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Abstract We consider a multiple referendum setting where voters cast approval
ballots, in which they either approve or disapprove of each of finitely many dichoto-
mous issues. A program is a set of socially approved issues. Assuming that individual
preferences over programs are derived from ballots by means of the Hamming dis-
tance criterion, we consider two alternative notions of compromise. The majoritarian
compromise is the set of all programs supported by the largest majority of voters at
the minimum utility loss. A program is an approval compromise if it is supported by
the highest number of voters at a utility loss at most half of the maximal achievable
one. We investigate the conditions under which issue-wise majority voting allows for
reaching each type of compromise. Finally, we argue that our results hold for many
other preferences that are consistent with the observed ballots.

Keywords Approval balloting · Majority rule · Multiple referendum ·
Voting paradox · Compromise

1 Introduction

An approval ballot is a list of yes/no positions regarding finitely many dichotomous
issues. A typical example of voting situations where citizens cast approval ballots
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552 G. Laffond, J. Lainé

is multiple referendum, or any situation where voters are interpreted as bargainers
designing an acceptable agreement over several issues by selecting Yes or No on
each issue (see Brams et al. 2004). Another case where ballots can be equivalently
written as approval ballots is multiple elections with two competing parties: several
positions (e.g. president, governor, mayor) have to be filled by the candidate of one of
the two parties, and each voter supports only one party position-wise. In both cases,
approval ballots are aggregated, through some aggregation rule, into a social outcome,
or program, which gives the collective decision regarding each of the issues. The most
commonly used aggregation rule is the issue-wise majority rule, under which an issue
is socially approved if and only if it is at least as approved than disapproved. In this
paper, we study the extent to which issue-wise majority voting allows for reaching a
program which provides a compromise among voters.

Defining a compromise requires to model how voters compare programs. Equiva-
lently, approval ballots have to be extended into preferences over the set of all programs.
We assume that preferences are represented by Hamming utility functions, for which
the utility level given to a program is equal to the number of issues minus the number
of those which the ballot and the program disagree on.1

The issue-wise majority rule (hereafter Maj) shares some nice properties under
the assumption of Hamming preferences. It is strategy-proof and produces utilitar-
ian programs, i.e. which maximize the sum of voters’ utilities.2 However, it is also
well-known that it may fail at choosing a Condorcet winner. The Ostrogorski paradox
precisely relates to such a possibility (see Rae and Daudt 1976; Bezembinder and Van
Acker 1985; Deb and Kelsey 1987; Kelly 1989; Nurmi 1999; Laffond and Lainé 2006,
2009, 2010). Furthermore, the outcome of the majority rule may also be such that a
majority of the voters disagree on a majority of candidates (known as the Anscombe
paradox, see Anscombe 1976; Wagner 1983, 1984 and Nurmi 1999).

We focus on two specific notions of compromise. The first is the majoritarian
compromise, which is closely related to the Bucklin Vote, or Grand Junction Vote.3

1 Assuming Hamming preferences should not be regarded as a very restrictive assumption. Indeed, both
symmetry among issues and separability are properties that promote issue-wise majority voting as a com-
promising rule. Furthermore, we argue at the end of the paper that our results still hold for a larger domain
of preferences that are consistent with ballots.
2 However, as shown in Cuhadaroglu and Lainé (2009), Maj may produce an outcome that is almost
Pareto-dominated. They also characterize, under the assumption that voters rank first the program given in
their ballot, the largest domain of separable preferences for which the majority rule is Pareto-efficient. The
reader may refer to Brams et al. (2007) for further results. The reader may also refer to Özkal-Sanver and
Sanver (2006) for a more general study of the Pareto-efficiency of candidate-wise choice rules.
3 The difference between the majoritarian compromise and the Bucklin vote is that, in the former, voters
rank all candidates. The Bucklin vote is itself a special case of Fallback Voting (Brams and Sanver 2009).
Furthermore, the majoritarian compromise is also a particular case of a q-Fallback Bargaining rule (Brams
and Kilgour 2001), and is a refinement of the Median Voting Rule (Bassett and Persky 1999), in the sense
that the set of outcomes selected by majoritarian compromise is a subset of the set of outcomes of the
Median Voting Rule. The majoritarian compromise is also closely related in spirit to the axiom of efficient
compromise introduced in Özkal-Sanver and Sanver (2004). An alternative is an efficient compromise if
there exists no other alternative that is supported by at least as many voters at a lower utility loss, and a
voting rule satisfies the efficient compromise axiom if and only if it always picks efficient compromises.
Özkal-Sanver and Sanver (2004) show that all Condorcet-consistent voting rules, as well as the Borda count,
violate this axiom.
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Searching for a Compromise in Multiple Referendum 553

A program is a majoritarian compromise if it is supported by at least half of the voters
at the minimum utility loss. Few results are already known for the standard single-win-
ner setting where one alternative has to be chosen from finitely many ones, and where
voters’ preferences over the alternatives are represented by linear orders (see Sertel
1986; Sertel and Yılmaz 1999, and Giritligil and Sertel 2005). First, the maximal util-
ity loss achieved at a majoritarian compromise cannot exceed half of the alternatives;
second, a majoritarian compromise may be neither a Borda winner nor the Condorcet
winner; furthermore, it is subgame-perfect implementable. We show below that, in a
multiple referendum setting, a majoritarian compromise may also be neither a Borda
winner nor a Condorcet winner.

The second notion, called the approval α−compromise, follows a dual approach.
A program is an α−compromise if it maximizes the number of voters whose utility
level is decreased by at most α% of its maximal value.4 It is easily seen that this
number of voters will be at least one half of the electorate when α = 1

2 , and this
latter case provides an interesting benchmark, called approval compromise. Nonethe-
less, we show that the majoritarian compromise may be disjoint from the approval
compromise.

Below are studied two new compound majority voting paradoxes: the MC paradox
describes situations where Maj fails at reaching the majoritarian compromise, whereas
the C paradox refers to cases where it fails at reaching the approval compromise.

We show that both paradoxes may prevail, and are logically independent. More-
over, we show that they are related to either the Ostrogorski paradox or the Anscombe
paradox. Furthermore, we prove that conditions that allow for avoiding the latter
two paradoxes are no longer sufficient to avoid the compromise ones. In particular,
we prove that (1) both the MC and the C paradoxes may hold even when voters
are almost unanimous issue-wise, (2) however, a strict version of the MC paradox
(which states that the majority outcome is not a majoritarian compromise, but also
its opposite is a majoritarian compromise) cannot hold if there is enough consensus
issue-wise, (3) under a mild richness property, all (resp. almost all) sets of ballots
face the C paradox (resp. the MC paradox) for some distribution of the votes among
ballots.

The rest of the paper is organized as follows: the model of multiple referendum
voting is presented in Part 2, together with the alternative notion of compromise.
Part 3 is devoted to the formal definition of both the MC paradox and the C par-
adox. In Part 4, we establish their relationship with the Ostrogorski and the Ans-
combe paradoxes. We also prove that both can hold even under quasi-unanimous
issue-wise opinions. Moreover, we investigate the properties of sets of ballots which
preclude the compromise paradoxes for any distribution of the voters among ballots.
The paper ends up with additional comments about how our results can be extended
to a larger class of preferences over programs. Finally, all proofs are postponed to an
Appendix.

