preferred to.”

To implement case-based preference elicitation, the DM is asked to assign each
alternative in the case set T = {

t1, . . . , t i , . . . , t |T|} to a class in Cl. Again, for all

g = 1, . . . , |Cl|, clg �= ∅ and
⋃|Cl|

g=1 clg = T. (Typically, |A| >> |T| >> |Cl|.)
Using DRSA, a set of decision rules, R, can be obtained from the sorting of T and
then applied to sort A.

The DRSA-based sorting procedure is illustrated in Fig. 3. Here, mi
j is the perfor-

mance measurement (consequence) of alternative t i according to criterion (or condi-
tion) c j . It is assumed that the DM’s preferences over each criterion are monotonic,
i.e., for each j = 1, . . . , |C|, c j is either a positive criterion (the greater the perfor-
mance, the more preferred the alternative, ceteris paribus) or a negative criterion (the
greater the performance, the less preferred the alternative). Once the DM specifies the
preference direction for each criterion, DRSA extracts a set of linguistic rules, R, that
captures the preference information in the DM’s sorting of the case set. Then R is
applied to sort A as required.

It is useful to define the upward union (signalled by the superscript “�”) and the
downward union (signalled by superscript “�”) of a sorting cl1 � cl2 � · · · � cl|Cl|.
For h = 1, . . . , |Cl|, let cl�h = ⋃

g≤h clg , and cl�h = ⋃
g≥h clg . It is easy to show that

cl�|Cl| = cl�1 = Cl, and cl�1 = cl1 and cl�1 = cl|Cl|.

4.3 Rough Approximation

Now assume that the DM’s assignment of the cases in T to the classes in Cl is given.
Let P ⊆ C be a non-empty subset of criteria and define DP, a binary relation on T,
by t i DPt l iff t i is at least as good as t l with respect to all the criteria in P, where
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t i , t l ∈ T. It is assumed that DP is a complete preorder, i.e. a reflexive, complete and
transitive binary relation. For fixed P ⊆ C and t i ∈ T, define the P-dominating set and
P-dominated set of t i to be D+

P

(
t i

) = {
t l ∈ T : t l DPt i

}
and D−

P

(
t i

) = {
t l ∈ T :

t i DPt l
}
, respectively.

Next, define the P-lower approximation and the P-upper approximation to cl�h by
P

(
cl�h

) = {
t i ∈ T : D+

P

(
t i

) ⊆ cl�h
}

and P
(
cl�h

) = {
t i ∈ T : D−

P

(
t i

) ∩ cl�h �= ∅}
,

respectively. Similarly, the P-lower and P-upper approximation to cl�h are P
(
cl�h

) ={
t i ∈ T : D−

P

(
t i

) ⊆ cl�h
}

and P
(
cl�h

) = {
t i ∈ T : D+

P

(
t i

) ∩ cl�h �= ∅}
. It is easy to

verify that P
(
cl�h

) ⊆ cl�h ⊆ P
(
cl�h

)
and P

(
cl�h

) ⊆ cl�h ⊆ P
(
cl�h

)
.

Define the P-boundaries of cl�h and cl�h by BnP
(
cl�h

) = P
(
cl�h

) − P
(
cl�h

)
and

BnP
(
cl�h

) = P
(
cl�h

) − P
(
cl�h

)
, respectively. Then a natural measure of the quality

of classification of T into Cl using only the criteria of P is

γP(Cl) = 1

|T|

∣
∣
∣
∣
∣
∣
T −

⋃

clh∈Cl

(
BnP

(
cl�h

) ∪ BnP
(
cl�h

))
∣
∣
∣
∣
∣
∣
.

It is clear that 0 < γP(Cl) ≤ 1.

4.4 Decision Rules

The approximations obtained through dominance analysis can be used to construct
decision rules capturing the preference information contained in the sorting of a case
set. For c j ∈ C, let Dc j = D{c j }. Criterion c j is positive iff m j

(
t i

) ≥ m j
(
t l

)
implies

t i Dc j t
l for all t i , t l ∈ T. First, assume that all criteria are positive. The decision rules

that can be generated from a non-empty set of criteria P ⊆ C to sort A into Cl are of
one of three types, as follows:

• D�-decision rule: If m j
(
t i

) ≥ r j , for all c j ∈ P, then t i ∈ cl�h .
• D�-decision rule: If m j

(
t i

) ≤ r j , for all c j ∈ P, then t i ∈ cl�h .
• D��-decision rule: If m j

(
t i

) ≥ r j , for all c j ∈ O ⊂ P and m j
(
t i

) ≤ r j for all
c j ∈ P − O, then t i ∈ clh ∪ clh+1 ∪ · · · ∪ clg = cl�h ∩ cl�g .

