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Abstract

The Graph Model for Conflict Resolution is a methodology for the modeling and analysis of strategic conflicts.
An historical overview of the graph model is presented, including the basic modeling and analysis components of
the methodology, the decision support system GMCR II that is now used to apply it, and the recent initiatives that
are currently in various stages of development. The capacity of this simple, flexible system to provide advice to
decision-makers facing strategic conflicts is emphasized throughout, and illustrated using a real-life groundwater
contamination dispute.
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1. Motivation

There were two major reasons for developing the methodology of the Graph Model for Con-
flict Resolution, and later its associated decision support system GMCR II. First, there was a
perceived demand for a comprehensive methodology to understand conflict decision-making
and conflict resolution. The ubiquity of conflicts means that support is needed not only by
decision-makers, but also by mediators – who propose resolutions – and policy-makers who
determine the structures within which conflicts are played out. The inescapability of conflict
implies that the need for the graph model will continue for as long as humans interact.

The second motivation was a view that existing methods failed to provide the kind of
analysis and advice that was needed, either because they were too inflexible to be used in
most conflict situations, or because they demanded so much information and calibration
that they became impractical. The graph model was designed to be simple and flexible, and
to have minimal information requirements. At the same time, the suggestions that it makes
encourage disputants to ‘think outside the box.”

This paper summarizes the development of the Graph Model, which began in the early
1980s and continues to the present day. The approach is roughly historical: after a discussion
of strategic conflicts (Section 2), the basics of the Graph Model are set out in Section 3 (Past),
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the characteristics of the Decision Support System GMCR II are described in Section 4
(Present), and various new initiatives and their status with respect to existing software are
outlined in Section 5 (Future). Section 6 offers a summary and a few conclusions.

2. What is a Strategic Conflict?

A strategic conflict is an interaction of two or more independent decision-makers (DMs),
each of whom makes choices that together determine how the state of the conflict evolves,
and each of whom has preferences over these possible states (as eventual resolutions). Thus, a
strategic conflict is a joint, or interactive, decision problem; there are two or more DMs, each
DM has a choice (i.e. two or more alternatives), and every DM is in principle concerned about
the others’ choices. More specifically, each DM must benefit, or be harmed, according to the
choices of at least one other DM, in the sense that that other DM’s choices make the eventual
resolution more, or less, preferable. It is clear that strategic conflicts are very common in
interactions at all levels including personal, family, business, national, and international.

One way to model and analyze a strategic conflict is to use non-cooperative game
theory (von Neumann and Morgenstern, 1944). A game structure permits the analyst to
capitalize on a large and well-developed body of theory, which has established links with
economics and Bayesian decision analysis. But to use a non-cooperative game model to
analyze a strategic conflict and provide strategic advice imposes constraints which may
limit the verisimilitude of the model and the usefulness of the advice. For instance, in a
game the order of action of the DMs (called players) must be specified but, in many strategic
conflicts such as negotiations, the order of action is not known in advance – deciding when
to act is part of the problem. Another requirement is that in a game players’ preferences
must be represented by real-valued (von Neumann-Morgenstern) utilities, which open up
the possibility of mixed strategies (probabilistic mixtures of actions, as opposed to specific
actions). But this requirement is a serious drawback for two reasons: utilities are notoriously
difficult to measure; and mixed strategies are often hard to interpret as “advice.” (Would
you really tell your president to toss a coin to decide whether to attack or press for peace?)

The Graph Model for Conflict Resolution provides a methodology for modeling and
analyzing strategic conflicts that does not suffer from these problems. It is easy-to-use, flex-
ible, and provides a good understanding of how DMs should choose what to do. Of course,
there are alternative systems to model and analyze strategic conflicts that are distinct from
non-cooperative game theory; they include metagame analysis (Howard, 1971), conflict
analysis (Fraser and Hipel, 1984), drama theory (Howard, 1999), theory of moves (Brams,
1994), and theory of fuzzy moves (Kandel et al., 1998; Li et al., 2001). For a broader view
of related approaches and results, see the Encyclopedia section introduced by Hipel (2002).
The specific focus of this paper is the Graph Model for Conflict Resolution, which we
believe is more flexible, broader in scope, and easier to use than the alternatives.