4 The notion of approval α−compromise is equivalent to the threshold procedure introduced in Fishburn
and Pekeč (2004). See also Kilgour (2010).
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2 Compromises in Multiple Referendum

2.1 Notations and Definitions

We denote by N the set of non-negative integers. A set N = {1, . . . , n, . . . , N } of
voters faces a set Q = {1, . . . , q, . . . , Q} of yes-no issues, where N , Q ∈ N are both
variable. Each voter n indicates by means of an approval ballot xn which issues she
approves of. Formally, xn = (xq

n )q=1,...,Q ∈ {0, 1}Q , where xq
n = 1 ⇔ n accepts

q, xq = 0 ⇔ n rejects q. A program is a subset of collectively accepted issues.
Formally, a program is an element x = (xq)q=1,...,Q of {0, 1}Q , where xq = 1 ⇔
q is accepted, xq = 0 ⇔ q is rejected. The program opposite to x is defined by
(−x) = (−xq)q=1,...,Q , where −xq = 1 ⇔ xq = 0.

A voting set is an element V = (x1, . . . , xH ) ∈ {0, 1}Q H , where H ∈ N, and
xh �= xh′ for all h �= h′ ∈ {1, . . . , H}. Given a voting set V , a voting profile is a pair
P = (V, π), with π = (π1, . . . , πH ) ∈ N

H , where πh is the number of voters having
cast the ballot xh . We denote by �Q the set of all possible profiles P = (V, π) with
Q issues, and we define � = ∪Q≥1�Q .

2.2 Aggregating Approval Ballots

An aggregation rule is a correspondence from � to ∪Q≥1{0, 1}Q , which, for any
given Q ∈ N, maps each voting profile with Q issues to one or several programs
in {0, 1}Q . While many alternative aggregation rules have been suggested and stud-
ied (see Kilgour 2010, for an overview), we focus in this paper on the rule which
is the most commonly used in multiple referendum. The candidate-wise majority
rule Maj consists in accepting all those issues which are more often approved than
disapproved. Formally Maj is defined by: ∀Q ∈ N,∀P ∈ �Q, x ∈ Maj (P) ⇔
∀q = 1, . . . , Q,

∣
∣{n ∈ N : xq

n = xq}∣∣ ≥ ∣
∣{n ∈ N : xq

n �= xq}∣∣. Clearly, the outcome
of Maj (P) is unique for all profiles involving an odd number N of voters: no issue
can receive as many approvals as disapprovals.

2.3 Preferences Over Programs

Defining a compromise requires to specify how voters compare programs given their
ballots. We assume that preferences over programs are complete and separable preor-
ders that are constructed from the ballots by means of the Hamming distance criterion.
The Hamming distance between two programs x = (xq)1≤q≤Q and y = (yq)1≤q≤Q

is the number d(x, y) = ∑Q
q=1 |yq − xq |. Voters’ preferences over programs are

then represented by the Hamming utility function Un(x) = Q − d(x, xn): voters
rank programs according to the number of decisions which their ballot disagrees on.
Alternatively, individuals vote for their ideal program, and then compare programs
according to the Hamming distance to their ideal.

The Hamming preferences have been used in several related studied (see Brams
et al. 2004, 2007; Kilgour et al. 2006; Brams 2008; Laffond and Lainé 2006, 2009).
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Searching for a Compromise in Multiple Referendum 555

Assuming separable dichotomous preferences over issues5 naturally calls for choos-
ing programs through Maj . Moreover Maj is strategy-proof under Hamming prefer-
ences,6 and always selects utilitarian programs, i.e. which maximize the sum of voters’
utilities.7

2.4 Two Notions of Compromise

2.4.1 Approval α-Compromise

The first concept of compromise is called approval α-compromise, and works as
follows: say that a voter is satisfied with a program x if she disagrees with x on a
proportion at most α of the issues. Then a program is an approval α-compromise if it
maximizes the size of the group of voters it satisfies.

Definition 1 Given α ∈ [0, 1] and a vote profile P ∈ �Q , a program x is α-satisfac-
tory for n if Un(x) ≥ Q(1−α). The α-support of x is the number S(x, α, P) of voters
for whom x is α-satisfactory. Furthermore, x is α− satisfactory if S(x, α, P) ≥ N

2 , and
x is an approval α-compromise if, for any other program y, S(x, α, P) ≥ S(y, α, P).

The set of α-satisfactory programs (resp. α-compromises) for a voting profile P is
denoted by Sα(P) (resp. Cα(P)). Note that C0(P) coincides with the set of plurality
winning programs. We get closer to the intuitive meaning of a compromise when giv-
ing α a strictly positive value: indeed, one then explicitly considers that voters may
jointly agree on a program at the cost of some utility loss.

Yet, if α is small enough, the support of an α−compromise may be small, hence
keeping the outcome rather far away from the idea of a compromise. Consider the
voting set V = (x1, . . . , xQ) where each issue is approved by exactly one voter, and
each voter approves of exactly one issue. If α < 2

Q , then Cα = V , and the support

of each xn ∈ V consists of 1
Q of the electorate. However, an interesting benchmark

is reached with α = 0.5, since any program in C0.5(P) involves at least a major-
ity of voters. Indeed, suppose that S(x, 0.5, P) < N

2 for some x ∈ C0.5(P). From
Hamming preferences, we get that S(−x, 0.5, P) > N

2 > S(x, 0.5, P), contradicting
x ∈ C0.5(P).

In order to lighten notations in the sequel, we writeC(P) = C0.5(P), S(x, 0.5, P) =
S(x, P), and S0.5(P) = S(P). Furthermore, C(P) will be called the approval com-
promise at profile P , and elements of S(P) will be called satisfactory programs at P .

5 For the role played by non-separability in multiple referendum, the reader may refer to Lacy and Niou
(2000); Ratliff (2003, 2006); Hodge and Schwallier (2006), and Laffond and Lainé (2010).
6 The proof is obvious in case where N is odd. If ties are possible, defining strategy-proofness requires to
extend preferences over programs to preferences over sets of programs. A way to proceed is to adopt the
Kelly axiom (Kelly 1977): for any two subsets A and B of {0, 1}Q , A is preferred than B if U (x) > U (y)

for all (x, y) ∈ A × B). Proving that Maj is strategy-proof under the Kelly axiom extending Hanning
preferences is an easy task left to the reader.
7 See Brams et al. (2004, 2007) for a formal proof.
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The notion of approval α−compromise can equivalently be defined as a threshold
aggregation procedure (Fishburn and Pekeč 2004), which involves a binary judgment
about the representativeness of a program: either a program has a sufficient overlap
(in proportion (1 − α)) with a voter’s ballot to represent that voter, or it does not, and
an α− compromise is a program that represents the most voters.8

2.4.2 Majoritarian Compromise

The concept of majoritarian compromise follows a somehow dual route, which
involves a fixed targeted level of representativeness, together with a variable thresh-
old of utility loss. A program x is a majoritarian compromise if (1) x represents at
least a majority of voters at the maximal utility loss k (that is, the overlap between
x and the ballot cast by a voter in this majority contains at least (Q − k) issues) (2)
no other program is supported by a majority whose members suffer from a lower
utility loss, and (3) no other program represents a larger fraction of the electorate at
the maximal loss k. Formally, given x ∈ {0, 1}Q , and P ∈ �Q , let Suppk(x, P) =
|{n ∈ N : Un(x) ≥ Q − k}| be the k−support of x , where k ∈ {0, . . . , Q}, and let
k∗(P) = Min{k ∈ {0, . . . , Q} : Suppk(x, P) ≥ N

2 for some x ∈ {0, 1}Q} be the
critical loss of the profile P (that is, the minimal utility loss to be accepted for a
majority to agree on some program).