For each c j ∈ C, r j ∈ R is called the generated performance threshold for crite-
rion c j . If criterion c j is a negative criterion, the condition m j

(
t i

) ≥ r j is replaced
by m j

(
t i

) ≤ r j , and m j
(
t i

) ≤ r j by m j
(
t i

) ≥ r j .
A set of decision rules is complete with respect to T if it classifies every alternative

of T into one or more groups. A set of decision rules is minimal if it is complete and
non-redundant, i.e. dropping any rule makes the set incomplete (Greco et al. 2001).

Let R be a set of decision rules generated from T. The relative strength of deci-
sion rule r ∈ R is α(r), the ratio of the number of cases supporting r to the total
number of upper or lower approximation classes with which r is associated. Note
that 0 < α(r) ≤ 1. The most popular rule induction system for DRSA is DOMLEM
(Greco et al. 2002), which has been implemented in the 4eMka2 software (ICS 2008).
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4.5 Rule Application

Given a new alternative, ai ∈ A, a procedure for application of a set of generated
decision rules R was proposed by (Blaszczynski et al. 2007).

• If ai triggers no rules, assign ai to all classes.
• If ai triggers one or more rules, begin by taking the intersection of the unions from

all triggered “at least” (D�) rules and identify the highest class of the intersection,
clh , as the lower bound for the assignment of ai . Then take the intersection of the
unions from all triggered “at most” (D�) rules and identify the lowest class of the
intersection, clg , as the upper bound for the assignment of ai . Then ai is assigned
according to the following rules:
– If h = g, then assign ai to clh = clg;
– if h < g, then assign ai to clh ∪clh+1 ∪· · ·∪clg = cl�h ∩cl�g with no possibility

of refinement because of imprecise information;
– if h > g, then assign ai to clg ∪clg+1 ∪· · ·∪clh = cl�g ∩cl�h with no possibility

of discernment because of contradictory information.

Note that this procedure does not consider available information gauging the pre-
cision of decision rules, such as the overall approximation quality, γP(Cl), and the
relative strength of decision rules, α(r), for r ∈ R. By appropriate integration of this
information, the overall classification quality can be improved.

Of course, this DRSA sorting procedure is designed for a single DM. Clearly, it can
be applied to data provided by several different DMs to produce decision rules based
on the same, or different, case sets. To solve the MCMPS problem, we next propose an
approach to aggregating decision rules. Information about classification quality will
be used in this procedure to help address inconsistencies between the decision rules.
We turn now to a description of the procedure, which is based on the Dempster–Shafer
theory of evidence (DS).

5 Dempster–Shafer (DS) Rule Aggregation

5.1 The Dempster–Shafer Theory of Evidence

Dempster (1968) and Shafer (1976) developed a mathematical theory of evidence,
based on belief functions and plausibility reasoning, which can be used to combine
separate pieces of information (evidence) to assess the probability of an event. The
Dempster–Shafer (DS) theory of evidence is summarized next.

Let � = {
h1, . . . , ht , . . . , h|�|

}
be the universal set, consisting of all states under

consideration. The power set of �, called P (�), is the set of all subsets of �, including
the empty set. Any H ∈ P(�), i.e. H ⊆ �, is called a proposition; the proposition H
is a singleton iff it contains exactly one state of �.

The DS theory begins with a belief mass function defined on each element of the
power set. Formally, m : P(�) → [0, 1] is a basic belief assignment (BBA) if it satis-
fies m(∅) = 0 and

∑
ht ∈P(�) m(ht ) = 1. Using a BBA, two measures of confidence

for a proposition E ⊆ � can be defined.
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• The belief in E, Bel(E), is the sum of the masses associated with all subsets of E.
Formally, Bel(E) = ∑

F⊆E m(F).
• The plausibility of E, Pl(E) is the sum of the masses associated with all sets that

intersect E. Formally, Pl(E) = ∑
F∩E �=∅ m(F).

