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Abstract We introduce a wide range of induced and linguistic generalized aggrega-
tion operators. First, we present the induced linguistic generalized ordered weighted
averaging (ILGOWA) operator. It is a generalization of the OWA operator that uses
linguistic variables, order inducing variables and generalized means in order to provide
a more general formulation. One of its main results is that it includes a wide range
of linguistic aggregation operators such as the induced linguistic OWA (ILOWA),
the induced linguistic OWG (ILOWG) and the linguistic generalized OWA (LGOWA)
operator. We further generalize the ILGOWA operator by using quasi-arithmetic means
obtaining the induced linguistic quasi-arithmetic OWA (Quasi-ILOWA) operator and
by using hybrid averages forming the induced linguistic generalized hybrid average
(ILGHA) operator. We also present a further extension with Choquet integrals. We
call it the induced linguistic generalized Choquet integral aggregation (ILGCIA). We
end the paper with an application of the new approach in a linguistic group decision
making problem.
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532 J. M. Merigó et al.

1 Introduction

The ordered weighted averaging (OWA) operator (Yager 1988) is a very well-known
aggregation operator for fusing numerical information (Beliakov et al. 2007; Calvo
et al. 2002). However, we may find situations where the available information is vague
or imprecise and it is not possible to analyze it with numerical values. Thus, it is neces-
sary to use another approach such as a qualitative one that uses linguistic assessments
(Zadeh 1975). In the literature, we find different types of OWA operators that use
linguistic information (Herrera et al. 2008, 1995; Herrera and Martínez 2000; Xu
2008). In this paper, we follow the ideas of the induced linguistic OWA (ILOWA)
and the induced linguistic OWG (ILOWG) operator (Xu 2006a,b). Note that these
operators represent a linguistic version of the induced aggregation operators intro-
duced by Yager and Filev (1999). Since its introduction, they have been studied by
a lot of authors. For example, Yager (2003, 2004a) developed several properties and
an application with the Choquet integral. Merigó and Casanovas (2009) developed an
application in decision making with Dempster–Shafer theory of evidence. Wei et al.
(2010) studied several types of induced aggregation operators with intuitionistic fuzzy
sets.

Another interesting extension of the OWA operator is the generalization that uses
generalized means and quasi-arithmetic means. These types of aggregations are known
as the generalized OWA (GOWA) operator (Karayiannis 2000; Yager 2004b) and the
Quasi-OWA operator (Fodor et al. 1995). They generalize a wide range of aggregation
operators such as the average, the OWA and the OWG operator. Recently, Merigó and
Gil-Lafuente (2009) have suggested a generalization of the induced OWA (IOWA)
operator by using generalized means. This operator is known as the induced gen-
eralized OWA (IGOWA) operator and it generalizes a wide range of aggregation
operators such as the OWA and the IOWA operator. Note that a further general-
ization is possible by using quasi-arithmetic means (Quasi-IOWA operator). Fur-
ther extensions have been introduced recently. For example, Merigó and Casanovas
(2010a,b) developed a fuzzy version of the GOWA operator and extended it by using
hybrid averages. They also developed a generalization by using heavy aggregations
(Merigó and Casanovas 2010c). Zhao et al. (2010) considered the use of intuitionistic
fuzzy sets with generalized aggregation operators. Zhou and Chen (2010a,b) devel-
oped a generalized logarithmic aggregation operator and a continuous generalized
aggregation.

Recently, Merigó and Gil-Lafuente (2008) have suggested the induced linguistic
generalized OWA (ILGOWA) operator. Going a step further, one of the objectives of
this paper is to analyze the ILGOWA operator in more detail considering a wide range
of properties of this aggregation operator. The ILGOWA represents an extension of
the IGOWA operator for the cases where the available information is assessed with
linguistic variables. It also uses order inducing variables in order to represent com-
plex reordering processes in the aggregation process. Thus, we are able to generalize
a wide range of linguistic aggregation operators such as the ILOWA, the linguis-
tic OWA (LOWA), the linguistic weighted average (LWA), the linguistic generalized
mean (LGM), the linguistic weighted generalized mean (LWGM) and the linguistic
GOWA (LGOWA).
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Induced and Linguistic Generalized Aggregation Operators 533

Note that different approaches have been developed for dealing with linguistic
information (Bonissone 1982; Zadeh 1975). In this paper, we focus on the ideas of Xu
(2004, 2008) where we are able to compute with words directly without losing infor-
mation in the computation process. Moreover, it is worth noting that Wang and Hao
(2006) considered a generalization of the LOWA operator by using quasi-arithmetic
means. However, their model is focused on the 2-tuple linguistic approach (Herrera
and Martínez 2000) and it does not consider induced aggregation operators. Further-
more, note that our model is different from the model suggested by Xu (2006b). Xu
called generalized induced linguistic OWA to a model based on a generalization of
the order inducing variables. However, he did not analyze the use of generalized and
quasi-arithmetic means.

We also present a further generalization of the ILGOWA operator by using quasi-
arithmetic means. We call it the Quasi-ILOWA operator. Note that the Quasi-ILOWA
has also been considered by Merigó and Gil-Lafuente (2008). The main advantage of
this approach is that it includes the ILGOWA as a special case and a lot of other cases.
Thus, we get a more robust formulation of this model.

