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Abstract In this paper, we investigate group decision making problems based on
interval fuzzy preference relations. We define an uncertain power weighted average
(UPWA) operator and an uncertain power ordered weighted average (UPOWA) opera-
tor, on the basis of the power average operator of Yager (IEEE Trans Syst Man Cybern
A 31:724–731, 1988) and the uncertain geometric mean. In the situations where the
weights of experts are known, we develop a method based on the UPWA operator for
group decision making with interval fuzzy preference relations; and in the situations
where the weights of experts are unknown, we develop a method based on the UPOWA
operator for group decision making with interval fuzzy preference relations.

Keywords Group decision making · Power average operator · Uncertain power
weighted average operator · Uncertain power ordered weighted average operator ·
Interval fuzzy preference relation

1 Introduction

In Xu (2001), Xu defined the concept of interval fuzzy preference relation, whose
elements are interval numbers and each of them is provided by a decision maker to
express his/her preference degree range of one object over another. Since then, the
similarity measures and priority methods of interval fuzzy preference relations have
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been investigated extensively (Xu 2004; Jiang 2007; Lan and Liu 2007; Xu and Chen
2008). The interval fuzzy preference relation is very useful for group decision mak-
ing under uncertainty, and most of the related investigations have been focused on
the combinations of interval fuzzy preference relations with other types of preference
information such as numerical preference relations, linguistic preference relations,
interval utility values; and interval multiplicative preference relations, etc. (Herrera
et al. 2005; Xu 2007; Xu and Chen 2008). But there is little investigation on the group
decision making based on interval fuzzy preference relations (Xu 2004). An important
issue of this research topic is how to aggregate all individual interval fuzzy preference
relations provided by decision makers into group interval fuzzy preference relation. Xu
(2004) utilized the well known additive weighted averaging (AWA) operator to fuse all
individual opinions into a group opinion. Nevertheless, in the process of group deci-
sion making, some individuals may provide unduly high (or low) preferences to their
preferred (or repugnant) objects. The AWA operator can only consider the weights of
decision makers, but does not take into account the information about the relationship
between the values being fused, and thus cannot eliminate the influence of unfair argu-
ments on the decision result. In Yager (2001), Yager developed a power average (PA)
and a power ordered weighted (POWA) operator to provide aggregation tools which
allow exact argument values to support each other in the aggregation process, i.e., the
weighting vectors of these two operators depend upon the input arguments and allow
values being aggregated to support and reinforce each other. Based on the PA and
POWA operators, in this paper we first develop an uncertain power weighted average
(UPWA) operator and an uncertain power ordered weighted average (UPOWA) oper-
ator. Then, in the cases where the weights of decision makers are known, we employ
the UPWA operator to develop a method for group decision making based on interval
fuzzy preference relations, and in the cases where the information about the weights
of decision makers is unknown, we employ the UPOWA operator to develop a method
for group decision making based on interval fuzzy preference relations. An illustrative
example is also given to demonstrate our proposed approaches.

2 Power Average Operators

Let ai (i = 1, 2, . . . , n) be a collection of exact arguments, and w = (w1, w2, . . . , wn)T

be the weight vector of ai (i = 1, 2, . . . , n), where wi ≥ 0, i = 1, 2, . . . , n and∑n
i=1 wi = 1. Yager (2001) defined a power weighted average (PWA) operator, as

shown below:

PWA (a1, a2, . . . , an) =
∑n

i=1 wi (1 + T (ai )) ai
∑n

i=1 wi (1 + T (ai ))
(1)

where

T (ai ) =
n∑

j=1
j �=i

w j Sup
(
ai , a j

)
(2)
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and Sup(ai , a j ) is the support for ai from a j , which satisfies the following three
properties:

(1) Sup(ai , a j ) ∈ [0, 1];
(2) Sup(ai , a j ) = Sup(a j , ai );
(3) Sup(ai , a j ) ≥ Sup(as, at ), if |ai − a j | < |as − at |.

Especially, if w = (1/n, 1/n, . . . , 1/n)T , i.e., all of the objects being aggregated
are of equal importance, then the PWA operator (1) reduces to the power average (PA)
operator:

PA(a1, a2, . . . , an) =
∑n

i=1 (1 + T ′(ai ))ai
∑n

i=1 (1 + T ′(ai ))
(3)

where

T ′(ai ) = 1

n

n∑

j=1
j �=i

Sup(ai , a j ) (4)

Moreover, based on the ordered weighted averaging (OWA) operator (Yager 1988)
and the PA operator (3), Yager (2001) defined a power ordered weighted average
(POWA) operator as follows:

POWA(a1, a2, . . . , an) =
n∑

i=1

ui aindex(i) (5)

where

ui = g

(
Ri

T V

)

− g

(
Ri−1

T V

)