Dempster’s rule of combination provides a way to integrate two BBAs, m1 and
m2, considered as two independent pieces of evidence, to produce the BBA m1 ⊕ m2,
defined as follows:

(m1 ⊕ m2)(G) =
{

0, if G = ∅,
1

1−K

∑
E∩F=G m1(E)m2(F), if G �= ∅,

where K = ∑
E∩F=∅ m1(E)m2(F). Note that K is a measure of the amount by which

mass functions m1 and m2 conflict.
Recently, many refined belief elicitation and aggregation approaches have been

developed, suggesting a range of new methods to acquire, test and integrate pieces of
evidence. For example, Hurley and Shogren (2005) used an experiment to test whether
an induced probability can be recovered using an elicitation mechanism based on
predictions about a random event; Chambers and Melkonyan (2008) developed an
algorithm to approximate a DM’s beliefs for a very general class of decision-theoretic
models that includes many common preference structures; and Yager et al. (1994)
collected a useful set of articles on DS, fuzzy reasoning, and neural computing.

5.2 Application of DS for Rule Aggregation

The DS theory is an alternative to the Bayesian approach that models changing beliefs
by manipulating subjective probabilities. In most cases, a BBA can be associated with
any hypotheses—a singleton, a larger subset of �, or even the entire universe. In
some applications of DS theory to MCDA, including DeKorvin and Shipley (1993),
Yang and Singh (1994) and Butler et al. (1995), the BBA is based on uncertainty in
preference over alternatives, reflecting conflicting criteria. A recent series of papers,
including Beynon et al. (2000) and Beynon (2002, 2005, 2006), systematically utilizes
DS theory to develop a DS-AHP procedure for GDM that improves the “standard”
AHP analysis (Saaty 1980) by reducing the number of pairwise comparisons and
eliminating the need to check for inconsistent pairwise judgements.

As explained above, DS and DRSA are two different methods of processing and
integrating information. DS assesses the probability of events defined by particular
preferences, while DRSA evaluates preferences on the basis of a data sample and uses
them to generate linguistic rules that represent preference in the presence of uncer-
tainty or vagueness. The two approaches can be complementary, as shown in Fig. 1,
where DRSA is used for preference elicitation and then DS provides information
aggregation.

To connect DRSA with DS, three types of “BBA” are designed to transfer the analy-
sis results from the DRSA, as explained below. In particular, DS theory can be applied
to classify an alternative, ai ∈ A, into one or more classes of Cl = {

cl1, . . . , cl|Cl|
}

by aggregating decision rules across participants, thereby solving the MPMCS prob-
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lem. Begin by identifying possibilities and classes, i.e. by setting the universal set as
� = Cl. Note that a proposition is then the assignment of ai to a class, or set of
classes. Carry out the following steps:

1. Identify each participant’s propositions. Obtain different propositions for ai

using triggered decision rules from each participant. As explained in Sect. 4.4,
the result ai ∈ cl�h , obtained from a D�-decision rule (when all criteria are
positive), can be interpreted as “ai is at least in class clh”, and hence coded
as H = {cl1, . . . , clh−1, clh}. Similarly, ai ∈ cl�h can be interpreted as “ai

is at best in class clh”, and coded as H = {
clh, clh+1, . . . , cl|Cl|

}
. Finally,

ai ∈ cl�h ∩ cl�g , obtained from a D��-decision rule, can be coded as H ={
clh, clh+1, . . . , clg−1, clg

}
.

2. Select a Basic Belief Assignment for each participant. To construct a BBA, m :
P(�) → [0, 1] for a participant, three types of information about the participants
and the precision of the rules they generated can be considered.
• I1. Each triggered rule, r , has a relative strength, α(r), as calculated above.

Note that 0 < α(r) ≤ 1.
• I2. The overall approximation quality of the set of decision rules generated

by a participant, ek , is γ (ek), as defined above. Note that 0 < γ (ek) ≤ 1.
• I3: The relative importance of participants in the MPMCS problem is deter-

mined by a weight vector w = (w1, . . . , wk, . . . , w|E|). Formally, wk is the
weight to be assigned to participant ek’s input to the sorting. Note that the
weight vector must satisfy

∑|E|
k=1 wk = 1 and wk > 0 for k = 1, . . . , |E|.