Moreover, we also extend this approach by using the hybrid average (Xu and Da
2003). By doing so, we are able to use the weighted average and the IOWA in the
same formulation and in an uncertain environment that can be assessed with linguis-
tic variables. We call it the induced linguistic generalized hybrid averaging (ILGHA)
operator. One of its key features is that it includes a wide range of aggregation oper-
ators including the LGOWA and the LWGM. We also generalize this approach by
using quasi-arithmetic means obtaining the induced quasi-arithmetic linguistic hybrid
average (Quasi-ILHA) operator.

Furthermore, we also present the induced linguistic generalized Choquet integral
aggregation (ILGCIA) and the induced linguistic quasi-arithmetic Choquet integral
aggregation (Quasi-ILCIA). These aggregation operators represent a generalization
of the ILGOWA and the Quasi-ILOWA by using the Choquet integral (Choquet 1953).

Finally, we develop a decision making approach for evaluating university faculty
for tenure and promotion based on the ILGHA operator and the ILGOWA operator.
That is, we utilize the ILGHA operator to aggregate the individual decision matrix
into the overall one, and then we use the ILGOWA operator to obtain the collec-
tive preference value of candidates. Thus, we can rank the candidates and select the
best one.

This paper is organized as follows. Section 2 presents some basic concepts. In
Sect. 3, we present the ILGOWA operator and Sect. 4 introduces the Quasi-ILOWA
operator. Section 5 presents the ILGHA and the Quasi-ILHA operators and in Sect. 6
we suggest an extension by using Choquet integrals. In Sect. 7 we develop an applica-
tion in group decision making. Finally, in Sect. 8 we summarize the main conclusions
of the paper.

2 Preliminaries

In this section, we briefly review the linguistic approach, the OWA operator, the IOWA
operator, the LOWA operator, the ILOWA operator and the IGOWA operator.
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534 J. M. Merigó et al.

2.1 The Linguistic Approach

Many problems of the real world cannot be assessed in a quantitative form. Instead, it
is possible to use a qualitative one, i.e., with vague or imprecise knowledge that uses
linguistic assessments instead of numerical values (Zadeh 1975).

We have to select the appropriate linguistic descriptors for the term set and their
semantics. For example, a set of seven terms S could be given as follows:

S = {s1 = N , s2 = V L , s3 = L , s4 = M, s5 = H, s6 = V H, s7 = P}

Note that N = None, VL = Very low, L = Low, M = Medium, H = High, VH = Very
high, P = Perfect. Usually, it is required that there exists:

1. A negation operator: Neg(si ) = s j such that j = g + 1 − i .
2. The set is ordered: si ≤ s j if and only if i ≤ j .
3. Max operator: max(si , s j ) = si if si ≥ s j .
4. Min operator: min(si , s j ) = si if si ≤ s j .

Different approaches have been developed for dealing with linguistic information
(Carlsson and Fuller 2000; Chang and Wen 2010; Xu et al. 2010; Zadeh 1975). In this
paper, we follow the ideas of Xu (2004, 2008). Thus, in order to preserve all the given
information, we extend the discrete linguistic term set S to a continuous linguistic
term set Ŝ = {sα|s1 < sα ≤ st , α ∈ [1, t]}, where, if sα ∈ S, we call sα the original
linguistic term, otherwise, we call sα the virtual linguistic term. Therefore, we are able
to compute words directly without losing information in the computation process.

2.2 The OWA Operator

The OWA operator (Yager 1988) is an aggregation operator that provides a parame-
terized family of aggregation operators between the minimum and the maximum. It
is defined as follows.

Definition 1 An OWA operator of dimension n is a mapping OWA: Rn → R that has
an associated weighting vector W of dimension n with w j ∈ [0, 1] and

∑n
j=1 w j = 1,

such that:

OWA (a1, . . . , an) =
n∑

j=1

w j b j , (1)

where b j is the j th largest of the ai .

Note that different properties can be studied such as the distinction between
descending and ascending orders, different measures for characterizing the weighting
vector and different families of OWA operators. Note that it is commutative, mono-
tonic, bounded and idempotent. For further reading on recent developments, refer, for
example to Emrouznejad and Amin (2010), Merigó (2010), Merigó and Gil-Lafuente
(2010), Yager (2010), Yager and Kacprzyk (1997), Zhou et al. (2010).
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Induced and Linguistic Generalized Aggregation Operators 535

2.3 The Induced OWA Operator

The IOWA operator (Yager and Filev 1999) is an extension of the OWA operator. Its
main difference is that the reordering step is not carried out with the values of the argu-
ments ai . In this case, the reordering step is developed with order-inducing variables
that reflect a more complex reordering process. The IOWA operator also includes as
particular cases the maximum, the minimum and the average criteria. It can be defined
as follows.

Definition 2 An IOWA operator of dimension n is a mapping IOWA: Rn × Rn → R
that has an associated weighting vector W of dimension n with W = ∑n

j=1 w j = 1
and w j ∈ [0, 1], such that:

IOWA (〈u1, a1〉, 〈u2, a2〉, . . . , 〈un, an〉) =
n∑

j=1

w j b j , (2)

where b j is the ai value of the IOWA pair 〈ui , ai 〉 having the j th largest ui , ui is the
order inducing variable and ai is the argument variable.