Definition 2 A program x is a majoritarian compromise at the profile P if, for any
other program y, Suppk∗(P)(x, P) ≥ Suppk∗(P)(y, P).

The set of all majoritarian compromises (in short the majoritarian compromise) at
profile P is denoted by MC(P).

2.4.3 Relations Between Compromises

Since there are finitely many programs, both MC(P) and Cα(P) (for any α ∈ [0, 1])
are non-empty at any profile P . Furthermore, the majoritarian compromise may be
disjoint from the approval compromise at some profile, as illustrated in

Example 1 Let V = (x1, x2, x3) ∈ {0, 1}4 be the voting set defined by x1 =
(1, 1, 1, 1), x2 = (1, 0, 0, 0), and x3 = (0, 0, 0, 0). Consider the voting profile
P = (V, π), where π1 = π2 = π3 = 1. Since no ballot is cast by a majority of
voters, then k∗(P) > 0. Since U2(x3) = U3(x2) = 3 and U2(x2) = U3(x3) = 4,
then k∗(P) = 1. Moreover, since no program represents all voters at a loss equal to
1, then x2, x3 ∈ MC(P). Then, using x1 = (−x3) together with the fact that, for any
z, d(x2, z) = 1 ⇒ d(x3, z) > 1, we obtain MC(P) = {x2, x3}. In order to compute
C(P), we just remark that x = (1, 1, 0, 0), y = (1, 0, 1, 0), and z = (1, 0, 0, 1), are
the only programs at distance 2 to all ballots which represent all voters, therefore
C(P) = {x, y, z}, and MC(P) ∩ C(P) = ∅.

8 See also Kilgour (2010) for a complete presentation of alternative aggregation rules, including the thresh-
old procedure.
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However, note that MC(P) = C(P) at any profile P such that k∗(P) =
⌊

Q
2

⌋

, that

is the largest integer less than or equal to Q
2 . Furthermore, as pointed out above, the

majoritarian compromise may not be unique. Moreover, both MC and C always select
a (maybe proper) subset of satisfactory programs:

Proposition 1 For any voting profile P,MC(P) ⊆ S(P) and C(P) ⊆ S(P). More-
over, there exists P at which MC(P) ⊂ S(P) and C(P) ⊂ S(P).

3 Voting Paradoxes

A situation where Maj fails at reaching either an approval or a majoritarian compro-
mise pertains to a compound majority voting paradox, which points out the possible
inconsistency between issue-based and non issue-based aggregation rules.9 Much
attention has been paid in previous studies to two specific paradoxes, namely the
Ostrogorski and the Anscombe paradoxes. Say that a program x is undefeated at
profile P if there is no other program y such that |{n ∈ N : Un(y) ≥ Un(x)}| >

|{n ∈ N : Un(x) ≥ Un(y)}|, that is, if there exists no other program which makes
more than half of the voters as least as well off, one voter being better off. The (resp.
strict) Ostrogorski paradox occurs at profile P if Maj (P) contains a defeated program
(resp., and if it is defeated by its opposite). A Condorcet winner of a voting profile P
is a program that defeats all other programs. The following proposition is proved in
Laffond and Lainé (2009):

Proposition 2 Suppose that N is odd. Then a program x is undefeated at profile P
only if x is the outcome of Maj. Moreover, x is undefeated if and only if it is the
unique Condorcet winner of P.

Hence, with an odd number of voters, the Ostrogorski paradox is equivalent to the
Condorcet paradox. This justifies even further to pay attention to issue-wise majority
voting. Indeed, as long as a Condorcet winner exists, any Condorcet-consistent voting
rule will uniquely selects the outcome of Maj.10

The Anscombe paradox occurs at profile P if Maj (P) � S(P), that is if an
outcome of Maj is not a satisfactory program.

The Ostrogorski and Anscombe paradoxes are not equivalent, though closely related
in spirit (Bezembinder and Van Acker 1985; Nurmi 1999). In fact, as pointed out below,
the Anscombe paradox is equivalent to the strict Ostrogorski paradox:

Proposition 3 The strict Ostrogorski paradox occurs at profile P if and only if the
Anscombe paradox occurs at P.

We turn now to the definition of our two ‘compromise paradoxes’.

9 See Nurmi (1999) for a review of compound majority voting paradoxes. Whether using the word ‘para-
dox’ is appropriate can be questioned. A possible justification is that some paradoxes relate to the Condorcet
paradox.
10 A voting rule is Condorcet-consistent if it uniquely selects the Condorcet winner whenever it exists.
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Definition 3 The Majoritarian Compromise paradox (hereafter MC paradox) occurs
at the voting profile P if x /∈ MC(P) for some x ∈ Maj (P). The MC paradox is strict
if, in addition, −x ∈ (MC(P) − Maj (P)). The (resp., strict) approval compromise
paradox (hereafter C paradox) occurs at P if x /∈ C(P) for some x ∈ Maj (P) (resp.,
and −x ∈ (C(P) − Maj (P))).

It is easily checked that both the MC paradox and the C paradox may prevail at
some voting profile involving only 2 issues. Indeed, consider V = (x1, x2, x3, x4),
where x1 = (1, 1), x2 = (1, 0), x3 = −x1, and x4 = −x2. Define the voting profile
P = (V, π) by: π1 = 4, π2 = π4 = 1, and π3 = 5. Then, Maj (P) = {x3}. Since
S(x3, P) = π2 + π3 + π4 = 7 < S(x2, P) = π1 + π2 + π3 = 10, then the C
paradox holds. Moreover, since k∗(P) = 1 and Supp1(xh, P) = S(xh, P) for all
h = 1, 2, 3, 4, then the MC paradox prevails. The following two examples show that
both the strict MC paradox and the strict C paradox may also occur.

Example 2 Let Q = 4, and consider the voting set V = (x1, . . . , x5), where
x1 = (1, 1, 1, 0), x2 = (1, 1, 0, 1), x3 = (1, 0, 1, 1), x4 = (0, 1, 1, 1), and x5 =
(0, 0, 0, 0). define the voting profile P = (V, π), where πh = 1, 1 ≤ h ≤ 4,
and π5 = 3. We get Maj (P) = {x5}, and ∀h = 1, . . . , 5, Supp0(xh, P) <
N
2 , Supp1(−x5, P) = 4 > N

2 . Hence, k∗(P) = 1. Suppose that −x5 /∈ MC(P).
Let y ∈ MC(P). Then it must be true that the majority that supports y at a utility loss
at most 1 must involve voters for x5. Hence y must contains at least 3 disapprovals.
But this implies that, for all 1 ≤ h ≤ 4, d(y, xh) > 1, so that π5 > N

2 , a contradiction.
Thus, the strict MC paradox holds.

Example 3 Let Q = 5, and define V = V ′ ∪ {x1}, where V ′ = (x2, . . . , x11) contains
all ballots with 3 approvals, and x1 = (0, 0, 0, 0, 0). Consider the profile P = (V, π),
where πh = 1, 2 ≤ h ≤ 11, and π1 = 3. Then Maj (P) = {x1}, and S(x1, P) =
π1 = 3 < S(−x1, P) = ∑11

h=2 πh = 10. Hence, x1 /∈ C(P). Consider any program
y where t > 0 issues are accepted, with t �= 5. Suppose t ∈ {3, 4}. Since S(y, P)

contains no voter having cast a ballot x1, then S(y, P) ≤ S(−x1, P). Suppose t = 2.
Then S(y, P) = 6 < S(−x1, P), since S(y, P) contains exactly 3 voters having cast a
ballot in V ′, together with all 3 voters having cast x1. Similarly, if t = 1, then S(y, P)

contains exactly 6 voters having cast a ballot in V ′, together with all 3 voters having
cast x1. Thus, S(y, P) = 9 < S(−w, P). Hence, C(P) = {−w} and the strict C
paradox holds.