Participant weights are similar to criterion weights in MCDA, and give the
DM or analyst the opportunity to emphasize or de-emphasize certain experts
according to their perceived or measured ability. Of course, all weights may
be equal. Here it is simply assumed that an unambiguous weight vector is
available.

Three methods of constructing a BBA, mk(·) = m(·), representing the beliefs of
participant ek ∈ E are now suggested.
• Consideration of I1 only. Determine the relative strength, β(H), that ek asso-

ciates with each proposition, H. Let RH denote the set of all rules of ek that
produce H and set β(H) = maxr∈RH α(r). Now assign m(H) = β ′(H), the
normalized relative strength of ek’s belief in H, calculated as follows:

β ′(H) = β(H)
∑

H⊆Cl β(H)
.

Note that if there is only one rule in RH, then m(H) = β(H) and m(�) =
1 − β(H).

• Consideration of I1 and I2. First, determine the relative strength β(H) of ek’s
belief in each proposition H, as above. Continue by calculating β ′(H), the
normalized relative strength, as above. Then, for each of ek’s propositions,
set β ′′(H) = β ′(H) · γ (ek), where “·” indicates multiplication. Finally, set
m(H) = β ′′(H). Note that m(�) = 1−γ (ek). If there is only one proposition,
then m(H) = β(H) · γ (ek) and m(�) = 1 − β(H) · γ (ek).
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• Consideration of I1, I2, and I3. Proceed as above, calculating the normalized
relative strength, β ′(H), of ek’s belief in proposition H, for each proposi-
tion H. But now set β ′′′(H) = β ′(H) · γ (ek) · wk for all propositions H of ek .
Finally, set m(H) = β ′′′(H) and m(�) = 1 − γ (ek) · wk . If ek has only one
proposition, then m(H) = β(H)·γ (ek)·wk and m(�) = 1−β(H)·γ (ek)·wk .

3. Finally, treat propositions from different participants as evidence from different
sources and apply Dempster’s rule of combination to aggregate them. Then clas-
sify ai into clh , where clh is a singleton proposition with the maximum value of
Bel(clh).

6 Numerical Example

6.1 Basic Information

A numerical example borrowed from Greco et al. (2002) is used to demonstrate the
proposed procedure. A set of ten firms was chosen and subjected to a risk analysis
according to twelve criteria and then classified into three pre-defined classes. Hence,
T = {

t1, . . . , t10
}
, C = {c1, . . . , c12} and Cl = {cl1, cl2, cl3}. The detailed measure-

ments (consequences) of the ten firms over the twelve criteria are listed in Table 1.
The classes in Cl are cl = “acceptable”, cl2 = “uncertain”, and cl3 = “unaccept-

able”. The criteria of C are c1: earnings before interest and taxes as a fraction of total
assets, c2: net income as a fraction of net worth, c3: total liabilities divided by total
assets, c4: total liabilities divided by annual cash flow, c5: interest expenses divided by
sales, c6: general and administrative expenses as a percentage of sales, c7: managers’
work experience, c8: subjective measure of market niche or position, c9: subjective
measure of technical structure and facilities, c10: organization and personnel, c11:
assessment of special competitive advantage, and c12: market flexibility (Greco et al.
2002).

Table 1 Measurements of ten firms according to twelve criteria

T c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

t1 1 1 2 1 1 1 3 3 4 4 2 3

t2 3 5 2 1 1 1 3 2 3 4 1 3

t3 2 2 1 1 1 1 3 3 3 4 3 4

t4 2 1 1 1 1 3 2 2 4 4 2 3

t5 1 1 3 1 2 1 3 4 4 4 3 4

t6 2 1 2 1 1 2 4 3 3 2 1 2

t7 2 2 2 2 1 3 5 3 5 4 2 4

t8 4 5 2 3 3 3 5 4 5 5 4 5

t9 3 5 1 1 2 2 5 3 5 5 3 5

t10 2 3 2 1 2 4 5 2 5 4 3 4
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Table 2 Expert assignments of
the ten firms