, Ri =
i∑

j=1

Vindex( j),

T V =
n∑

i=1

Vindex(i), Vindex( j) = 1 + T ′′ (aindex(i)
)

(6)

and

T ′′ (aindex(i)
) = 1

n

n∑

j=1
j �=i

Sup
(
aindex(i), aindex( j)

)
(7)

which denotes the support of the i th largest argument by all the other arguments,
where Sup

(
aindex(i), aindex( j)

)
indicates the support of j th largest argument for the

i th largest argument, index is an indexing function such that index(i) is the index
of the i th largest of the arguments a j ( j = 1, 2, . . . , n), and g : [0, 1] → [0, 1] is a
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basic unit-interval monotonic (BUM) function, having the properties: (1) g(0) = 0;
(2) g(1) = 1; and (3) g(x) ≥ g(y), if x > y.

Especially, if g(x) = x , then the POWA operator reduces to the PA operator.

3 Uncertain Power Average Operators

Let ã j = [aL
j , aU

j ] ( j = 1, 2, . . . , n) be a collection of arguments, which take the

form of interval numbers, where 0 ≤ aL
j ≤ aU

j , j = 1, 2, . . . , n, aL
j and aU

j are the
lower and upper limits of ã j , respectively.

Based on the operational laws of interval numbers (Xu and Zhai 1992) and the PA
operator, we define the following uncertain power weighted average (UPWA) operator:

UPWA(ã1, ã2, . . . , ãn) =
∑n

i=1 wi (1 + T (ãi ))ãi
∑n

i=1 wi (1 + T (ãi ))
(8)

where

T (ãi ) =
n∑

j=1
j �=i

w j Sup(ãi , ã j ) (9)

with the conditions: wi ≥ 0, i = 1, 2, . . . , n and
∑n

i=1 wi = 1. Moreover, Sup(ãi , ã j )

is the support for ãi from ã j , which satisfies the following three properties:

(1) Sup(ãi , ã j ) ∈ [0, 1];
(2) Sup(ãi , ã j ) = Sup(ã j , ãi );
(3) Sup(ãi , ã j ) ≥ Sup(ãs, ãt ), if d(ãi , ã j ) < d(ãs, ãt ), where d is a distance mea-

sure for interval numbers.

Clearly, the closer the two interval numbers ãi and ã j , the more similar they are,
and the more they support each other. Especially, if w = (1/n, 1/n, . . . , 1/n)T , then
the UPWA operator (8) reduces to the uncertain power average (UPA) operator:

UPA(ã1, ã2, . . . , ãn) =
∑n

i=1 (1 + T ′(ãi ))ãi
∑n

i=1 (1 + T ′(ãi ))
(10)

where

T ′(ãi ) = 1

n

n∑

j=1
j �=i

Sup(ãi , ã j ) (11)

Now let us look at some properties of the UPWA operator (Note that (12) below
indicates that when all the supports are the same, the UPWA operator is simply the
uncertain average operator).
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Theorem 1 Let Sup(ãi , ã j ) = k, for all i �= j , then

UPWA(ã1, ã2, . . . , ãn) ==

n∑

i=1
wi

(

1 + k
∑n

j=1
j �=i

w j

)

ãi

∑n
i=1 wi

(

1 + k
∑n

j=1
j �=i

w j

) (12)

Proof Since Sup(ãi , ã j ) = k for all i �= j , it follows from (9) that

T (ãi ) =
n∑

j=1
j �=i

w j Sup(ãi , ã j ) = k
n∑

j=1
j �=i

w j , i = 1, 2, . . . , n (13)

Thus by (8), we have

UPWA(ã1, ã2, . . . , ãn) =
∑n

i=1 wi (1 + T (ãi ))ãi
∑n

i=1 wi (1 + T (ãi ))

=

∑n
i=1 wi

(

1 + k
∑n

j=1
j �=i

w j

)

ãi

n∑

i=1
wi

(

1 + k
∑n

j=1
j �=i

w j

) (14)

and hence (12). This completes the proof of Theorem 1.

Theorem 2 (Commutativity). Let (ã1, ã2, . . . , ãn) be a vector of n interval numbers,
where ã j = [aL

j , aU
j ] ( j = 1, 2, . . . , n), and (ã′

1, ã′
2, . . . , ã′

n) be any permutation of
(ã1, ã2, . . . , ãn), then

UPWA(ã1, ã2, . . . , ãn) = UPWA(ã′
1, ã′

2, . . . , ã′
n) (15)

Proof Since

T (ãi ) =
n∑

j=1
j �=i

w j Sup(ãi , ã j ), T (ã′
i ) =

n∑

j=1
j �=i

w j Sup(ã′
i , ã′

j ) (16)

where (ã′
1, ã′

2, . . . , ã′
n) is a permutation of (ã1, ã2, . . . , ãn), then

∑n
i=1 wi (1 + T (ãi ))ãi

∑n
i=1 wi (1 + T (ãi ))