As a by-product of these two examples together with Proposition 2, we get that no
Condorcet-consistent voting rule always selects either in the majoritarian compromise
or in the approval compromise. Furthermore, it is easily shown that, under Hamming
preferences, Maj always selects a Borda count winner. Hence, the Borda count may
also fail at reaching a compromise.

The next result points out that the two examples above are minimal in terms of
number of issues.

Proposition 4 (1) No voting profile with at most 3 issues can face the strict MC
paradox

(2) No voting profile with at most 4 issues can face the strict C paradox

123



Searching for a Compromise in Multiple Referendum 559

We address below the following questions:

(1) Are the MC and C paradoxes logically independent? And are they logically
related to either the Ostrogorski or the Anscombe paradox?

(2) Which restrictions upon voting profiles allow for avoiding the paradoxes? In
particular, it is shown in Wagner (1983, 1984) that the Anscombe paradox never
prevails when the issue-wise majority margin is at least 25%. It is easily seen that
the same prevails for the Ostrogorski paradox. Furthermore, the domain of voting
sets that are immune to the Ostrogorski paradox is characterized in Laffond and
Lainé (2006). Can similar results be obtained for both the MC and C paradoxes?

4 Avoiding the MC Paradox and the Approval Paradox

4.1 Relations between Paradoxes

We first establish the relations which prevail between the two compromise paradoxes
and both the Ostrogorski and the Anscombe ones. We say that a paradox A is weaker
than the paradox B if some profile may exhibit A and not B, while the reverse never
holds.

Proposition 5 (1) The MC paradox is weaker than the Ostrogorki paradox
(2) The C paradox is weaker than the Anscombe paradox
(3) The Anscombe paradox is weaker than the strict MC paradox
(4) The MC paradox and the C paradox are logically independent

Note that the C paradox is thus weaker than the strict MC paradox. Proposition 5
states that, as long as ballot sets are equally likely, the frequency of the MC paradox
(resp. C paradox) is higher than the frequency of the Ostrogorski (resp. Anscombe)
paradox. How actually strong are the compromise paradoxes? We address now this
question, by searching for two types of sufficient conditions for avoiding them. The
first relates to the size of candidate-wise majority margins, while the second looks for
the largest class of voting sets which never face the paradox, whatever the number of
voters casting each of the ballots.

4.2 Avoiding the Paradoxes: Does the Rule of Three-Fourth Work?

We already mentioned that, if at least 75% of the voters agree issue-wise (the ‘three-
fourth rule’), then neither the Anscombe nor the Ostrogorski paradoxes can occur.
Our next result shows that, in fact, both the C and the MC paradoxes may hold for any
issue-wise majority relative size:

Proposition 6 For any 0 < ε < 100, there exists a voting profile P such that Maj (P)

is unique and, (1) Maj (P) /∈ C(P), (2) (100 − ε)% of the voters agree in P on each
of the issues. Similarly, there exists a voting profile P ′ such that Maj (P ′) is unique
and (1) Maj (P ′) /∈ MC(P ′), (2) (100 − ε)% of the voters agree in P ′ on each of the
issues.
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Hence, a paradox may hold for any level of issue-wise consensus. More generally,
any issue-wise qualified majority rule may fail at ensuring a compromise. We remark
that this is no longer true with exactly 3 issues. However, the three-fourth rule no
longer works as soon as there are at least 6 issues.

Proposition 7 Under the three-fourth rule, no profile involving at most 3 issues can
face the MC paradox. But there exists a profile with 6 issues where the MC paradox
holds under the three-fourth rule.

The intermediate 4-issue and 5-issue cases remain to be studied. Furthermore, Prop-
osition 5(3) implies that the strict MC paradox never occurs under the three-fourth
rule.

4.3 Avoiding the Paradoxes: Paradox-Free Voting Sets

Given a number Q ≥ 3 of issues, a subset E of {0, 1}Q is called a MC-free (resp.
C-free) domain if, for any voting set V ⊆ E , and for any voting profile P = (V, π),
the MC paradox (resp. C paradox) does not prevail at P . Moreover, a voting set V
is rich if ∀x ∈ V , one has −x ∈ V , and a domain E is said to be rich if it only
contains rich voting sets. Richness means that, whenever a type of ballot can be cast
by some voter, then its opposite can also be cast by another voter. We denote by E MC

Q

(resp. EC
Q ) the set of rich MC-free (resp. C-free) domains with Q issues, and we define

E MC = ∪Q≥3E MC
Q (resp. EC = ∪Q≥3EC

Q ).
It follows from richness that each voting set contains an even number H of ballot

types. Hence, a rich voting set V = (x1, . . . , xZ ) can be rewritten as pairs of opposite
ballots, that is V = (x̃1, . . . , x̃H ), where H = Z

2 and, for all h = 1, . . . , H, x̃h =
{xh,−xh} and x1

h = 1.
We first recall a characterization the largest rich Ostrogorski-free domain of voting

sets.

Proposition 8 (Laffond and Lainé 2006) For any Q ≥ 3, any single-switch voting set
with Q issues never faces the Ostrogorski paradox. Moreover, the domain of single-
switch voting sets is the largest (for inclusion) rich Ostrogorski-free domain.

The single-switchness property essentially says that issues can be ordered in such
a way that each of the ballots presents at most one switch between approvals and dis-
approvals. Several preliminary definitions are required for a formal definition. Con-
sider a rich voting set V = (x̃1, . . . , x̃H ) with Q issues, together with a subset B ⊆
{1, . . . , Q} of issues. The B−relabelling of V is the voting set V B = (ỹ1, . . . , ỹH ),
where, for all h = 1, . . . , H, ỹh = {yh,−yh} is defined by (1) ∀q ∈ B, yq

h = 1 ⇔
xq

h = 0, and (2) ∀q /∈ B, yq
z = 1 ⇔ xq

z = 1. The relabelling of a voting set thus
consists in reversing in each ballot approvals and disapprovals regarding some subset
of issues.

Given a permutation σ of {1, . . . , Q}, the σ− permutation of V is the voting set
Vσ = (x̃1σ , . . . , x̃Hσ ), where, for all h = 1, . . . , H, x̃hσ = {xhσ ,−xhσ } is defined by:
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∀q ∈ Q, xσ(q)
hσ = 1 ⇔ xq

h = 1. A permutation of a voting set consists in reshuffling
the set of issues without modifying the voters’ positions regarding each of the issues.

Furthermore, two voting sets V and V ′ are said to be equivalent if there exist
B ⊆ {1, . . . , Q} and a permutation σ of {1, . . . , Q} such that V ′ = V B

σ . Then V
has a single-switch representation if ∀h = 1, . . . , H , there exists at most one q(h) ∈
{1, . . . , Q − 1} such that xq(h)

h �= xq(h)+1
h . Moreover, V is said to be single-switch it it

is equivalent to a voting set having a single-switch representation. Let E SS
Q stand for

the set of single-switch rich voting sets involving Q issues, and let E SS = ∪Q≥3E SS
Q .

Using Propositions 5 and 8, we get that E MC ⊆ E SS . Our next result characterizes
E MC , which appears to be a very small subset of E SS .

Proposition 9 E MC is the set of all single-switch voting sets which contain at most
two pairs of opposite ballots {x,−x} and {y,−y} such that d(x, y) ≤ 1.