The original formulation of the Graph Model for Conflict Resolution appeared in Kilgour
et al. (1987); the first complete presentation is the text of Fang et al. (1993). It has been
applied across a wide range of application areas; examples include environmental man-
agement at the local level (Kilgour et al., 2001; Noakes et al., 2003; Hamouda et al.,
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2004a,b; Li et al., 2006) and the international level (Noakes et al., 2006; Obeidi et al.,
2002); labor-management negotiation (Fang et al., 1993, Section 8.5); military and peace-
keeping activities (Kilgour et al., 1998); and international negotiations on economic issues
(Hipel et al., 2001) and arms control (Obeidi et al., 2006). A complete list of publications
is maintained on the website http://www.systems.uwaterloo.ca/Research/CAG/.

3. Past: Basics of the Graph Model for Conflict Resolution

3.1. Graph model definitions

The Graph Model for Conflict Resolution is described in full in Fang et al. (1993) and is
summarized here. A Graph Model has four components, as follows:

• N, the set of decision-makers (DMs), where 2 ≤ |N| < ∞. We write N = {1, 2, . . . , n}.
• S, the set of (distinguishable) states, satisfying 2 ≤ |S| < ∞. One particular state, s0, is

designated as the status quo state.
• For each i ∈ N, DM i’s directed graph Gi = (S, Ai ). The arc set Ai ⊆ S × S has the

property that if (s, t) ∈ Ai then s �= t ; in other words, Gi contains no loops. The entries
of Ai are the state transitions controlled by DM i .

• For each i ∈ N, a complete binary relation �i on S that specifies DM i’s preference over
S. If s, t ∈ S, then s �i t means that DM i prefers s to t, or is indifferent between s and
t. Following well-established conventions, we say that i strictly prefers s to t , written
s 	i t , if and only if s �i t but ¬[t �i s] (i.e. it is not the case that t �i s). Also, we say
that i is indifferent between s and t, written s ∼i t , if and only if s �i t and t �i s.

The arcs in a DM’s graph represent state transitions controlled by the DM; specifically,
if s, t ∈ S and s �= t , then there is an arc from s to t in DM i’s graph, i.e. (s, t) ∈ Ai , if
and only if DM i can (unilaterally) force the conflict to change from state s to state t. In this
case, we say that t is reachable for i from s. Note that all DMs’ graphs have the same vertex
set, S. A consequence is that relatively small Graph Models can be conveniently described
using the integrated graph G = (S, A1, A2, . . . , An)). Note that the integrated graph is a
directed graph (possibly with multiple arcs), in which each arc is labelled with the name of
the DM who controls it.

In principle, the Graph Model methodology does not require preference or indifference
relations to be transitive. (For example, �i is transitive if, whenever s1 �i s2 and s2 �i s3,
then s1 �i s3 also.) Typically when participants begin to think about a dispute, confusion
and lack of information may produce intransitive preferences. But intransitive preferences
usually disappear over time. If preferences are transitive, then each DM’s preference can
be used to order the state set S. In other words, for each DM there is a ranking of all states
from most preferred to least preferred, possibly including ties as groups of equally preferred
states. The assumption of ordinal preferences makes the presentation of a graph model using
the integrated graph particularly compact. The decision support system GMCR II assumes
that all preferences are transitive.
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Figure 1. Elmiral graph model (Kilgour et al., 2001, Figure 3).

Figure 1 shows a complete Graph Model; it displays both the integrated graph and the
preference orderings. In this particular example, all preferences happen to be strict, but in
general this need not be the case.