=
∑n

i=1 wi (1 + T (ã′
i ))ã

′
i∑n

i=1 wi (1 + T (ã′
i ))

(17)

and thus (15) holds, which completes the proof of Theorem 2.
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Theorem 3 (Idempotency). Let ã j ( j = 1, 2, . . . , n) be a collection of interval num-
bers, where ã j = [aL

j , aU
j ] ( j = 1, 2, . . . , n), if ã j = ã, for all j , where ã =

[aL , aU ], then

UPWA(ã1, ã2, . . . , ãn) = ã (18)

Proof Since

UPWA(ã1, ã2, . . . , ãn) =
∑n

i=1 wi (1 + T (ãi ))ãi
∑n

i=1 wi (1 + T (ãi ))
=

∑n
i=1 wi (1 + T (ãi ))ã

∑n
i=1 wi (1 + T (ãi ))

= ã

∑n
i=1 wi (1 + T (ãi ))

∑n
i=1 wi (1 + T (ãi ))

= ã (19)

the proof is completed.

Theorem 4 (Boundedness). Let ã j ( j = 1, 2, . . . , n) be any collection of interval
numbers, where ã j = [aL

j , aU
j ] ( j = 1, 2, . . . , n), then

min
i

{ãi } ≤ UPWA(ã1, ã2, . . . , ãn) ≤ max
i

{ãi } (20)

Proof In Xu and Da (2002), we introduced a possibility degree formula for the com-
parison between any two interval numbers ãi = [aL

i , aU
i ] and ã j = [aL

j , aU
j ]:

p(ãi ≥ ã j ) = max

{

1 − max

(
aU

j − aL
i

aU
j − aL

j + aU
i − aL

i

, 0

)

, 0

}

(21)

To rank the interval numbers ã j ( j = 1, 2, . . . , n), we compare each pair interval
numbers (ãi , ã j ), and construct a possibility degree matrix P = (pi j )n×n , where
pi j = p(ãi ≥ ã j ), i, j = 1, 2, . . . , n, which satisfy pij ≥ 0, pij + pji = 1, pii =
0.5, i, j = 1, 2, . . . , n. Summing all the elements in each line of the matrix P , we
get pi = ∑n

j=1 pi j , i = 1, 2, . . . , n, and then we can rank the interval numbers
ãi (i = 1, 2, . . . , n) in descending order in accordance with pi (i = 1, 2, . . . , n).

Let α̃ = min
i

{ãi } and β̃ = max
i

{ãi }, then

UPWA(ã1, ã2, . . . , ãn) =
∑n

i=1 wi (1 + T (ãi ))ãi
∑n

i=1 wi (1 + T (ãi ))
≥

∑n
i=1 wi (1 + T (ãi ))α̃

∑n
i=1 wi (1 + T (ãi ))

= α̃

∑n
i=1 wi (1 + T (ãi ))

∑n
i=1 wi (1 + T (ãi ))

= α̃ (22)
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and

UPWA(ã1, ã2, . . . , ãn) =
∑n

i=1 wi (1 + T (ãi ))ãi
∑n

i=1 wi (1 + T (ãi ))
≤

∑n
i=1 wi (1 + T (ãi ))β̃

∑n
i=1 wi (1 + T (ãi ))

= β̃

∑n
i=1 wi (1 + T (ãi ))

∑n
i=1 wi (1 + T (ãi ))

= β̃ (23)

thus (20) holds, which completes the proof of Theorem 4.

In what follows, we apply the UPWA operator to group decision making:
Consider a group decision making problem under uncertainty. Let X = {x1, x2, . . . ,

xn} be a finite set of alternatives, E = {e1, e2, . . . , em} be a set of decision makers,
and w = (λ1, λ2, . . . , λm)T be the weight vector of the decision makers ek(k =
1, 2, . . . , m), where λk ≥ 0, k = 1, 2, . . . , m and

∑m
k=1 λk = 1. Suppose that the

decision maker ek compares each pair of alternatives (xi , x j ), and provides his/her

preference value range b̃(k)
i j = [bL(k)

i j , bU (k)
i j ], and constructs an interval fuzzy prefer-

ence relation B̃k = (b̃(k)
i j )n×n , where

bU (k)
i j ≥ bL(k)

i j ≥ 0, bL(k)
i j + bU (k)

j i = 1, bL(k)
j i + bU (k)

i j = 1, bL(k)
i i = bU (k)

i i = 0.5,

for all i, j = 1, 2, . . . , n (24)

and b̃(k)
i j indicates preference value range of the alternative xi over x j provided by the

decision maker ek .
Then based on the UPWA operator, we propose a method for group decision making

with interval fuzzy preference relations, which involves the following steps:

3.1 Method I

Step 1. Calculate the supports:

Sup
(

b̃(k)
i j , b̃(l)

i j

)
= 1 − d

(
b̃(k)

i j , b̃(l)
i j

)
, l = 1, 2, . . . , m (25)

which satisfy the support conditions (1)–(3) in Sect. 3. Without loss of gener-
ality, here we let

d
(

b̃(k)
i j , b̃(l)

i j

)
=

√
1

2

((
bL(l)

i j − bL(k)
i j

)2 +
(

bU (l)
i j − bU (k)

i j

)2
)

(26)

Step 2. Utilize the weights λk(k = 1, 2, . . . , m) of the decision makers ek(k =
1, 2, . . . , m) to calculate the weighted support T (b̃(k)

i j ) of the preference

value range b̃(k)
i j by the other preference value ranges b̃(l)

i j (l = 1, 2, . . . , m
and l �= k):
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T ′(b̃(k)
i j ) =

m∑

l=1
l �=k

λl Sup
(

b̃(k)
i j , b̃(l)

i j

)
(27)

and calculate the weights v
(k)
i j (k = 1, 2, . . . , m) associated with the preference

value ranges b̃(k)
i j (k = 1, 2, . . . , m):

v
(k)
i j =

λk

(
1 + T

(
b̃(k)

i j

))

∑m
k=1 λk

(
1 + T

(
b̃(k)

i j

)) , k = 1, 2, . . . , m (28)

where v
(k)
i j ≥ 0, k = 1, 2, . . . , m, and

∑m
k=1 v

(k)
i j = 1.

Step 3. Utilize the UPWA operator (8) to aggregate all the individual interval fuzzy
preference relations B̃k = (b̃(k)

i j )n×n (k = 1, 2, . . . , m) into the collective pref-

erence relation B̃ = (b̃i j )n×n , where

b̃i j = [bL
i , bU

i ] = UPWA(b̃(1)
i j , b̃(2)

i j , . . . , b̃(m)
i j )

=
m∑

k=1

v
(k)
i j b̃(k)

i j =
[

m∑

k=1

v
(k)
i j bL(k)

i j ,

m∑

k=1

v
(k)
i j bU (k)

i j

]

, i, j = 1, 2, . . . , n

(29)

Step 4. Aggregate all the preference value ranges b̃i j ( j = 1, 2, . . . , n) in the i th line
of B̃ by using the uncertain average operator:

b̃i = [bL
i , bU

i ] = 1

n

n∑

j=1

b̃i j =
⎡

⎣1

n

n∑

j=1

bL
i j ,

1

n

n∑

j=1

bU
i j

⎤

⎦, i = 1, 2, . . . , n

(30)

and get the overall preference value range b̃i corresponding to the alternative
xi .

Step 5. Rank all the interval numbers b̃i (i = 1, 2, . . . , n) by using the possibility
degree formula (21), and then rank all the alternatives xi (i = 1, 2, . . . , n)

in accordance with b̃i (i = 1, 2, . . . , n), by which the best alternative can be
selected.

By Step 3 in the above method, we have

Theorem 5 The collective preference relation B̃ = (b̃i j )n×n aggregated from the

individual interval fuzzy preference relations B̃k = (b̃(k)
i j )n×n (k = 1, 2, . . . , m) by

using the UPWA operator (29) is also an interval fuzzy preference relation.
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Proof Since all B̃k = (b̃(k)
i j )n×n (k = 1, 2, . . . , m) are interval fuzzy preference rela-

tions, by (24) and (26), we have

d
(

b̃(k)
i j , b̃(l)

i j

)
=

√
1

2

((
bL(l)

i j − bL(k)
i j

)2 +
(

bU (l)
i j − bU (k)

i j

)2
)

=
√

1

2

(((
1 − bL(l)

i j

)
−

(
1 − bL(k)

i j

))2 +
((

1 − bU (l)
i j

)
−

(
1 − bU (k)

i j

))2
)

=
√

1

2

((
bU (l)

j i − bU (k)
j i

)2 +
(

bL(l)
j i − bL(k)

j i

)2
)

= d
(

b̃(k)
j i , b̃(l)

j i

)
(31)

and then

Sup
(

b̃(k)
i j , b̃(l)

i j

)
= 1 − d

(
b̃(k)

i j , b̃(l)
i j

)
= 1 − d

(
b̃(k)

j i , b̃(l)
j i

)
= Sup

(
b̃(k)

j i , b̃(l)
j i

)

(32)

Thus, from (27), it follows that

T ′ (b̃(k)
i j

)
=

m∑

l=1
l �=k

λl Sup
(

b̃(k)
i j , b̃(l)

i j

)
=

m∑

l=1
l �=k

λl Sup
(

b̃(k)
j i , b̃(l)

j i

)
= T ′ (b̃(k)

j i

)