This obviously shows that the MC paradox is almost unavailable. An even more
negative result holds about the C paradox: no rich set of voting sets secures that the
majority rule outcome is an approval compromise.

Proposition 10 EC = ∅

5 Discussion

This paper shows that, in multiple referendum, when preferences over outcomes are
built from approval ballots by using the Hamming distance criterion, issue-wise major-
ity voting may produce neither a majoritarian nor an approval compromise. Moreover,
we show that these two ‘compound majority voting paradoxes’ may hold when strong
restrictions are made upon the issue-wise majority margins. We also show that, for
(resp. almost) any rich voting set, to be interpreted as sets of potentially cast ballots, the
approval (resp. majoritarian) compromise paradox may happen at some distribution
of the votes among ballots.

Assuming Hamming preferences over outcomes should not be seen as a limita-
tion of the analysis. Indeed, the Hamming preferences strongly favor candidate-wise
majority voting as a way to reach a compromise. Beyond separability, the Hamming
preference also equally weights all the issues. Dropping this last property leads to
even more negative results. To see why, say that a utility function Ux over the set
of programs is consistent with the ballot x if, for any two programs y and z, the
set A(y) = {q : xq = yq} of issues which y and x agree on, contains A(z), then
Ux (y) > Ux (z). This consistency property, which induces a partial ordering over
programs, is introduced in Özkal-Sanver and Sanver (2006),11 and has a very intui-
tive meaning: voters cast their most preferred program as ballot, and always prefer a
program that is unambiguously closer to their ballot. An immediate corollary of our
results is the following:

11 Özkal-Sanver and Sanver (2006) show that, when we allow for any separable preference profile consistent
with a voting profile P , then Maj may produce a Pareto-dominated program.
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Proposition 11 Suppose that, for any ballot x, any preference over programs that is
consistent with x is allowed. Then

(1) There exists a voting profile P where the MC paradox (resp. the C paradox) holds
(2) Both the MC paradox and the C paradox may hold even when voters are almost

issue-wise unanimous
(3) If Q ≥ 3, there is no rich MC-free (resp. C-free) voting set

The first two assertions trivially come from the fact that the Hamming utility func-
tion represents preferences that are consistent with ballots. This also implies from
Proposition 10 that there is no rich C-free voting set. Consider the possibility for a rich
MC-free voting set V . From Proposition 9, we know that V = (x,−x, y,−y) ∈ E SS ,
where d(x, y) ≤ 1. Through a relevant relabelling of ballots x and y, one can define
V = (x1,−x1, x2,−x2), where (1) xq

1 = 1 ⇔ 1 ≤ q ≤ q∗, and (2) xq
2 = 1 ⇔ 1 ≤

q ≤ (q∗ − 1).
Then consider the voting profile P where each ballot x1,−x1 and −x2 is cast by one

voter, while two voters cast the ballot x2. Moreover, suppose that (1) all voters but the
two voting x2 have Hamming preferences over programs, and (2) the two voters with
ballot x2 have the same utility function U such that Q = U (x2) > U (w) = Q − 1 >

U (z), for any z �= x2, w, where w is defined by wq = 1 ⇔ q ∈ {1, . . . , q∗ + 1}.
It is easily checked that U is consistent with x2. One get that Supp0(x, P) < N

2
for any x , and that Supp1(w, P) = 3 > N

2 > Supp1(x, P) for any x �= w. Thus
MC(X) = {w}. Finally, Maj (P) = {x2}, so that the MC paradox holds.

Several routes to further research may be worth being followed. First, the charac-
terization of voting sets that are free from the strict MC paradox remains to be done.
Second, we only address here the case where there is no restriction upon the number
of issues which can be socially accepted.12 How do our results evolve under such a
restriction? Third, is the majoritarian compromise subgame-perfect implementable in
the present setting?

Appendix

Proof of Proposition 1 It follows from Hamming preferences that, for any Q, for any
P ∈ �Q and any x ∈ {0, 1}Q, S(x, P) < N

2 ⇒ S(−x, P) > N
2 . Consider x ∈ C(P);

then, S(x, P) ≥ S(−x, P) implies that S(x, P) ≥ N
2 , hence x ∈ S(P). Consider

x ∈ (MC(P) − S(P)). Since S(x, P) < N
2 , then k∗(P) >

Q
2 . But S(−x, P) > N

2

⇔
∣
∣
∣

{

n ∈ N : Un(−x) ≥ Q
2

}∣
∣
∣ > N

2 implies that k∗(P) ≤ Q
2 , a contradiction. This

proves the first two assertions. In order to prove the last two ones, it suffices to consider
the profile in Example 1, where S(P) = {0, 1}4 − {x1,−x2}. ��
Proof of Proposition 3 Consider a voting profile P where x ∈ Maj (P), and suppose

that −x defeats x at P . It follows that
∣
∣
∣

{

n : Un(−x) ≥ Q
2

}∣
∣
∣ >

∣
∣
∣

{

n : Un(x) ≥ Q
2

}∣
∣
∣ .

12 An alternative interpretation is that issues are candidates, and that a committee with a given fixed size
has to be chosen from the set of candidates. Approval ballots indicate the names of the approved candidates.
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We deduce that
∣
∣
∣

{

n : Un(x) ≥ Q
2

}∣
∣
∣ < N

2 , so that x /∈ S(P). Conversely, sup-

pose that x /∈ S(P). Then −x ∈ S(P). Thus,
∣
∣
∣

{

n : Un(−x) ≥ Q
2

}∣
∣
∣ ≥ N

2 and
∣
∣
∣

{

n : Un(x) ≥ Q
2

}∣
∣
∣ < N

2 . Since
{

n : Un(−x) ≥ Q
2

}

= {n : Un(−x) ≥ Un(x)}
and {n : Un(x) ≥ Q

2 } = {n : Un(x) ≥ Un(−x)}, then |{n : Un(−x) ≥ Un(x)}|
> |{n : Un(x) ≥ Un(−x)}|, which ensures that −x defeats x . ��

Proof of Proposition 4 Given a ballot xh , we denote by π−
h the number of ballots

−xh . Both assertions are obvious if Q = 1. Let Q = 2, x1 = (1, 1) and x2 = (1, 0).
Moreover, let ah = πh − π−

h , h = 1, 2. Suppose w.l.g. that −x1 ∈ Maj (P) and
x1 /∈ Maj (P) at some profile P . Thus, the next two inequalities must hold: (1)
π−

1 +π−
2 ≥ π1 +π2 ⇔ a1 +a2 ≤ 0, and (2) π−

1 +π2 ≥ π1 +π−
2 ⇔ a1 ≤ a2. Hence,

a1 ≤ 0. Now, S(−x1, P) = π−
1 + π2 + π−

2 , while S(x1, P) = π1 + π2 + π−
2 . Thus,

S(x1, P) > S(−x1, P) ⇔ a1 > 0, a contradiction. It follows that −x1 ∈ C(P), there-
fore the C paradox does not hold. Furthermore, by Proposition 1, MC(P) ⊆ S(P),
so that k∗(P) ≤ 1. If k∗(P) = 0, then obviously −x1 ∈ MC(P). If k∗(P) = 1, then
Supp1(−x1, P) = S(−x1, P), so that x1 /∈ MC(P).