The Graph Model in Figure 1 is a simple but very useful model of a strategic conflict
studied by the authors and their collaborators. Figure 1 is a graph model of a situation that
arose in 1991 when a carcinogen was discovered in the underground aquifer from which
the town of Elmira, Ontario drew all of its water. The three DMs are the Ontario Ministry
of the Environment (MoE), Uniroyal Chemical Limited (UR), and the Local Governments
(LG). The strategic conflict centers on responsibility for clean-up of the pollution; at the
time point of the model, the Ministry has just issued a control order requiring Uniroyal to
clean up the pollution, but Uniroyal has the right to appeal. In the Elmiral model, MoE is
considering modifying the control order to make it more acceptable to UR (an option called
Modify); UR is deciding whether to delay the process by appealing (Delay), accept the
current version of the control order (Accept), or abandon its Elmira facility (Abandon); and
Local Governments have not yet decided whether to support the Ministry’s control order
(Support). All told, there are nine distinct states in the model.

It is a reflection of the simplicity of the Graph Model that the states form the basis for all
the definitions and all of the analysis. States are depicted as circles in Figure 1. The current
state of a Graph Model is assumed to be known to all DMs at all times, beginning with the
status quo state. At the status quo state (shown as state 1 in the model of Figure 1), MoE is
refusing to modify its control order, UR is delaying, and LG has not yet taken a position.

If the current state of a Graph Model is s, then DM i may choose to change the state to
any t ∈ S that is reachable for i from s (i.e., such that (s, t) ∈ Ai) if any such t exists; but DM
i may also choose not to change the state. In Figure 1, for example, all three DMs can move
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away from the status quo, while no DM can move away from state 9 (which represents
the consequences of UR’s choice to Abandon). If there are two different DMs who can
move the conflict away from s, there is no assumption about which one has priority. In most
examples, each DM’s graph turns out to be transitive (if DM i can move from s1 to s2 and
from s2 to s3, then DM i can also move – in one step – from s1 to s3) but this property is not
assumed in the Graph Model methodology.

DM i’s preference over S represents i’s preferences among the states of S considered
as final outcomes, or resolutions, of the conflict. Thus, in the Elmiral model (Figure 1),
Uniroyal most prefers the status quo, state 1, whereas both MoE and LG most prefer state 7,
where LG supports MoE’s control order and UR accepts it. Note also that state 9, at which
UR abandons its Elmira facility, is the least preferred outcome for both MoE and LG.

3.2. Stability analysis of a graph model

Now that we have described how a strategic conflict is modeled using the Graph Model for
Conflict Resolution, we turn to the second function of the methodology—analysis. First,
we give some definitions. From any state, s ∈ S, a state that is reachable by DM i from s
and that DM i prefers to s is called a (unilateral) improvement for i from s, and a state that is
reachable by i from s but is less preferred by i than s is called a (unilateral) disimprovement.
For example, in Figure 1, a move by LG from the status quo, state 1, to state 5 is a unilateral
improvement, whereas a move by UR from state 1 to state 3 is a unilateral disimprovement.

In the Graph Model for Conflict Resolution, a stability definition (or solution concept)
is a set of rules for calculating whether a decision-maker would prefer to stay at a state
or move away from it unilaterally. A stability definition is therefore a model of a DM’s
strategic approach, or more generally of human behavior in strategic conflict. Of course,
different stability definitions may be appropriate for different DMs.

A general principle for stability definitions in a Graph Model with n = 2 DMs is that
specifying a state, s, a DM, i , and a particular stability definition is equivalent to specifying
a two-person finite extensive-form game of perfect information with a particular structure.
In this game, the first move must be a choice by DM i to stay at s or to move to any of the
states reachable for i from s. If i chooses to stay at s, the game is over and the outcome is
s. If i does not stay on the initial move, then there may be additional choices by other DMs
(and possibly by i again), but at all subsequent decision nodes one alternative is always to
stay at the current state, and selecting this alternative always ends the game at that state.
Stability definitions differ only in the construction of this auxiliary extensive-form game.
For Graph Models with n > 2 DMs, stability definitions are generalized in a natural way
from the n = 2 case.