Note that it is possible to distinguish between the descending IOWA (DIOWA)
operator and the ascending IOWA (AIOWA) operator. The IOWA operator is also
monotonic, bounded, idempotent and commutative.

2.4 The Linguistic OWA Operator

In the literature, we find a wide range of linguistic aggregation operators (Merigó
and Casanovas 2010d; Merigó et al. 2010; Xu 2009). In this study, we consider the
linguistic ordered weighted averaging (LOWA) operator (Xu 2004, 2008) with its par-
ticular cases that include among others the linguistic average (LA) and the linguistic
maximum and minimum. It can be defined as follows.

Definition 3 A LOWA operator of dimension n is a mapping LOWA: Ŝn → Ŝ, which
has an associated weighting vector W with w j ∈ [0, 1] and

∑n
j=1 w j = 1, such that:

LOWA(sα1 , sα2 , . . . , sαn ) =
n∑

j=1

w j sβ j , (3)

where sβ j is the j th largest of the sαi .

Note that it is possible to distinguish between the descending LOWA (DLOWA) and
the ascending LOWA (ALOWA) operator. The weights of these operators are related
by w j = w∗

n+1− j , where w j is the j th weight of the DLOWA (or LOWA) operator
and w∗

n+1− j the j th weight of the ALOWA operator.
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536 J. M. Merigó et al.

The LOWA operator provides a parameterized family of aggregation operators that
includes as special cases the LA and the linguistic weighted average (LWA). The LA
is obtained when all the weights w j are equal for all j . The LWA is obtained if the
ordered position of the sβ j is the same as the ordered position of the Sαi .

2.5 The Induced Linguistic OWA Operator

The ILOWA operator (Xu 2006b) is an extension of the OWA operator that uses
linguistic information and inducing variables in the reordering of the arguments.

Definition 4 An ILOWA operator of dimension n is a mapping ILOWA: Rn ×Sn → S,
which has an associated weighting vector W with w j ∈ [0, 1] and

∑n
j=1 w j = 1, such

that:

ILOWA(〈u1, sα1〉, 〈u2, sα2〉, . . . , 〈un, sαn 〉) =
n∑

j=1

w j sβ j , (4)

where sβ j is the sαi value of the ILOWA pair
〈
ui , sαi

〉
having the j th largest ui , ui is

the order inducing variable and sαi is the linguistic variable.

2.6 The Induced Generalized OWA Operator

The IGOWA operator (Merigó and Gil-Lafuente 2009) represents a generalization of
the IOWA operator by using generalized means. Thus, it is possible to include in the
same formulation, different types of induced operators such as the IOWA operator or
the induced OWG (IOWG) operator. It is defined as follows.

Definition 5 An IGOWA operator of dimension n is a mapping IGOWA: Rn×Rn → R
that has an associated weighting vector W of dimension n with w j ∈ [0, 1] and∑n

j=1 w j = 1, such that:

IGOWA (〈u1, a1〉 , 〈u2, a2〉, . . . , 〈un, an〉) =
⎛

⎝
n∑

j=1

w j b
λ
j

⎞

⎠

1/λ

, (5)

where b j is the ai value of the IGOWA pair 〈ui , ai 〉 having the j th largest ui , ui is
the order inducing variable, ai is the argument variable and λ is a parameter such that
λ ∈ (−∞,∞) − {0}.

As we can see, if λ = 1, we get the IOWA operator. If λ = 0, the induced ordered
weighted geometric (IOWG) operator and if λ = 2, the induced ordered weighted
quadratic averaging (IOWQA) operator. Note that it is possible to further generalize
the IGOWA operator by using quasi-arithmetic means. The result is the Quasi-IOWA
operator.
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Induced and Linguistic Generalized Aggregation Operators 537

Definition 6 A Quasi-IOWA operator of dimension n is a mapping QIOWA: Rn ×
Rn → R that has an associated weighting vector W of dimension n with w j ∈ [0, 1]
and

∑n
j=1 w j = 1, such that:

QIOWA (〈u1, a1〉, 〈u2, a2〉, . . . , 〈un, an〉) = g−1

⎛

⎝
n∑

j=1

w j g(b j )

⎞

⎠ , (6)

where b j is the ai value of the Quasi-IOWA pair 〈ui , ai 〉 having the j th largest ui , ui

is the order inducing variable, ai is the argument and g(b) is a strictly continuous
monotonic function.

As we can see, when g(b) = bλ, we get the induced generalized OWA (IG-
OWA) operator. Thus, the Quasi-IOWA operator includes all the particular cases of
the IGOWA such as the IOWA and the IOWQA, and a lot of other cases.

2.7 The Hybrid Averaging Operator

The hybrid average (HA) operator (Xu and Da 2003) is an aggregation operator that
uses the WA and the OWA operator in the same formulation. Thus, it is possible to
consider in the same problem, the attitudinal character of the decision maker and its
subjective probability. Since its introduction, it has been used in a lot of applications
(Merigó and Casanovas 2010b; Wei 2009; Xu 2006c, 2010a,b). It can be defined as
follows.