Now, suppose that Q = 3. Let x1 = (1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1), x4 =
(1, 1, 1). Let P = (V, π) ∈ �3 be such that, w.l.g., −x4 ∈ Maj (P) and x4 /∈
Maj (P). It follows that the next three inequalities hold (with at least one being strict):
(1) a1 + a2 + a4 ≤ a3, (2) a1 + a3 + a4 ≤ a2, and (3) a2 + a3 + a4 ≤ a1. Summing
them leads to: a1 + a2 + a3 + 3.a4 < 0 (*). Furthermore, since MC(P) ⊆ S(P),
then k∗(P) ≤ 1. If k∗(P) = 0, then π−

4 > N
2 ensures that −x4 ∈ MC(P), and thus

x4 /∈ MC(P). Suppose that k∗(P) = 1. Then, x4 ∈ MC(P) ⇒ [Supp1(x4, P) ≥
Max{Supp1(−xh, P), h = 1, 2, 3}]. This implies the following inequalities:

– π1 + π2 + π3 + π4 ≥ π1 + π2 + π−
3 + π−

4 ⇔ a3 + a4 ≥ 0
– π1 + π2 + π3 + π4 ≥ π1 + π−

2 + π3 + π−
4 ⇔ a2 + a4 ≥ 0

– π1 + π2 + π3 + π4 ≥ π−
1 + π3 + π3 + π−

4 ⇔ a1 + a4 ≥ 0

Hence, one get by summation that a1 + a2 + a3 + 3.a4 ≥ 0, in contradiction with
(*). Thus, the strict MC paradox cannot prevail.

Since S(x, P) = Supp1(x, P) for all x ∈ V , the same contradiction holds if the
strict C paradox holds. This proves assertion (1), as well as assertion (2) for Q = 3.

Finally, suppose that Q = 4. The proof is similar to the one above. Let
x1 = (1, 1, 1, 1), x2 = (1, 1, 1, 0), x3 = (1, 1, 0, 1), x4 = (1, 0, 1, 1), x5 =
(0, 1, 1, 1), x6 = (1, 1, 0, 0), x7 = (1, 0, 1, 0), and x8 = (1, 0, 0, 1). We get
that, for any profile P where w.l.g. −x1 ∈ Maj (P) and x1 /∈ Maj (P):
a5 ≥ ∑

h �=5 ah,
∑

h=4,7,8 ah ≥ ∑

h �=4,7,8 ah,
∑

h=3,6,8 ah ≥ ∑

h �=3,6,8 ah and
∑

h=2,6,7 ah ≥ ∑

h �=2,6,7 ah ., with at least one strict inequality. From summation,
we get: 4.a1 + 2.

∑

h=2,3,4,5 ah < 0 (*)
Moreover: S(x1, P) ≥ S(−x5, P) ⇔ a1 + a5 ≥ 0, S(x1, P) ≥ S(−x4, P) ⇔

a1 + a4 ≥ 0, S(x1, P) ≥ S(−x3, P) ⇔ a1 + a3 ≥ 0, and S(x1, P) ≥ S(−x2, P) ⇔
a1 + a2 ≥ 0. Summing these inequalities leads to: 4.a1 + ∑

h=2,3,4,5 ah ≥ 0, in
contradiction with (*). Thus, x1 /∈ C(P), and the strict C paradox does not hold. ��
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Proof of Proposition 5 Proof of assertion (1): Suppose first that the strict Ostro-
gorski paradox holds at some voting profile P . If w ∈ Maj (P), we get:
|{n ∈ N : Un(−w) ≥ Un(w)}| > |{n ∈ N : Un(w) ≥ Un(−w)}|.

Thus,
∣
∣
∣

{

n ∈ N : Un(−w) ≥ Q
2

}∣
∣
∣ >

∣
∣
∣{n ∈ N : Un(w)≥ Q

2

∣
∣
∣. Hence, since S(w, P)

< N
2 , then w /∈ S(P), and we get from proposition 1 that w /∈ MC(P). Next, sup-

pose that w is defeated by z �= −w. Let A = {1 ≤ q ≤ Q : wq �= zq}. Denoting
by P/A the restriction of P to A and x/A the restriction of x ∈ {0, 1}Q to A, we
have that w/A /∈ MC(P/A). Let ỹ ∈ MC(P/A). It follows from construction that
k∗(P/A) ≤ k∗(P). Suppose first that k∗(P/A) < k∗(P). Define the program y by:
yq = (ỹ/A)q , q ∈ A, and yq = wq , q ∈ A. It follows from the separability of pref-
erences that |{n ∈ N : Un(y) ≥ Q − k∗(P)}| > |{n ∈ N : Un(w) ≥ Q − k∗(P)|.
Thus w /∈ MC(P). Finally, if k∗(P/A) = k∗(P), then Suppk∗(P)(y/A, P/A) >

Suppk∗(P)(w/A, p/A). Since both y and w coincide on all q /∈ A, it directly follows
that Suppk∗(P)(y, P) > Suppk∗(P)(w, P), which proves that any profile facing the
Ostrogorski paradox also faces the MC paradox.

Now consider the profile P = (V, π) ∈ �3 where V = (x1, . . . , x4), x1 =
−x2 = (0, 1, 1), x3 = (1, 1, 0), x4 = (0, 0, 0), and πh = 1, h = 1, 2, 3, π4 = 2.
We get that Maj (P) = {x4} and k∗(P) = 1. Moreover, Supp1(x4, P) = 3, while
Supp1(x2, P) = 4, so that x4 /∈ MC(P), and therefore the MC paradox prevails.
Finally, using Hamming preferences, it is easily checked that x4 is a Condorcet win-
ner of P , and hence, the Ostrogorski paradox does not occur. This proves asser-
tion (1). ��
Proof of assertion (2): Let P be a voting profile presenting the Anscombe paradox,
that is Maj (P) � S(P). The C paradox follows from C(P) ⊆ S(P). Now con-
sider P = (V, π) ∈ �3, where V = (x1, . . . , x4), x1 = (1, 1, 0), x2 = −x3 =
(1, 0, 1), x4 = (0, 0, 0), and πh = 1, h = 1, 2, 3, π4 = 2. One has that Maj (P) =
{x4} ∈ S(P). Hence, there is no Anscombe paradox. However, S(x3, P) = 4 >

S(x4, P) = 3 implies that x4 /∈ C(P), therefore the C paradox.

Proof of assertion (3): Suppose thatw ∈ (Maj (P)−MC(P)) and−w ∈ (MC(P)−
Maj (P)). Then −w ∈ S(P). We can set w.l.g. that ∀q, wq = 0. If Q is odd,
then w /∈ S(P), and thus the Anscombe paradox holds. Assume that Q is even
and w ∈ S(P). Since −w ∈ MC(P) and w /∈ MC(P), then k∗(P) <

Q
2 ,

and |{n ∈ N : Un(−w) ≥ (q − k∗(P)}| ≥ N
2 > |{n ∈ N : Un(w) ≥ (q − k∗(P)}|.