T e1 e2 e3

t1 3 3 2

t2 3 2 3

t3 3 3 2

t4 2 3 3

t5 2 1 1

t6 2 2 2

t7 1 2 3

t8 1 2 1

t9 1 1 2

t10 1 1 1

Table 3 Decision rules for e1 Decision rules Relative strength

1. If c6 ≤ 1 & c8 ≤ 3, then at most cl3 1

2. If c7 ≤ 4, then at most cl2 1

3. If c9 ≥ 5, then at least cl1 1

4. If c6 ≥ 2, then at least cl2 0.857

5. If c3 ≥ 3, then at least cl2 0.143

Overall approximation quality γ (e1) = 1

The first six criteria are quantitative (financial ratios) and the last six are qualitative.
The six qualitative criteria take values in an ordinal scale from 4 or 5 (best) to 1 (worst).
The six quantitative criteria were transformed to ordinal by splitting the original scales
into intervals coded by integers from 4 or 5 (best) to 1 (worst) (Greco et al. 2002).

6.2 Decision Rule Generation

Three experts (E = {e1, e2, e3}) have used their judgments to assign the ten alterna-
tives of (T) into the pre-defined three classes of (Cl). (Note that T = T1 = T2 = T3).
The assessments are shown in Table 2.

Next, the software 4eMka2 (ICS 2008) is employed to generate decision rules using
the minimal decision algorithm for each participant. All criteria are set as positive.
The decision rules for e1, e2 and e3 are summarized in Tables 3, 4 and 5, respectively.

6.3 Aggregation of Decision Rules using DS

To demonstrate the proposed DS-based aggregation procedure, the case set T is reclas-
sified using the decision rules obtained from each participant. Then a sorting is obtained
by assigning each alternative in T to a class by using DS Theory to combine the three
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Table 4 Decision Rules for e2 Decision rules Relative strength

1. If c7 ≤ 2, then at most cl3 0.333

2. If c6 ≤ 1 & c3 ≤ 3, then at most cl3 0.333

3. If c1 ≤ 1 & c12 ≤ 3, then at most cl3 0.333

4. If c5 ≤ 1, then at most cl2 1

5. If c12 ≥ 5, then at most cl2 1

6. If c6 ≥ 4, then at least cl1 0.5

7. If c3 ≥ 3, then at least cl1 0.5

8. If c7 ≥ 4, then at least cl2 0.714

9. If c2 ≥ 5, then at least cl2 0.429

Overall approximation quality γ (e2) = 0.8

Table 5 Decision Rules for e3 Decision rules Relative strength

1. If c7 ≤ 2, then at most cl3 0.5

2. If c11 ≤ 1 & c8 ≤ 2, then at most cl3 0.5

3. If c5 ≤ 1, then at most cl2 0.857

4. If c3 ≤ 1, then at most cl2 0.429

5. If c8 ≥ 4, then at least cl1 0.667

6. If c6 ≥ 4, then at least cl1 0.333

7. If c11 ≥ 3, then at least cl2 1

8. If c12 ≤ 2, then at least cl2 0.333

9. If c4 ≥ 2 & c12 ≤ 4, then at least cl2 0.333

10. If c1 ≤ 2 & c12 ≤ 3, then at least cl2 0.333

Overall approximation quality γ (e3) = 0.7

experts’ triggered decision rules. In the illustration, the aggregation procedures are
used only to classify alternatives in the case set. Of course, the same techniques can
be applied to new alternatives, not in any case set, once the DRSA decision rules are
available.

6.3.1 Aggregation Based on I1 Only

First, rule aggregation is demonstrated using only I1, the relative strength of rules,
obtained as described in Sect. 5.2. The final result is summarized in the middle columns
of Table 6 (under the heading I1). In this example, DS-based aggregation is consistent
with majority voting, yet it provides more information, including the degrees of belief
and plausibility of the final result (fourth column of Table 6). As well, it works even
when majority voting is inconclusive; for instance, each DM assesses a7 = t7 differ-
ently, but the system unambiguously assigns it to cl2, as elaborated below.
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The details of the calculation for a7 = t7 illustrate how DS-based aggregation
works:

• For e1, the triggered decision rules concerning a7 are Rule No. 3 in Table 3, if
c9 ≥ 5, then a7 is at least in cl1, with α = 1, and Rule No. 4 in Table 3, if c6 ≥ 2,
then a7 is at least cl2, with α = 0.857. Hence, H1 = {cl1} and H2 = {cl1, cl2} with
m (H1) = 0.538 and m(H2) = 0.462 (after normalization of the rule strengths,
α).