Definition 7 An HA operator of dimension n is a mapping HA: Rn → R that has an
associated weighting vector W of dimension n such that the sum of the weights is 1
and w j ∈ [0, 1], then:

HA (a1, a2, . . . , an) =
n∑

j=1

w j b j , (7)

where b j is the j th largest of the âi (âi = nωi ai , i = 1, 2, . . . , n), ω = (ω1, ω2, . . . , ωn)T

is the weighting vector of the ai , with ωi ∈ [0, 1] and the sum of the weights is 1.

From a generalized perspective of the reordering step, we can distinguish between
the descending HA (DHA) operator and the ascending HA (AHA) operator. The
weights of these operators are related by w j = w∗

n− j+1, where w j is the j th weight
of the DHA and w∗

n− j+1 the j th weight of the AHA operator.
Note that different families of HA operators are found by using a different manifes-

tation in the weighting vector such as the step-HA operator, the window-HA operator,
the median-HA operator and the centered-HA operator.
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538 J. M. Merigó et al.

3 The Induced Linguistic Generalized OWA Operator

3.1 Introduction

The ILGOWA operator (Merigó and Gil-Lafuente 2008) is an extension of the IGOWA
operator for the cases where the information cannot be assessed with numerical values
and it is necessary to use another approach such as a qualitative one that uses linguis-
tic assessments. Note that the ILGOWA operator can also be seen as an aggregation
operator that uses the main characteristics of three well-known aggregation operators:
the LOWA, the IOWA and the GOWA operator. Thus, it uses linguistic information
in a generalized model that uses generalized means. Moreover, it also uses a complex
reordering process by using order inducing variables. It can be defined as follows.

Definition 8 An ILGOWA operator of dimension n is a mapping ILGOWA: Rn × Sn

→ S, which has an associated weighting vector W with w j ∈ [0, 1] and
∑n

j=1 w j = 1,
such that:

ILGOWA(〈u1, sα1〉, 〈u2, sα2〉, . . . , 〈un, sαn 〉) =
⎛

⎝
n∑

j=1

w j s
λ
β j

⎞

⎠

1/λ

, (8)

where sβ j is the sαi value of the ILGOWA pair
〈
ui , sαi

〉
having the j th largest ui , ui

is the order inducing variable, sαi is the linguistic variable and λ is a parameter such
that λ ∈ (−∞,∞) − {0}.

Example 1 Assume the following collection of linguistic values assessed with a set of
seven linguistic terms: S = {s1 = N , s2 = V L , s3 = L , s4 = M, s5 = H, s6 = V H,

s7 = P}, with their corresponding order-inducing variables 〈ui , si 〉 : 〈4, s5〉 , 〈9, s4〉,
〈3, s6〉 , 〈6, s3〉. Assuming that W = (0.1, 0.2, 0.3, 0.4) and λ = 1, then, the aggrega-
tion formula is the following:

0.1 × s4 + 0.2 × s3 + 0.3 × s5 + 0.4 × s6 = s4.9.

As we can see, the linguistic argument variables are reordered in decreasing order
according to the order-inducing variables ui .

Note that it is possible to distinguish between descending (DILGOWA) and
ascending (AILGOWA) orders. Note also that if λ < 0, we can only use linguis-
tic variables associated with positive numbers S+, in order to obtain consistent re-
sults. Additionally, sometimes the weighting vector may not be normalized, i.e.,
W = ∑n

j=1 w j 
= 1. In these cases, the ILGOWA operator can be expressed as:

f (〈u1, sα1〉, 〈u2, sα2〉, . . . , 〈un, sαn 〉) =
⎛

⎝ 1

W

n∑

j=1

w j s
λ
β j

⎞

⎠

1/λ

. (9)
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The ILGOWA operator is commutative, monotonic, bounded and idempotent. It
is commutative because f (〈u1, s1〉, . . . , 〈un, sn〉) = f (〈u1, s′

1〉, . . . , 〈un, s′
n〉) where

(〈u1, s′
1〉, . . . , 〈un, s′

n〉) is any permutation of the arguments (〈u1, s1〉, . . . , 〈un, sn〉).
It is monotonic if f (〈u1, s1〉, . . . , 〈un, sn〉) ≥ f (〈u1, s′

1〉, . . . , 〈un, s′
n〉) with si ≥ s′

i ,
for all i . It is bounded because min{si } ≤ f (〈u1, s1〉, . . . , 〈un, sn〉) ≤ max{si }. And
it is idempotent if si = sk , for all i , then f (〈u1, s1〉, . . . , 〈un, sn〉) = sk .

Another interesting issue is the problem of ties in the order inducing variables. As
it was explained by Yager and Filev (1999), the easiest way to solve this problem
consists in replacing each argument of the tied inducing variables by its LGM.

Analysing the applicability of the ILGOWA operator, we can see that it is applicable
to similar situations already discussed in other types of induced aggregation operators
where it is possible to use linguistic information. For example, we could use it in
different decision making problems, etc.

3.2 Families of ILGOWA Operators

The ILGOWA operator provides a parameterized family of aggregation operators that
includes the LA, the LWA, the LOWA, the ILOWA, the LGM, the LWGM, the LGOWA
and the ILOWG operator, among others.