An equilibrium is a state that is stable, according to an appropriate definition, for ev-
ery DM in a Graph Model. The equilibria are the predicted resolutions of the strategic
conflict.

The main stability definitions currently used in Graph Model analysis include Nash
Stability (Nash), General Metarationality (GMR), Symmetric Metarationality (SMR), Se-
quential Stability (SEQ), Limited Move Stability (Lh), and Non-Myopic Stability (NM).
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Table 1. Main stability definitions used in the graph model.

How does focal DM (i) anticipate that
Definition Foresight Disimprovements other DMs will respond to i’s improvement?

Nash 1 Never None

GMR 2 Sanctions only Will sanction i’s improvement at any cost

SMR 3 Sanctions only Will sanction i’s improvement at any cost

SEQ 2 Never Will sanction i’s improvement, but only using their
own improvements

Lh h ≥ l Strategic Symmetric; others optimize for themselves, just like i

NM ∞ Strategic Symmetric; others optimize for themselves, just like i

For complete definitions and original references, see Fang et al. (1993, Ch.3). (In fact, these
are the definitions that are implemented in the software GMCR II.) Table 1 describes some
features of these definitions that relate them to behavior in conflicts. Foresight, for example,
refers to the maximum number of moves foreseen by a DM whose stability calculation
follows a particular definition. Nash stability looks one move ahead; the conservative defi-
nitions (GMR, SMR, and SEQ) look two or three moves ahead; in Lh-stability, the horizon
of foresight is a parameter, h, which may equal any positive integer; a state exhibits NM
stability if and only if it is Lh-stable for all sufficiently large h. Stability definitions also
differ with respect to disimprovements: in Nash stability there are none for the focal DM,
and for opponents it is not an issue; in GMR and SMR, there are none for the focal DM, but
sanctions by other DMs may be disimprovements; in SEQ disimprovements are forbidden
for either the focal DM or the opponents; and in Lh (h > 1) and NM, disimprovements are
permitted provided they are strategic, that is, anticipated to induce other DMs to react in a
way that benefits the DM making the move.

The logical relationships among the stability definitions in Table 1 are described in detail
in Fang et al. (1993, Ch.5). For instance, a state that is Nash is also GMR, SMR, and SEQ,
and a state with any other form of stability must also be GMR. Different stability definitions
have features that make them more, or less, appropriate to describe certain DMs. Some of
these features are suggested in Table 1: for instance, GMR and SMR describe conservative
DMs, who expect to be sanctioned if it is possible for the opponents to do so, no matter
how much the opponents may harm themselves in the process. A DM who follows SEQ is
almost as conservative; he or she never disimproves, and expects to be sanctioned by the
opponents, but only if they can do so without disimproving. By contrast, DMs who follow
Lh are calculating and strategic, and see every DM as attempting to optimize – subject,
of course, to limitations of foresight. The NM stability definition supposes the ultimate in
strategy, but sometimes it is so demanding that no state satisfies it.

Even though a Graph Model is simple and easy to construct, and the Graph Model
stability definitions have straightforward characterizations to make them easy to calculate,
the computational burden involved in finding states with appropriate forms of stability for
every DM – even in a small model – was quickly found to be daunting. For this reason, the
software system GMCR (now called GMCR I) was developed. (GMCR I is described by
Fang et al., 1993, Appendices A and B). GMCR I is an analysis engine that calculates the



THE GRAPH MODEL FOR CONFLICT RESOLUTION 447

stability of every state in a Graph Model, from the point of view of every DM in the model,
according to all of the stability definitions listed in Table 1.