• For e2 and e3, similar calculations are carried out; the details are omitted here.
The propositions generated for e2 are H3 = {cl1, cl2} and H4 = {cl2, cl3} with
m(H3) = 0.417 and m(H4) = 0.583. The propositions generated for e3 are H5 =
{cl2, cl3} and H6 = {cl1, cl2, cl3} with m (H5) = 0.857 and m (H6) = 0.143.

• Dempster’s rule of combination is then used to integrate the three experts’ prop-
ositions. The detailed calculations are suppressed, but the results are Bel (cl2) =
0.879, Bel (cl1) = 0.065 and Bel (cl1, cl2) = 1. Since its singleton proposition
value, 0.879, is maximal, a7 = t7 is assigned to cl2.

6.3.2 Aggregation Based on I1 and I2

Using both I1 and I2 means considering the relative strength of rules and the overall
approximation quality in the aggregation, as described in Sect. 5.2. The final result
based on the combination of I1 and I2 is shown in the right-hand columns of Table 6,
which facilitates comparison with the aggregation based solely on I1 (middle columns
of the same table). Some observations about the comparison follow:

• The two sortings are relatively close. Eight of the ten alternatives are assigned to
the same class, and the remaining two are assigned to adjacent classes.

• For the two divergent classifications (for t4 and t5), the I1&I2-based aggregation
is not consistent with majority voting, and obviously favors the recommendation

Table 6 Final aggregated sortings based on I1 and I1&I2

T Participant I1 I1 & I2

e1 e2 e3 Final result [Bel, Pl] Final result [Bel, Pl]

t1 3 3 2 3 [0.625, 1] 3 [0.6, 1]

t2 3 2 3 3 [0.603, 0.881] 3 [0.563, 0.895]

t3 3 3 2 3 [0.435, 0.696] 3 [0.483, 0.805]

t4 2 3 3 3 [0.374, 0.711] 2 [0.303, 0.731]

t5 2 1 1 1 [0.4, 1] 2 [0.438, 0.859]

t6 2 2 2 2 [0.658, 1] 2 [0.543, 1]

t7 1 2 3 2 [0.879, 0.935] 2 [0.63, 0.801]

t8 1 2 1 1 [0.723, 1] 1 [0.668, 1]

t9 1 1 2 1 [0.45, 0.835] 1 [0.48, 0.891]

t10 1 1 1 1 [0.796, 1] 1 [0.745, 1]
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of e1. This emphasis reflects the relative strengths of the approximation quality
from the three participants, as γ (e1) = 1 > γ (e2) = 0.8 > γ (e3) = 0.7.

• For most alternatives, the belief intervals, [Bel, Pl], using I1&I2-based aggrega-
tion are narrower than those generated by I1-based aggregation. Since more belief
is assigned to the universal set, i.e. m(�) = m({cl1, cl2, cl3}), when information
I2 is incorporated, it is easy to understand why these beliefs are more compressed.
The introduction of I2 into the aggregation adjusts (or “corrects for”) the incon-
sistency of the experts’ holistic assessments of the case set provided according
to the pre-defined preference directions (relationships), as explained in Sect. 4.
Opinions of more consistent participants have more bearing on the final result, and
overall belief intervals are decreased because judgement inconsistencies have been
detected in the assessments of participants e2 and e3.

Similar calculations can be carried out to aggregate decision rules and produce
a sorting based on information I1&I2&I3, which incorporates different weights for
the participants (I3). Both I2 and I3 are measures of the amount of emphasis to be
given to different participants; the difference between them is that I2 reflects objective
information and approximation, while I3 is subjective, provided by the DM who is in
charge of the decision process, based on experience.

7 Conclusions

A system to carry out multiple criterion-multiple participant sorting is proposed. The
method aggregates case-based linguistic decision rules using a hybrid of the DRSA
and the Dempster–Shafer (DS) theory of evidence. It requires relatively little input
information—preference directions for criteria, plus one or more holistic sortings of
representative case sets for training. The feasibility of the method is demonstrated
using a numerical example. In future work, it would also be good to compare the DS
assessment with some methods based on possibility theory to find out if similar results
could be obtained.
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