In order to study these families, we can analyze the weighting vector W or the
parameter λ. If we analyze the weighting vector W , then, we find similar results to
those found in the OWA operator (Carlsson et al. 2003; Emrouznejad and Amin 2010;
Merigó and Gil-Lafuente 2009; Yager 1993). For example:

• If w j = 1/n, we get the LGM.
• The linguistic maximum is obtained if wp = 1 and w j = 0, for all j 
= p, and

u p = Max{ui }.
• The linguistic minimum is obtained if wp = 1 and w j = 0, for all j 
= p, and

u p = Min{ui }.
• The LWGM is obtained if ui > ui+1, for all i .
• The LGOWA operator is obtained if the ordered position of ui is the same as the

ordered position of b j such that b j is the j th largest of si .
• Step-ILGOWA: If wk = 1 and w j = 0, for all j 
= k.
• Olympic-ILGOWA: If w1 = wn = 0, and for all others w j = 1/(n − 2).

If we analyze the parameter λ, we find similar results to those found in the GOWA
operator. For example:

• If λ = 1, then, we get the ILOWA operator.
• If λ → 0, we get the ILOWG.
• If λ = 2, the induced linguistic ordered weighted quadratic averaging (ILOWQA)

operator.
• If λ = −1, the induced linguistic ordered weighted harmonic averaging (IL-

OWHA) operator.
• If λ = 3, the induced linguistic ordered weighted cubic averaging (ILOWCA)

operator.
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540 J. M. Merigó et al.

• If λ → ∞, we get the linguistic maximum.
• If λ → −∞, we get the linguistic minimum.

4 Quasi-ILOWA Operators

The induced linguistic ordered weighted quasi-arithmetic averaging (Quasi-ILOWA)
operator is a further generalization of the ILGOWA operator by using quasi-arithmetic
means (Merigó and Gil-Lafuente 2008). Its main advantage is that it provides a more
general formulation because it includes the ILGOWA operator as a particular case.
It can be defined as follows.

Definition 9 A Quasi-ILOWA operator of dimension n is a mapping QILOWA:
Rn × Sn → S, which has an associated weighting vector W with w j ∈ [0, 1] and∑n

j=1 w j = 1, such that:

QILOWA(〈u1, sα1〉, 〈u2, sα2〉, . . . , 〈un, sαn 〉) = g−1

⎛

⎝
n∑

j=1

w j g(sβ j )

⎞

⎠ , (10)

where sβ j is the sαi value of the QILOWA pair
〈
ui , sαi

〉
having the j th largest ui , ui is

the order inducing variable, sαi is the linguistic variable and g is a general continuous
strictly monotonic function.

As we can see, the ILGOWA operator is a particular case of the Quasi-ILOWA
when g(s) = sλ. Note that all the properties commented in the ILGOWA operator are
also applicable in this case such as the distinction between descending and ascending
orders and the problem of ties.

As explained in the case of the ILGOWA, if the weighting vector is not normalized,

i.e., W =
n∑

j=1
w j 
= 1, then, the Quasi-ILOWA operator can be expressed as:

f (〈u1, sα1〉, 〈u2, sα2〉, . . . , 〈un, sαn 〉) = g−1

⎛

⎝ 1

W

n∑

j=1

w j g(sβ j )

⎞

⎠ . (11)

Note that all the properties and particular cases commented in the ILGOWA operator
are also included in this generalization. For example, we could study different families
of Quasi-ILOWA operators such as the Quasi-LA, the Quasi-LWA, the Quasi-ILOWA,
the Quasi-olympic-ILOWA and the Quasi-centered-ILOWA.

A further interesting result can be considered by using infinitary aggregation
operators (Mesiar and Pap 2008). Thus, we can represent an aggregation process
where there are an unlimited number of arguments to be aggregated. Note that∑∞

j=1 w j = 1. By using, the Quasi-ILOWA operator we get the infinitary Quasi-
ILOWA (∞-Quasi-ILOWA) operator as follows.
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Induced and Linguistic Generalized Aggregation Operators 541

∞ − QILOWA(〈u1, sα1〉, 〈u2, sα2〉, . . . , 〈un, sαn 〉) = g−1

⎛

⎝
∞∑

j=1

w j g(sβ j )

⎞

⎠, (12)

where sβ j are the argument of the ∞-QILOWA pair
(
ui , sαi

)
having the j th largest ui

and g(β) is a general continuous strictly monotonic function such that g : I → R.
Note that the reordering process is much more complex due to the fact that we

never know the largest order-inducing variable because we have an unlimited number
of arguments to be considered. For further reading with the usual OWA, see Mesiar
and Pap (2008).

5 Using the Hybrid Average in the ILGOWA Operator

A further generalization can be developed by using hybrid averages. Thus, we obtain
the induced linguistic generalized hybrid average (ILGHA) operator. The main advan-
tage of this approach is that it is able to deal with the weighted average and the OWA
operator in the same formulation. It can be defined as follows.

Definition 10 An ILGHA operator of dimension n is a mapping ILGHA: Rn × Sn → S,
which has an associated weighting vector W with w j ∈ [0, 1] and

∑n
j=1 w j = 1, such

that:

ILGHA(〈u1, sα1〉, . . . , 〈un, sαn 〉) =
⎛

⎝
n∑

j=1

w j s
λ
β j

⎞

⎠

1/λ

, (13)

where sβ j is the ŝαi value (ŝαi = nωi sαi , i = 1, 2, . . . , n), of the ILGHA pair
〈
un, sαn

〉

having the j th largest ui , ui is the order inducing variable, ω = (ω1, ω2, . . . , ωn)T is
the weighting vector of the sαi , with ωi ∈ [0, 1] and the sum of the weights is 1, and
λ is a parameter such that λ ∈ (−∞,∞) − {0}.
As we can see, if w j = 1/n, for all i , then, the ILGHA operator becomes the LWGM
and if ωn = 1/n, for all i , it becomes the ILGOWA operator. Note that a lot of other
families could be studied following the methodology explained in Sect. 3.