(33)

and then by (28), we have

v
(k)
i j =

λk

(
1 + T

(
b̃(k)

i j

))

m∑

k=1
λk

(
1 + T

(
b̃(k)

i j

)) =
λk

(
1 + T

(
b̃(k)

j i

))

m∑

k=1
λk

(
1 + T

(
b̃(k)

j i

)) = v
(k)
j i , k = 1, 2, . . . , m

(34)

where v
(k)
i j ≥ 0, k = 1, 2, . . . , m, and

∑m
k=1 v

(k)
i j = 1. Therefore, by (24) and (34),

we have

bU
i j =

m∑

k=1

v
(k)
i j bU (k)

i j ≥
m∑

k=1

v
(k)
i j bL(k)

i j = bL
i j ≥ 0 (35)

bL
i j + bU

ji =
m∑

k=1

v
(k)
i j bL(k)

i j +
m∑

k=1

v
(k)
j i bU (k)

j i =
m∑

k=1

v
(k)
i j bL(k)

i j +
m∑

k=1

v
(k)
i j bU (k)

j i

=
m∑

k=1

v
(k)
i j

(
bL(k)

i j + bU (k)
j i

)
=

m∑

k=1

v
(k)
i j = 1, i, j = 1, 2, . . . , n (36)
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bU
i j + bL

ji =
m∑

k=1

v
(k)
i j bU (k)

i j +
m∑

k=1

v
(k)
j i bL(k)

j i =
m∑

k=1

v
(k)
i j bU (k)

i j +
m∑

k=1

v
(k)
i j bL(k)

j i

=
m∑

k=1

v
(k)
i j (bU (k)

i j + bL(k)
j i ) =

m∑

k=1

v
(k)
i j = 1, i, j = 1, 2, . . . , n (37)

bL(k)
i i =

m∑

k=1

v
(k)
i i bL(k)

i i =
m∑

k=1

v
(k)
i i bU (k)

i i =0.5
m∑

k=1

v
(k)
i i =0.5, i = 1, 2, . . . , n

(38)

which indicates that B̃ = (b̃i j )n×n is an interval fuzzy preference relation. This com-
pletes the proof of Theorem 5.

In the above method, we have utilized the UPWA operator (whose prominent char-
acteristic is that it allows values being aggregated to support and reinforce each other)
to aggregate all individual interval fuzzy preference relations into the collective inter-
val fuzzy preference relation, which can not only consider the importance of each
decision maker, but also relieve the influence of the unfair arguments on the decision
results by assigning lower weights to those unduly high or unduly low preference
value ranges.

4 Uncertain Power Ordered Weighted Average Operators

In this section, we extend the POWA operator to uncertain environments. Let ã j =
[aL

j , aU
j ] ( j = 1, 2, . . . , n) be a collection of interval numbers. Then, based on the

possibility degree formula (21), we define an uncertain power ordered weighted aver-
age (UPOWA) operator:

UPOWA(ã1, ã2, . . . , ãn) =
n∑

i=1

ui ãindex(i) (39)

where ãindex(i) is the i th largest interval numbers of ã j ( j = 1, 2, . . . , n),

ui = g

(
Ri

T V

)

− g

(
Ri−1

T V

)

, Ri =
i∑

j=1

Vindex( j),

T V =
n∑

i=1

Vindex(i), Vindex( j) = 1 + T (ãindex(i)) (40)

and

T (ãindex(i)) = 1

n

n∑

j=1
j �=i

Sup(ãindex(i), ãindex( j)) (41)
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which denotes the support of the i th largest interval number by all the other interval
numbers, i.e., Sup(ãindex(i), ãindex( j)) indicates the support of the j th largest interval
number for the i th largest interval number.

Especially, if g(x) = x , then by (39) and (40), we have

UPOWA(ã1, ã2, . . . , ãn) =
n∑

i=1

ui ãindex(i) =
n∑

i=1

(

g

(
Ri

T V

)

− g

(
Ri−1

T V

))

ãindex(i)

=
n∑

i=1

(
Ri

T V
− Ri−1

T V

)

ãindex(i) =

n∑

i=1
Vindex(i)ãindex(i)

T V

=
∑n

i=1 (1 + T (ãi ))ãi
∑n

i=1 (1 + T (ãi ))
= UPA(ã1, ã2, . . . , ãn) (42)

and thus the UPOWA operator reduces to the UPA operator.
We establish the properties of the UPOWA operator in Theorems 6–9 below:

Theorem 6 Let Sup(ãindex(i), ãindex( j)) = k, for all i �= j , and g(x) = x. Then

UPOWA(ã1, ã2, . . . , ãn) = 1

n

n∑

i=1

ãi (43)

which indicates that when all the supports are the same, and the UPOWA operator is
simply the uncertain average operator.