Equivalently, one faces the situation where (1) at least 50% of the ballots contains
at least k∗(P) approvals, (2) at least 50% of the ballots contains Q

2 + k∗∗ disap-

provals, where 1 ≤ k∗∗ <
(

k∗(P) − Q
2

)

. Combining (1) and (2) gives a total num-

ber of approvals at least k∗(P).N
2 + N

2 .(
Q
2 − k∗∗) >

N .Q
2 , which contradicts that

−w /∈ Maj (P). Thus, w /∈ S(P), and the Anscombe paradox holds.
Now consider the voting profile P = (V, π) ∈ �3, where V = (x1, . . . , x4), x1 =

(1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1), x4 = (0, 0, 0), and πh = 1, h = 1, 2, 3, π4 =
2. Then Maj (P) = {x4}. Since −x4 defeats x4, then the Anscombe paradox occurs.
Consider y = (1, 0, 0). Since Supp1(y, P) = 4 > N

2 , then k∗(P) = 1. Finally,
Supp1(−x4, P) = 3 < Supp1(y, P), and therefore, −x4 /∈ MC(P).
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Proof of assertion (4): Consider the profile P defined in Example 1. Since Maj (P) =
{x2} ∈ MC(P)−C(P), the C paradox holds, whereas the MC paradox does not. Now
define P = (V, π) ∈ �6, where V = (x1, . . . , x7), x1 = (1, 1, 1, 0, 0, 0), x2 =
(0, 1, 1, 1, 0, 0), x3 = (0, 0, 1, 1, 1, 0), x4 = (0, 0, 0, 1, 1, 1), x5 = (1, 0, 0, 0, 1, 1),

x6 = (1, 1, 0, 0, 0, 1), x7 = (0, 0, 0, 0, 0, 0), πh = 1, 1 ≤ h ≤ 6, and π7 = 2.
Then Maj (P) = {x7}. Moreover, S(x7, P) = N , so that the C paradox does not
hold. Finally, one easily checks that k∗(P) > 1. Take y = (1, 1, 0, 0, 0, 0). Then
Supp2(y, P) = 4 ≥ N

2 , while Supp2(x7, P) = 2 < N
2 . Thus, x7 /∈ MC(P), so that

the MC paradox holds.

Proof of Proposition 6 We prove that ∀ε > 0, there exist Q > 0 and P ∈ �Q such that
Maj (P) = {w}, w /∈ C(P) and, ∀q = 1, . . . , Q,

∣
∣{n ∈ N : xq

n = wq}∣∣ > N .(1 − ε).
Pick up an even integer Q > 3, and define P as follows: there exist 3 strictly positive
integers α, β, γ such that

– α voters cast the ballot w∗ = (0, . . . , 0)

– each ballot containing exactly one approval is cast by α voters
– there are γ ballots x1 where xq

1 = 0 ⇔ q ∈ { Q
2 + 1, . . . , Q},

– there are β ballots x2 where xq
2 = 0 ⇔ q ∈ { Q

2 , . . . , Q},
It follows that N = α.(Q +1)+γ +β. Noting by 0q the number of disapprovals given
to issue q, we get: 0q = α.Q, 1 ≤ q <

Q
2 , 0Q/2 = α.Q + β, 0q = N − α, q >

Q
2 .

It follows that, for any ε > 0, there exists Q such that
∣
∣{n ∈ N : xq

n = w∗q}∣∣ >

N .(1 − ε) and Maj (P) = {w∗}. Define the program z by: zq = 1 ⇔ q = 1. Finally,
S(w∗, P) = α.(Q + 1) + β, and S(z, P) = N . Hence, w∗ /∈ C(P).13

In order to prove the second assertion, let Q = H +3, where H ≥ 3, and let 	 be the
subset of ballots defined by: x ∈ 	 ⇔ x1 = x2 = x3 = 0, and |{q > 3 : xq = 1}|= 3.
Moreover, let w, y, z ∈ {0, 1}Q be respectively defined by: (1) wq = 0, q = 1, . . . , Q,
(2) yq = 1 ⇔ q = 1, 2, and (3) zq = 1 ⇔ q = 1, 2, 3.

Let P ∈ �Q where each ballot in 	 is cast by a unique voter, both y and z are cast
by a single voter, and α = (H

3

) − 1 voters cast ballot w. Hence, N = 2.α + 1. Fur-
thermore, the number of approvals 1q given to issue q is: 11 = 12 = 2, 13 = 1, 1q =
(H−1

2

) = β, q = 4, . . . , Q. Hence, for any issue q, 1q

N ≤ 3.α
H.N , so that it can be made

as close as wanted to 0 by choosing H large enough. It follows that Maj (P) = {w}.
Denote by πx the number of ballots x ∈ {0, 1}Q . It is easily checked that:

– ∀x ∈ {0, 1}Q, k ≤ 1 ⇒ Suppk(x, P) < N
2

– Supp1(w, P) = πw = α − 1, Supp2(w, P) = πw + πz = α < N
2

– Supp1(y, P) = πy + πz = 2, Supp2(y, P) = πw + πz + πy = α + 1 > N
2

Hence, w /∈ MC(P), whereas the issue-wise majority size can be made as close as
wanted to 100%. ��
Proof of Proposition 7 The first assertion is trivial if Q < 3. Let Q = 3. We can
consider w.l.g. a profile P where w = (0, 0, 0) ∈ Maj (P) and the three-fourth rule

13 A by-product of the proof is that the majority rule may fail to lead to the Fallback Bargaining solution
(see Brams et al. 2007) even under quasi-unanimous candidate-wise preferences.
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applies. It is easy to check that w ∈ S(P). Suppose that w /∈ MC(P), and pick up any
y ∈ MC(P). Since MC(P) ⊆ S(P), then k∗(P) = 1 and y �= (−w). Suppose that y
contains only one approval, say w.l.g. that y = (1, 0, 0). Denoting by πx the number
of ballots x , and by πabc the number of ballots x = (a, b, c) ∈ {0, 1}3, we get that
Supp1(y, P) = πw +πy +π110 +π101, and Supp1(w, P) = πw +πy +π010 +π001.
Moreover, the three-fourth rule ensures that:

– πw + π001 + π010 + π011 ≥ 3.(π111 + π101 + π110 + πy) (1)

– πw + πy + π001 + π101 ≥ 3.(π111 + π011 + π110 + π010) (2)

– πw + πy + π010 + π110 ≥ 3.(π111 + π101 + π011 + π001) (3)

Summation leads to 3πw ≥ (π001 +π010 +πy)+9.π111 +5.(π101 +π110 +π011) (4)

Since w /∈ MC(P) implies that πw < N
2 , then π001 + π010 + πy + π111 + π101 +

π110 +π011 > N
2 (5). Hence from (4), π001 +π010 +πy + 9.π111 + 5.(π101 +π110 +

π011) < 3.N
2 (6). Then (6)− (5) leads to: 8.π111 +4.(π101 +π110 +π011) < N (7). It

follows that π111 +π101 +π110 +π011 < N
4 , which implies that Supp1(w, P) > 3.N

4 .
Furthermore, Supp1(w, P) < Supp1(y, P) implies that Supp1(y, P) = πw + πy +
π110+π101 > 3.N

4 (8). From the three-fourth rule, we get: π111+πy+π101+π110 < N
4

(9). Combining with (8) with (9) gives πw > N
2 , contradicting w /∈ MC(P).

Hence, y must contain two approvals, say y = (1, 1, 0). This implies that
Supp1(y, P) = πy+π010+π111+π100 < π010+ N

4 (from the three-fourth rule). Thus,
Supp1(w, P) < Supp1(y, P) ⇒ πw + π100 + π001 < N

4 , which implies, together
with Supp1(w, P) ≥ N

2 , that π010 > N
4 , in contradiction with the three-fourth rule.