Moreover, it is possible to further extend this approach by using quasi-arithmetic
means obtaining the induced linguistic quasi-arithmetic HA (Quasi-ILHA) operator.
The Quasi-ILHA operator includes the ILGHA as a particular case. It can be defined
as follows.

Definition 11 A Quasi-ILHA operator of dimension n is a mapping QILHA: Rn ×
Sn → S, which has an associated weighting vector W with w j ∈ [0, 1] and∑n

j=1 w j = 1, such that:

QILHA
(〈

u1, sα1

〉
, . . . ,

〈
un, sαn

〉) = g−1

⎛

⎝
n∑

j=1

w j g(sβ j )

⎞

⎠ , (14)
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where sβ j is the ŝαi value
(
ŝαi = nωi sαi , i = 1, 2, . . . , n

)
, of the QILHA pair

〈
un, sαn

〉

having the j th largest ui , ui is the order inducing variable, ω = (ω1, ω2, . . . , ωn)T is
the weighting vector of the sαi , with ωi ∈ [0, 1] and the sum of the weights is 1, and
g is a general continuous strictly monotonic function.

6 Choquet Integrals in the ILGOWA Operator

Following previous papers on Choquet integrals (Choquet 1953; Mesiar 1995; Tan
and Chen 2010a,b; Xu 2010a; Yager 2004a,b), it is possible to develop an extension of
the ILGOWA and the Quasi-ILOWA operator by using the discrete Choquet integral.
Thus, we get the induced linguistic quasi-arithmetic Choquet integral aggregation
(Quasi-ILCIA) operator. Before presenting this new result, let us define the concept of
fuzzy measure and the Choquet integral. The fuzzy measure (non-additive measure)
was introduced by Sugeno (1974) and it is defined as follows.

Definition 12 Let X be a universal set X = {x1, x2, . . . , xn} and P(X) the power set
of X . A fuzzy measure on X is a set function on m : P(X) → [0, 1], that satisfies the
following conditions:

(1) m(Ø) = 0, m(X) = 1 (boundary conditions) and
(2) If A, B ∈ P(X) and A ⊆ B, then m(A) ≤ m(B) (monotonicity).

The Choquet integral was introduced by Choquet (1953) and it can be defined as
follows in its discrete form.

Definition 13 Let f be a positive real-valued function f : X → R+ and m be a fuzzy
measure on X . The (discrete) Choquet integral of f with respect to m is:

Cm ( f1, f2, . . . , fn) =
n∑

i=1

f(i)
[
m(A(i)) − m(A(i−1))

]
, (15)

where (·) indicates a permutation on X such that f(1) ≥ f(2) ≥ · · · ≥ f(n), i.e. f(i)
is the i th largest value in the set { f1, f2, . . . , fn} , A(i) = {

x(1), . . . , x(i)
}

i ≥ 1 and
A(0) = Ø.

In the following, we present a definition of the Quasi-ILCIA operator based on the
use of the Choquet integral with quasi-arithmetic means and linguistic information.

Definition 14 Let S be the set of linguistic values. Let si be a positive linguistic value
on X , and m be a fuzzy measure on X . An induced linguistic quasi-arithmetic Choquet
integral aggregation (Quasi-ILCIA) operator of dimension n is a function QILCIA:(
R × S+)n → S+, which is defined to aggregate the set of second arguments of a list

of n tuples {(u1, s1) , . . . , (un, sn)} according to the following expression:

QILCIA ((u1, s1) , . . . , (un, sn))

= �

⎛

⎝g−1

⎛

⎝
n∑

j=1

g(sβ j )
[
m(A(i)) − m(A(i−1))

]
⎞

⎠

⎞

⎠ , (16)

123



Induced and Linguistic Generalized Aggregation Operators 543

where g is a strictly continuous monotonic function such that g: S → R, sβ j are the
linguistic argument values si of the Quasi-ILCIA tuples (ui , si ) having the j th largest
ui , ui is the order inducing variable, A(i) = {x(1) . . . , x(i)}i ≥ 1 and A(0) = Ø.

A fundamental aspect of this new linguistic aggregation operator is that it includes
a wide range of aggregation operators. For example:

• The linguistic quasi-arithmetic Choquet integral aggregation (Quasi-LCIA): When
the ordered position of the order inducing variables ui is the same as the ordered
position of j such that j is the j th largest of i .

• The induced linguistic generalized Choquet integral aggregation (ILGCIA): When
g(β) = βλ.

• The linguistic generalized Choquet integral aggregation (LGCIA): When g(β) =
βλ and the ordered position of the order inducing variables ui is the same as the
ordered position of j such that j is the j th largest of i .