Proof Since Sup(ãindex(i), ãindex( j))= k, for all i �= j , then by (41), we have
T (ãindex(i))= T (ãi )= k(n − 1), i = 1, 2, . . . , n. Thus, from (39), (42) and (10),
it follows that

UPOWA(ã1, ã2, . . . , ãn) = UPA(ã1, ã2, . . . , ãn)

=
∑n

i=1 (1 + T ′(ãi ))ãi
∑n

i=1 (1 + T ′(ãi ))
=

∑n
i=1 (1 + k(n − 1)/n)ãi

∑n
i=1 (1 + k(n − 1)/n)

= (1 + k(n − 1)/n)
∑n

i=1 (1 + k(n − 1)/n)

∑n

i=1
ãi = 1

n

∑n

i=1
ãi

(44)

which completes the proof of Theorem 6.
Especially, if Sup(ãi , ã j ) = 0, for all i �= j , i.e., all the supports are zero, then

there is not any support in the aggregation process; in this case, the UPOWA operator
also reduces to the uncertain average operator.

Similar to Theorems 2–4, we have

Theorem 7 (Commutativity). Let (ã1, ã2, . . . , ãn) be a vector of n interval numbers,
where ã j = [aL

j , aU
j ]( j = 1, 2, . . . , n), and (ã′

1, ã′
2, . . . , ã′

n) be any permutation of
(ã1, ã2, . . . , ãn), then
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UPOWA(ã1, ã2, . . . , ãn) = UPOWA(ã′
1, ã′

2, . . . , ã′
n) (45)

Theorem 8 (Idempotency). Let ã j = [aL
j , aU

j ] ( j = 1, 2, . . . , n) be a collection of

interval numbers, if ã j = ã, for all j , where ã = [aL , aU ], then

UPOWA(ã1, ã2, . . . , ãn) = ã (46)

Theorem 9 (Boundedness). Let ã j = [aL
j , aU

j ] ( j = 1, 2, . . . , n) be a collection of
interval numbers, then

min
i

{ãi } ≤ UPOWA(ã1, ã2, . . . , ãn) ≤ max
i

{ãi } (47)

In Sect. 3, we have introduced a method for group decision making where the weights
of the decision makers are predefined. If the information about the weights of decision
makers is unknown, then we can utilize the UPOWA operator to give a method for
group decision making based on interval fuzzy preference relations. This is described
below:

4.1 Method II

Step 1. Calculate

Sup
(

b̃index(k)
i j , b̃index(l)

i j

)
= 1 − d

(
b̃index(k)

i j , b̃index(l)
i j

)
(48)

which indicates the support of the lth largest uncertain preference value
b̃index(l)

i j for the kth largest preference value range b̃index(l)
i j of b̃(s)

i j (s =
1, 2, . . . , m).

Step 2. Calculate the support T
(

b̃index(k)
i j

)
of the kth largest preference value ranges

b̃index(k)
i j by the other preference value ranges b̃(l)

i j (l = 1, 2, . . . , m and l �= k):

T
(

b̃index(k)
i j

)
= 1

n

m∑

l=1
l �=k

Sup
(

b̃index(k)
i j , b̃index(l)

i j

)
(49)

and by (40), calculate the weight u(k)
i j associated with the kth largest prefer-

ence value range ãindex(k)
i j , where

u(k)
i j = g

(
R(k)

i j

T Vi j

)

− g

(
R(k−1)

i j

T Vi j

)

, R(k)
i j =

k∑

l=1

V index(l)
i j ,

T Vi j =
m∑

l=1

V index(l)
i j , V index(l)

i j = 1 + T
(

b̃index(l)
i j

)
(50)
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u(k)
i j ≥ 0, k = 1, 2, . . . , m, and

∑m
k=1 u(k)

i j = 1, and g is the BUM function
described in Sect. 2.

Step 3. Utilize the UPOWA operator (39) to aggregate all the individual interval
fuzzy preference relations B̃k = (b̃(k)

i j )n×n(k = 1, 2, . . . , m) into the collec-

tive interval fuzzy preference relation B̃ = (b̃i j )n×n , where

b̃i j = [bL
i j , bU

i j ] = UPOWA(b̃(1)
i j , b̃(2)

i j , . . . , b̃(m)
i j ) =

m∑

k=1

u(k)
i j b̃index(k)

i j ,

b̃ j i = [bL
ji , bU

ji ], bL
ji = 1 − bU

i j , bU
ji = 1 − bL

i j for all i < j (51)

Step 4. See Sect. 3.1.
Step 5. See Sect. 3.1.