The use of GMCR I fostered a philosophical change in the analysis of Graph Models.
Instead of first assigning a stability type to each DM and then identifying states that are
stable for each DM according to the appropriate definition, it was easy to find all states
stable for each DM under a range of definitions, and then to focus on those states with at
least some form of stability for every DM. Then only those states that are stable under one
or more definitions that might be appropriate to the DM are retained. For example, one
looks at Nash, GMR, and SMR for a DM who is cautious and may lack knowledge of other
DMs’ preferences. If the DM is more confident of other DMs’ views, SEQ may be included
also. The Limited Move definitions are appropriate for DMs who are more far-sighted
and strategic, and who are confident of their knowledge of other DMs’ points of view.
This approach brings additional information to the analyst, and was quickly discovered to
encourage better modeling and deeper analysis.

In practice, it turns out, most Graph Models have a few states that are stable under most
definitions (they are now called strongly stable), some that are stable under only one or
two definitions, and some that are always unstable. Usually there are a few states that are
strongly stable for all DMs; almost always, these states are the equilibria that are easiest to
interpret as stable resolutions of the underlying strategic conflict.

For example, in the Elmiral model of Figure 1, states 5, 8, and 9 are stable for all DMs
under the definitions Nash, GMR, SMR, SEQ, L(h) for h = 2, 3, . . ., and NM. States 1
and 4 are stable for all DMs, but for LG they are stable only under the short-sighted, low-
knowledge definitions GMR and SMR. Thus, analysis of the Elmiral model suggests the
conflict is likely to end up at either state 5 (similar to the status quo, except that LG supports
the control order), state 8 (a compromise in which, despite LG’s support MoE modifies the
control order and UR accepts it), or state 9 (in which UR abandons the Elmira facility). It
should be noted (see Figure 1) that state 9 must be stable in this model, since no DM can
move away from it.

4. Present: The Decision Support System GMCR II

4.1. GMCR II’s basic structure

The availability of software that analyzed Graph Models quickly, completely, and reliably
resulted in an increase in the number and range of applications of the Graph Model method-
ology, which in turn provided convincing evidence of the utility of the approach. But the
need to justify these models and interpret the results of the analysis created the need to
analyze even more Graph Models, typically related to the initial models but distinct from
them. For example, one might ask of the Elmiral model whether the assumed preferences
of Uniroyal – and in particular that state 9 is fifth in UR’s preference ordering – affect the
conclusions about stability, or whether the DM Local Government makes any difference
to the outcome. The natural way to answer such questions is to modify the original model,
re-analyze, compare the results, and assess.
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Figure 2. Components of decision support system GMCR II.

Attempts to analyze models derived from an initial model highlighted several bottlenecks
in the use of GMCR I. Detailed, time-consuming calculations were usually required to
convert a model to the GMCR I data format. Moreover, this format was so opaque that
it was difficult to convert the data for one model to another that was conceptually very
close. Another problem was evident in output interpretation; the output of GMCR I was not
organized to facilitate efficient, in-depth understanding of the analysis results.

The Decision Support System GMCR II was designed to ease these and other problems.
(GMCR II is described in detail by Fang et al., 2003 a, b and Hipel et al., 1997.) As indicated
in the schematic description in Figure 2, GMCR II is a three-stage system of which the
earlier system, GMCR I, forms the second stage. The major advances incorporated into
GMCR II are at the initial stage, Model Entry, and the final stage, Output Display. In fact,
improvements were also made to the GMCR I Analysis Engine, primarily to enable it to
analyze larger models faster.

4.2. Option-form entry of graph models

Option-form entry was an important advance, allowing natural Graph Models for most
strategic conflicts to be entered quickly and conveniently, and making it simple and straight-
forward to adjust existing models. A basic version of option form was developed for
metagame analysis (Howard, 1971) and used later in conflict analysis (Fraser and Hipel,
1984) and drama theory (Howard, 1999). However, the additional flexibility of the Graph
Model required further developments and adaptations.