This proves the first part of the proposition.
In order to prove the second one, define the voting profile P = (V, π) by: let

V = 	∪{w, y}, where 	 = {x ∈ {0, 1}6 : x1 = x2 = 0, and |{q > 2 : xq = 1}| = 2},
where ∀q, wq = 0, and yq = 1 ⇔ q = 1, 2. Assume that πx = 1 for all x ∈ 	,
while πw = πy = 3. Hence, N = 12, and Maj (P) = {w}. Moreover the majority is
exactly 75% for each q. Since Supp0(z, P) < 6 < N

2 for all z ∈ V , then k∗(P) ≥ 1.
Finally, consider z defined by zq = 1 ⇔ q = 1. Since Supp1(z, P) = 6 ≥ N

2 >

Supp1(w, P) = 3, then k∗(P) = 1 and w /∈ MC(P). ��

Proof of Proposition 9 It is obviously seen that any voting set involving exactly one
pair of opposite ballots is MC-free. Let V be any rich MC-free voting set that contains
at least 2 pairs of opposite ballots. Since E MC ⊆ E SS , we may assume that V is
single-switch, and contains the ballots x1 and x2, where (1) xq

1 = 1 ⇔ 1 ≤ q ≤ q1,
and (2) xq

2 = 1 ⇔ 1 ≤ q ≤ q2, with 1 ≤ q1 < q2 ≤ Q. Let d = (q2 − q1) and
d ′ = (Q − q2).

Suppose first that β = q1 + d ′ ≥ d > 1. Let P = (V, π) be the voting profile
defined by: π1 = π2 = 2, π−

1 = 1, and π−
2 = 0. We get Maj (P) = {x2}. Then,

Suppd−1(x2, P) = π2 < N
2 . Define the program y by: yq = 1 ⇔ 1 ≤ q ≤ q2 − 1.

Then Suppd−1(y, P) = π1 +π2 > N
2 , which implies that x2 /∈ MC(P), a contradic-

tion. Now, suppose that β < d, and define P ′ = (V, π) by: π1 = 1, π2 = 2, π−
1 =

1 = π−
2 , so that Maj (P ′) = {x2}. If d ′ > 0, pick up the program z = (1, . . . , 1).

Then, Suppβ−1(x2, P ′) = π2 < N
2 , whereas Suppβ−1(z, P ′) = π−

1 + π2 > N
2 .
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Therefore, x2 /∈ MC(P ′), a contradiction. If d ′ = 0, the same argument applies once
z is replaced by z′ defined by: z′q = 1 ⇔ either q1 ≤ q ≤ q2, or q1 = 1.

This proves that any V ∈ E MC must contain at most two pairs of opposite single-
switch ballots {x,−x} and {y,−y} such that d(x, y) ≤ 1.

Now, consider any such V , which contains the ballots x1 and x2, where (1) xq
1 =

1 ⇔ 1 ≤ q ≤ q1 − 1, and (2) xq
2 = 1 ⇔ 1 ≤ q ≤ q1, with 2 ≤ q1 ≤ Q. Consider

any profile P = (V, π). It is easily checked that Maj (P) ⊆ {x1, x2,−x1,−x2}.
Suppose w.l.g. that x2 ∈ Maj (P). Then π1 + π2 ≥ N

2 and π−
1 + π2 ≥ N

2 . It fol-
lows that k∗(P) ≤ 1. If k∗(P) = 0, then, clearly, x2 ∈ MC(P), and all is done.
Suppose that k∗(P) = 1 and x2 /∈ MC(P). Thus, there exists y ∈ {0, 1}Q such that
Supp1(y, P) > Supp1(x2, P) = π1 + π2. This implies that either all voters for x2
or all for x1 are counted in Supp1(y, P) (note that both categories can be simulta-
neously counted only if y = x1, and since Q ≥ 3, then Supp1(x1, P) = π1 + π2,
we get a contradiction). Consider the former case. Let q∗ be the unique issue such
that xq∗

2 �= yq∗
. Then either q∗ = q1, which implies that y = x1, a contradiction, or

q∗ �= q1, which implies that Supp1(y, P) = π2, a contradiction. In the latter case,
since y �= x2, there exists again a unique issue q∗ �= q1 such that xq∗

1 �= yq∗
. But this

implies that Supp1(y, P) = π1, again a contradiction. ��

Proof of Proposition 10 It is sufficient to prove that any rich voting set V containing
2 different pairs of opposite ballots {x1,−x1} and {x2,−x2} is exposed to the C par-
adox. Q can be partitioned into four sets B1, . . . , B4, where | Bh |= bh, 1 ≤ h ≤ 4,
and where programs x1 and x2 are defined by: (1) xq

1 = 1 ⇔ q ∈ B1 ∪ B2, and (2)
xq

2 = 1 ⇔ q ∈ B1 ∪ B3. Since x1 �= x2, then b1 +b4 �= 0 and b2 +b3 �= 0. Moreover,
Maj (P) ⊂ {x1, x2,−x1,−x2} for any profile P = (V, π). Furthermore,

– d(x1, x2) = d(−x1,−x2) = b2 + b3
– d(x1,−x2) = d(−x1, x2) = b1 + b4

Then, we consider the 2 following possible cases:

Case 1: b2 + b3 ≤ b1 + b4

Let π1 = 5, π−
1 = 0, π2 = 3 and π−

2 = 4. Then, Maj (P) = {x1}. Since b2 + b3 ≤
b1 + b4 implies that b2 + b3 ≤ Q

2 , then S(x1, P) = π1 + π2 = 8. Suppose that

b1, b4 ≤ Q
2 . Let y be the program where yc = 1 ⇔ c ∈ B1 ∪ B2 ∪ B4. Then

d(x1, y) = b4 ≤ Q
2 and d(y,−x2) = b1 ≤ Q

2 . Hence S(y, P) = π1 + π−
2 = 9 >

S(x1, P), and the C paradox holds. Suppose that b1 >
Q
2 . Define the program z by

zc = 1 ⇔ c ∈ B ′
1 ∪ B2 ∪ B4, where B ′

1 is the set of the first
⌊

Q
2

⌋

issues in B1.

Then d(x1, y) = b1 + b4 −
⌊

Q
2

⌋

and d(y,−x2) = b1 −
⌊

Q
2

⌋

. Since b2 + b3 �= 0

implies that b1 + b4 < Q, then d(x1, y) ≤ Q
2 and d(y,−x2) ≤ Q

2 . Thus, again,
S(z, P) = π1 + π−

2 = 9 > S(x1, P), and the C paradox holds. The same argument
holds if b4 >

Q
2 , by defining z such that zc = 1 ⇔ c ∈ B1 ∪ B2 ∪ B ′

4, where B ′
4 is

the set of the first
⌊

Q
2

⌋

issues in B4.
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Case 2: b2 + b3 > b1 + b4

Let π1 = 1, π−
1 = 2, π2 = 3 and π−

2 = 5. Then, Maj (P) = {−x2}. If b2, b3 ≤ Q
2 ,

define w by wc = 1 ⇔ c ∈ B4. Then d(−x1, w) = b3 ≤ Q
2 and d(w,−x2) = b2 ≤

Q
2 . Hence, S(w, P) = π−

1 + π−
2 = 7 > S(−x2, P) = π1 + π−

2 = 6, so that the

C-paradox holds. If b3 >
Q
2 , define the program v by vc = 1 ⇔ c ∈ B2 ∪ B ′

3 ∪ B4,

where B ′
3 is the set of the first

⌊
Q
2

⌋

issues in B3. Then, d(−x1, v) = b2 +b3 −
⌊

Q
2

⌋

≤
Q
2 (since b1 + b4 > 0 ⇒ b2 + b3 < Q) and d(v,−x2) =

⌊
Q
2

⌋

≤ C
2 . Hence,

S(w, P) = π−
1 + π−

2 = 7 > S(−x2, P), and therefore the C paradox holds. The
same argument prevails if b2 >

Q
2 , once we replace v with the program w, with

wc = 1 ⇔ c ∈ B ′
2 ∪ B3 ∪ B4, where B ′

2 is the set of the first
⌊

Q
2

⌋

issues in B2. ��
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