By Step 3 of the method above, we have

Theorem 10 The collective preference relation B̃ = (b̃i j )n×n aggregated from the

individual interval fuzzy preference relations B̃k = (b̃(k)
i j )n×n (k = 1, 2, . . . , m) by

using the UPOWA operator (51) is also an interval fuzzy preference relation.

Method II utilizes the UPOWA operator to aggregate all the individual interval fuzzy
preference relations into the collective interval fuzzy preference relation, and then
employs the uncertain average operator to rank and select the given alternatives.
Method II has similar desirable properties similar to those for Method I, and is devel-
oped to deal with the situations where the information about the weights of decision
makers is unknown. It is a useful complement to Method I.

5 Illustrative Example

Let us consider a group decision making problem that involves the evaluation of four
schools x j ( j = 1, 2, 3, 4) of a university (adapted from Xu (2004)). One main cri-
terion used is research. Three decision makers ek(k = 1, 2, 3) (whose weight vector
is λ = (0.5, 0.3, 0.2)T ) are asked to provide their preferences over the four schools
x j ( j = 1, 2, 3, 4) with respect to the criterion research. All the decision makers com-
pare the four alternatives and construct interval fuzzy preference relations, which are
listed as follows:

B̃1 =

⎛

⎜
⎜
⎝

[0.5, 0.5] [0.5, 0.6] [0.4, 0.7] [0.4, 0.5]
[0.4, 0.5] [0.5, 0.5] [0.5, 0.6] [0.3, 0.4]
[0.3, 0.6] [0.4, 0.5] [0.5, 0.5] [0.6, 0.7]
[0.5, 0.6] [0.6, 0.7] [0.3, 0.4] [0.5, 0.5]

⎞

⎟
⎟
⎠

B̃2 =

⎛

⎜
⎜
⎝

[0.5, 0.5] [0.4, 0.5] [0.5, 0.8] [0.3, 0.5]
[0.5, 0.6] [0.5, 0.5] [0.4, 0.6] [0.4, 0.5]
[0.2, 0.5] [0.4, 0.6] [0.5, 0.5] [0.6, 0.8]
[0.5, 0.7] [0.5, 0.6] [0.2, 0.4] [0.5, 0.5]

⎞

⎟
⎟
⎠
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B̃3 =

⎛

⎜
⎜
⎝

[0.5, 0.5] [0.5, 0.7] [0.4, 0.7] [0.3, 0.5]
[0.3, 0.5] [0.5, 0.5] [0.4, 0.6] [0.4, 0.5]
[0.3, 0.6] [0.4, 0.6] [0.5, 0.5] [0.5, 0.7]
[0.5, 0.7] [0.5, 0.6] [0.3, 0.5] [0.5, 0.5]

⎞

⎟
⎟
⎠

Since the weights of the decision makers are predefined, we utilize Method I to rank
and select the given alternatives:

We first utilize (25)–(28) to calculate the weights v
(k)
i j (k = 1, 2, 3) associated with

the preference value ranges b̃(k)
i j (k = 1, 2, 3), which are contained in the matrices

Vk = (v
(k)
i j )4×4 (k = 1, 2, 3) respectively:

V1 =

⎛

⎜
⎜
⎝

0.4630 0.4676 0.4658 0.4621
0.4676 0.4630 0.4621 0.4618
0.4658 0.4621 0.4630 0.4657
0.4621 0.4618 0.4657 0.4630

⎞

⎟
⎟
⎠

V2 =

⎛

⎜
⎜
⎝

0.3148 0.3118 0.3099 0.3151
0.3118 0.3148 0.3151 0.3153
0.3099 0.3160 0.3148 0.3137
0.3151 0.3153 0.3137 0.3148

⎞

⎟
⎟
⎠

V3 =

⎛

⎜
⎜
⎝

0.2220 0.2206 0.2243 0.2227
0.2206 0.2220 0.2227 0.2229
0.2243 0.2227 0.2220 0.2206
0.2227 0.2229 0.2206 0.2220

⎞

⎟
⎟
⎠

Then we utilize the UPWA operator (29) to aggregate all the individual interval
fuzzy preference relations B̃k = (b̃(k)

i j )4×4 (k = 1, 2, 3) into the collective interval
fuzzy preference relation:

B̃ =

⎛

⎜
⎜
⎝

[0.5, 0.5] [0.4688, 0.5909] [0.4310, 0.7310] [0.3462, 0.5000]
[0.4091, 0.5312] [0.5, 0.5] [0.4462, 0.5999] [0.3538, 0.4538]
[0.2690, 0.5690] [0.4001, 0.5538] [0.5, 0.5] [0.5779, 0.7314]
[0.5000, 0.6538] [0.5462, 0.6462] [0.2686, 0.4221] [0.5, 0.5]