Option-form entry avoids direct specification of the states of a Graph Model by listing,
for each DM, i, a non-empty finite set Oi representing the options, or courses of action,
available to i. An option can belong to one and only one DM, so O = O1 ∪ O2 ∪ · · · ∪ On

represents the set of all options in the model. The default assumption is that a DM can
select any subset of its options (including the empty subset); under this assumption, a state
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is simply a subset of O, which is called an option combination, and the set of all states is
S = 2O .

Usually, however, it is a difficult task to specify options in such a way that (1) every
option combination is feasible and (2) every option combination represents a distinct state.
Moreover, it has been found to be more efficient in practice to give the analyst or modeler
free rein to list options without restriction, eliciting the details of any restrictions later
on. In entry of the original Elmiral model, for instance, the domain expert specified three
options for Uniroyal: Delay, Accept, and Abandon. But obviously these options are not
independent of each other (for example, it would be impossible to choose more than one of
Delay, Accept, and Abandon), so some option combinations are infeasible.

In GMCR II, two important steps immediately follow specification of the options. First,
infeasible option combinations are removed from the model. Second, option combinations
that are essentially equivalent are coalesced. For instance, the latter procedure was also
used in the Elmiral model; the domain expert felt that all option combinations that included
Uniroyal’s Abandon option were essentially the same.

GMCR II incorporates flexible procedures that can remove all infeasible option com-
binations and coalesce all equivalent option combinations in any option form. As well,
it includes short-cut procedures that are sufficient for most practical examples. For in-
stance, infeasibilities often occur because options – like Uniroyal’s, as discussed above –
are mutually exclusive; in many Graph Models, the GMCR II procedure to specify mutually
exclusive options is sufficient. Specifying all infeasible option combinations and coalescing
all equivalent option combinations determines all states of the model.

Option-form entry assumes by default that the state transitions controlled by a DM
correspond to changes in the DM’s options, and that any unilateral change of options is
allowed. After the states are determined, the GMCR II user is directed to a procedure to
specify any disallowed transitions. Again, the most flexible procedures can disallow any
specific transition, while short-cut procedures are often sufficient in practice. In the Elmiral
model, for instance, a short-cut procedure was used to specify options (like MoE’s decision
to Modify and UR’s decisions to Accept or to Abandon) that, once selected, could not be
de-selected.

The remaining Graph Model component is preference – specifically, an ordering of S
for each DM. GMCR II’s basic method of preference entry, called Direct Entry, asks the
user to rearrange (‘drag and drop’) states so that they are listed in preference order. Any
number of adjacent states can be coded as tied in preference if appropriate. Direct Entry is
flexible in that any (transitive) preference can be entered, but it is slow, and for most models
it is cumbersome, as screen size is quickly exceeded. On the other hand, if an ordering is
approximately correct, then usually it can be quickly adjusted using Direct Entry, which is
often called Fine Tuning when used for this purpose.

Because states are entered in option form, they have a structure (each state corresponds
to an option combination) that can be used to approximate a DM’s preference ordering very
quickly. It is often easiest to take advantage of this structure in a brain-storming session.
It is recommended that, for all but the smallest models, one of the two more sophisticated
GMCR II preference entry procedures be used first to obtain an approximate ranking, which
then should be adjusted using Fine Tuning.
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Another GMCR II preference-entry procedure is Option Weighting. A numerical weight
(positive or negative) is assigned to each option. Then the score of each state is calculated
as the sum of the weights of the options selected when the state is represented as an
option combination. Finally, states are ordered according to score. Option Weighting is
a very simple procedure that can come surprisingly close to many preference orderings
encountered in practice.

The most sophisticated of GMCR II’s preference-entry procedures is Option Prioritizing.
The user enters, in priority order, a sequence of preference statements, which are logical
statements about options. Each statement must be a true-or-false statement about the options
selected at a state, and may contain logical connectives such as ‘and,’ ‘or,’ ‘not,’ ‘if,’ or ‘iff.’
Typical statements are “option 3 is selected,” “option 4 is not selected,” and “both option 3
and option 4 are selected.” For state s ∈ S, each of the statements in the hierarchy is true
or false. GMCR II orders the states so that state s precedes state t if and only if the highest
priority statement that is true for exactly one of s and t is true for s and false for t. While Option
Prioritizing is harder to learn than Option Weighting, most users report that they appreciate
the additional flexibility inherent in the procedure. The priority hierarchy of preference
statements seems to reflect a natural way of describing the derivation or justification of
preferences.