• The induced quasi-arithmetic Choquet integral aggregation (Quasi-ICIA): When
the linguistic values are reduced to the usual exact numbers.
− The induced generalized Choquet integral aggregation (IGCIA).
− The quasi-arithmetic Choquet integral aggregation (Quasi-CIA).
− The generalized Choquet integral aggregation (GCIA).

Moreover, we could also consider a wide range of families of all the previous cases
following the methodology explained in Sect. 3. For example, we could analyze the
following cases:

• The induced linguistic Choquet integral aggregation.
• The induced linguistic quadratic Choquet integral aggregation.
• The induced linguistic harmonic Choquet integral aggregation.
• The linguistic Choquet integral aggregation.
• The linguistic quadratic Choquet integral aggregation.
• The linguistic harmonic Choquet integral aggregation.

Note that the Quasi-ILCIA operator includes a lot of other particular cases but we
believe that those presented here are some of the most relevant.

7 Application in Linguistic Group Decision Making

In this section, we present a new approach based on the ILGHA operator and the
ILGOWA operator to group decision making with linguistic preference information.
The approach can be used in many decision making problems, such as product man-
agement, human resource management, the selection of financial products, and so on.

7.1 An Approach to Group Decision Making with the ILGHA Operator
and ILGOWA Operator

In the following, we shall develop an approach based on the ILGHA operator and ILG-
OWA operator to a multiple attribute group decision making with linguistic preference
information.
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Let X = {x1, x2, . . . , xn} be a discrete set of alternatives, and C = {c1, c2, . . . , cm}
be the set of attributes. Let D = {d1, d2, . . . , dm} be the set of decision makers and
W = (w1, w2, . . . , wl)

T be the weight vector of decision makers, where wk ≥ 0, k =
1, 2, . . . , l,

∑l
k=1 wk = 1. Suppose that A(k) = (a(k)

i j )m×n is the decision matrix,

where a(k)
i j ∈ S is a preference value, which takes the form of linguistic variable,

given by the decision maker dk ∈ D, for alternative x j ∈ X with respect to attribute
ci ∈ C . The method involves the following steps:

Step 1. Utilize the ILGHA operator:

ai j = ILGHA(〈u1, a(1)
i j 〉, 〈u2, a(2)

i j 〉, . . . , 〈ul , a(l)
i j 〉) =

(
l∑

k=1

wk(â
(k)
i j )λ

)1/λ

,

i = 1, 2, . . . , m; j = 1, 2, . . . , n

to aggregate all the linguistic preference information A(k) = (a(k)
i j )m×n into a collec-

tive linguistic preference matrix A = (ai j )m×n , where â(k)
i j is the a(t)

i j value (a(t)
i j =

lωt a
(t)
i j , t = 1, 2, . . . , l), of the ILGHA pair 〈ut , a(t)

i j 〉 having the kth largest ut , ut is

the order inducing variable, ω = (ω1, ω2, . . . , ωl) is the balance factor of the a(t)
i j ,

which satisfying ωt ∈ [0, 1], t = 1, 2, . . . , l, and
l∑

t=1
ωt = 1.

Step 2. Utilize the ILGOWA operator:

a j = ILGOWA(〈u′
1, a1 j 〉, 〈u′

2, a2 j 〉, . . . , 〈u′
m, amj 〉) =

(
m∑

i=1

w′
i b

λ
i j

)1/λ

,

j = 1, 2, . . . , n,

to aggregate ai j corresponding to the alternative xi , where W ′ = (w′
1, w

′
2, . . . , w

′
m)T

is the weighting vector of attributes, such that w′
j ∈ [0, 1], j = 1, 2, . . . , m, and

∑m
j=1 w′

j = 1, bi j is the ai j value of the ILGOWA pair 〈ui ′, ai j 〉 having the i th largest
u′

i . u′
i is the order inducing variable of ai j .

Step 3. Rank all the alternatives x j ( j = 1, 2, . . . , n) in descending order and select
the best one(s) in accordance with the values of a j ( j = 1, 2, . . . , n).

Step 4. End.

7.2 Illustrative Example

Let us suppose to evaluate the university faculty for tenure and promotion (adapted
from Bryson and Mobolurin 1995). Let X = {x1, x2, x3, x4, x5} be a finite set of five
faculty candidates (alternatives) to be evaluated using the linguistic label set. Suppose
that we use three attributes to evaluate the university faculty for tenure and promo-
tion, which include c1: teaching, c2: research, and c3: service. We use the following
linguistic label set S to evaluate the five faculty candidates.
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Table 1 Decision matrix A(1)

provided by d1
x1 x2 x3 x4 x5

u1 s8 s6 s5 s7 s8

u2 s6 s7 s8 s4 s6

u3 s6 s7 s7 s6 s7

Table 2 Decision matrix A(2)

provided by d2
x1 x2 x3 x4 x5

u1 s6 s5 s7 s8 s8

u2 s8 s6 s6 s6 s7

u3 s5 s7 s7 s7 s6

Table 3 Decision matrix A(3)

provided by d3
x1 x2 x3 x4 x5

u1 s7 s4 s8 s7 s6

u2 s8 s5 s7 s5 s7

u3 s6 s6 s6 s8 s6

Table 4 Decision matrix A(4)

provided by d4
x1 x2 x3 x4 x5

u1 s6 s8 s7 s5 s5

u2 s7 s7 s6 s7 s6

u3 s6 s7 s8 s6 s5

S = {s1 = extremely poor; s2 = very poor;
s3 = poor; s4 = slightly poor; s5 = f air;
s6 = slightly good; s7 = good; s8 = very good; s9 = extremely good}.