⎞

⎟
⎟
⎠

By using (30), we aggregate all the preference value ranges b̃i j ( j = 1, 2, 3, 4) in
the i th line of B̃, and get the overall preference value range b̃i corresponding to the
alternative xi :

b̃1 = [0.4365, 0.5805], b̃2 = [0.4273, 0.5212], b̃3 = [0.4367, 0.5885],
b̃4 = [0.4537, 0.5555]

In order to rank b̃i (i = 1, 2, 3, 4), by (21), we construct the possibility degree
matrix:
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P =

⎛

⎜
⎜
⎝

0.5 0.6440 0.4861 0.5159
0.3560 0.5 0.3439 0.3449
0.5139 0.6561 0.5 0.5315
0.4841 0.6551 0.4685 0.5

⎞

⎟
⎟
⎠

Summing all the elements in each line of the matrix P , we get

p1 = 2.1460, p2 = 1.5448, p3 = 2.2015, p4 = 2.1077

and then we can rank the interval numbers b̃i (i = 1, 2, 3, 4) in descending order
in accordance with pi (i = 1, 2, 3, 4) : b̃3 > b̃1 > b̃4 > b̃2 Therefore, we rank the
schools: x3 � x1 � x4 � x2, and thus x3 is the best school.

If we utilize the traditional uncertain weighted averaging (UWA) operator (Xu
2001):

˙̃bi j = [ḃL
i , ḃU

i ] = U W A(b̃(1)
i j , b̃(2)

i j , b̃(3)
i j , b̃(4)

i j ) =
4∑

k=1

λk b̃(k)
i j

=
[

4∑

k=1

λkbL(k)
i j ,

4∑

k=1

λkbU (k)
i j

]

, i, j = 1, 2, 3, 4

to aggregate all the individual interval fuzzy preference relations B̃k = (b̃(k)
i j )4×4(k =

1, 2, 3) into the collective interval fuzzy preference relation ˙̃B = (
˙̃bi j )4×4, then we

have

˙̃B =

⎛

⎜
⎜
⎝

[0.5, 0.5] [0.43, 0.73] [0.43, 0.73] [0.35, 0.50]
[0.41, 0.53] [0.5, 0.5] [0.45, 0.60] [0.35, 0.45]
[0.27, 0.57] [0.40, 0.55] [0.5, 0.5] [0.58, 0.73]
[0.50, 0.65] [0.55, 0.65] [0.27, 0.42] [0.5, 0.5]

⎞

⎟
⎟
⎠

By using (30), we aggregate all the preference value ranges ˙̃bi j ( j = 1, 2, 3, 4) in

the i th line of ˙̃B, and get the overall preference value range ˙̃bi corresponding to the
alternative xi :

˙̃b1 = [0.4375, 0.5800], ˙̃b2 = [0.4275, 0.5200], ˙̃b3 = [0.4375, 0.5875],
˙̃b4 = [0.4550, 0.5550]

and then by (21), we construct the possibility degree matrix:

Ṗ =

⎛

⎜
⎜
⎝

0.5 0.6489 0.4872 0.5155
0.3511 0.5 0.3402 0.3377
0.5128 0.6598 0.5 0.5300
0.4845 0.6623 0.4700 0.5

⎞

⎟
⎟
⎠
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Summing all the elements in each line of the matrix Ṗ , we get

ṗ1 = 2.1516, ṗ2 = 1.5290, ṗ3 = 2.2026, ṗ4 = 2.1168

and thus ˙̃b3 >
˙̃b1 >

˙̃b4 >
˙̃b2, by which we rank the schools: x3 � x1 � x4 � x2, and

hence x3 is also the best school.
In the above numerical results, both the methods have derived the same ranking of

the alternatives. Nevertheless, the latter can only consider the weights of the decision
makers, but cannot take into account the information about the relationship between
the values being fused. Our Method I can, nevertheless, overcome this drawback: it
can not only reflect the importance of the decision makers, but also relieve the influ-
ence of unduly high or unduly low preference value ranges on the decision results by
assigning lower weights to those unfair arguments, and thus can make the decision
result more reasonable and reliable.

6 Conclusions

We have extended Yager’s power average (PA) operator to uncertain environments
and defined an uncertain power weighted average (UPWA) operator and an uncertain
power ordered weighted average (UPOWA) operator. We have also established some
of their desirable properties. Moreover, we have applied the developed operators to
group decision making in different situations. Based on the UPWA operator, we have
given a method for group decision making with interval fuzzy preference relations
for situations where the weights of decision makers can be predefined. Based on the
UPOWA operator, we have given a method for group decision making with interval
fuzzy preference relations for situations where the information about the weights of
decision makers is unknown. An example is discussed, which shows the effectiveness
of our approach.

The proposed operators can be applied to many other fields, such as data mining,
information fusion, and pattern recognition, etc. These are interesting topics for further
research.
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