Let D = {d1, d2, d3, d4} be a finite set of four experts (or decision makers) who
provide the decision matrix A(k) = (a(k)

i j )3×5for faculty candidates under these three
attributes, k = 1, 2, 3, 4, as listed in Tables 1, 2, 3 and 4, respectively.

According to the importance of experts, assume the following order inducing vari-
ables: u1 = 6, u2 = 8, u3 = 5, u4 = 10. Consider that the experts weighting vector
is: W = (0.35 0.28 0.24 0.13)T and assume that the balance factor of four experts is:
ω = (0.24, 0.26, 0.24, 0.26)T . Use the parameter λ = 2 in the ILGHA operator.

To get the best candidate, the following steps are involved:
Step 1: Utilize the decision matrix A(k) = (a(k)

i j )3×5 and the ILGHA operator to
derive the overall preference value ai j of alternative x j according to the following
formulas.

ai j = ILGHA(〈u1, a(1)
i j 〉, 〈u2, a(2)

i j 〉, 〈u3, a(3)
i j 〉, 〈u4, a(4)

i j 〉) =
(

4∑

k=1

wk(â
(k)
i j )λ

)1/λ

,

i = 1, 2, 3, j = 1, 2, . . . , 5,
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where the weight W = (0.35 0.28 0.24 0.13)T , â(k)
i j is the a(l)

i j value (a(l)
i j = 4ωla

(l)
i j ,

l = 1, 2, 3, 4), of the ILGHA pair 〈ul , a(l)
i j 〉 having the kth largest ul , ul is the order

inducing variable, ω = (0.24, 0.26, 0.24, 0.26)T is the weighting vector of the a(l)
i j ,

and λ = 2.
Thus,

a11 = ILGHA(〈u1, a(1)
11 〉, 〈u2, a(2)

11 〉, 〈u3, a(3)
11 〉, 〈u4, a(4)

11 〉)
= ILGHA(〈6, s8〉, 〈8, s6〉, 〈5, s7〉, 〈10, s6〉)
= [0.35 × (4 × 0.26 × s6)

2 + 0.28 × (4 × 0.26 × s6)
2

+0.24 × (4 × 0.24 × s8)
2 + 0.13 × (4 × 0.24 × s7)

2]1/2

= s6.6751

In similar way, we get

a12 = s6.4559, a13 = s6.8254, a14 = s6.7494, a15 = s6.8786,

a21 = s7.3186, a22 = s6.5791, a23 = s6.6751, a24 = s5.9988, a25 = s6.5039

a31 = s5.7858, a32 = s6.9671, a33 = s7.3633, a34 = s6.6406, a35 = s5.9597

Step 2: Utilize the ILGOWA operator to obtain the collective overall preference
value a j of candidate x j . According to the importance of three attributes, suppose that
induced variables of attributes u′

1 = 5, u′
2 = 7, u′

3 = 4, then

a1 = ILGOWA(〈u′
1, a11〉, 〈u′

2, a21〉, 〈u′
3, a31〉)

= ILGOWA(〈5, s6.6751〉, 〈7, s7.3186〉, 〈4, s5.7858〉)
= 0.3 × s7.3186 + 0.4 × s6.6751 + 0.3 × s5.7858 = s6.6014

where W ′ = (0.3, 0.4, 0.3)T is the weight vector of attributes.
Similarly, we can obtain

a2 = s6.6585, a3 = s6.9417, a4 = s6.4807, a5 = s6.4531

Step 3: We can rank the alternatives (x1, x2, x3, x4, x5) and select the best one in
descending order in accordance with the ranking of a1, a2, a3, a4, a5. i.e.,

x3  x2  x1  x4  x5

Therefore, the best candidate is x3.

8 Conclusions

We have presented a wide range of induced and linguistic generalized aggregation
operators. First, we have introduced the ILGOWA operator. It is a generalization
of the OWA operator that uses order inducing variables in order to assess complex
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reordering processes, linguistic information and generalized means. We have analyzed
some of its main properties. We have seen that it generalizes a wide range of linguistic
aggregation operators such as the LGM, the LGOWA and the LOWA operator.

Moreover, we have developed a further generalization by using quasi-arithmetic
means, obtaining the Quasi-ILOWA operator. It includes the ILGOWA as a particular
case and a lot of other situations. Thus, we obtain a more robust formulation of the
linguistic aggregation operators.

Furthermore, we have presented the ILGHA and the Quasi-ILHA operators. The
main advantage of these models is that they are able to deal with the OWA and the
weighted average in the same formulation in an uncertain environment that can be
assessed with linguistic variables. Additionally, we have also suggested the use of
Choquet integrals in the ILGOWA operator obtaining the ILGCIA operator. We have
seen a lot of particular cases of these new approaches.

We have applied these new approaches for evaluating university faculty for tenure
and promotion in a linguistic group decision making problem. The result shows that
the approaches are feasible and effective providing a more robust formulation of the
previous models.

In future research, we expect to develop further improvements by adding more
characteristics in the model such as the use of other types of aggregation operators
and apply it in other decision making problems.
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