Table 2 shows the use of Option Prioritization to describe the MoE’s preferences in the
Elmiral model. For easy reference, the left-hand column contains the DMs and options.
The middle column lists preference statements in priority order (from most important to
least important). This column is exactly what would be entered into GMCR II’s Option
Prioritization dialog box. The right-hand column of Table 2 interprets each preference
statement. Notice that MoE most prefers that UR not abandon its Elmira plant (the negative
sign means ‘not’). Next most important to MoE is that UR accept the current control order.
GMCR II uses these five preference statements to produce the ordering of states (for MoE)
shown in Figure 1, where the numbers here refer to the state numbers. In this case, no fine
tuning is necessary. Clients find Option Prioritization to be an extremely attractive feature
of GMCR II.

Table 2. Option Prioritization for MoE in Elmiral model.

Decision makers Preference
and options statements Interpretation

MoE

1. Modify −4 MoE most prefers that UR not abandon its Elmira facility.

UR

2. Delay 3 Next, MoE prefers that UR accept the current control order.

3. Accept −2 Next, MoE prefers that UR not delay the appeal process.

4. Abandon −1 Next, MoE prefers not to modify the original control order.

LG

5. Insist 5 iff−1 Finally, MoE prefers that LG support the implementation of the original
control order if and only if MoE does not modify it.
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This completes the description of model entry in GMCR II. In practice, the system seems
to work very well for most strategic conflicts, though we have encountered a few for which
it is difficult to frame a Graph Model in option form. But one important success of the
option-form entry system is that it is easy to make small changes in a model so that it can be
reanalyzed, in order to assess whether the features changed are important to the conclusions.

4.3. GMCR II analysis and output display

The analysis engine of GMCR II is essentially the algorithm of GMCR I, modified to
increase speed and capacity. To date, the largest model analyzed using GMCR II is a model
of international negotiations over trade in services, originally developed in Hipel et al.
(1990), and analzyed using another technology. This model has a six DMs, 21 options, and
over 100,000 states; GMCR II determined the stability of every state for every DM according
to the SEQ definition in about 8 hours. But for most models of real-world disputes that we
have constructed using GMCR II, the analysis results are available in seconds.

For details regarding GMCR II’s output displays, see Fang et al. (2003b). Typical of
these displays is the GMCR II Equilibria property page; for the Elmiral model, this page
is shown as Figure 3. Note that Elmiral is a very small model; states are described using

Figure 3. GMCR II equilibria property page.
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five options (strictly speaking only four options are necessary), and only five states have
any form of stability for all DMs. In Figure 3, ‘Y’ indicates an option selected by the DM
controlling it, while ‘N’ means the option is not selected, and ‘-‘ means either Y or N.
Figure 3 shows that states 5, 8, and 9 are stable for all DMs under every definition. (Only
these three states can be called strongly stable.) It should be noted that GMCR II also
provides an Individual Stability property page, which can be used to find, for each DM, the
stability of every state under each of the stability definitions incorporated into the system.
Study of this page shows that, while states 1 and 4 are stable for both MoE and UR under all
of the GMCR II stability definitions, they are stable for LG only under the GMR and SMR
definitions.

The fast analysis and informative displays of GMCR II facilitated a broad range of
applications. They also provided a platform for the first form of development of the next
generation the graph model, Coalition Analysis, to be described next.

4.4. Coalition analysis

The GMCR II Coalition Analysis algorithm (Kilgour et al., 2001) constitutes a technique of
Graph Model analysis beyond the stability analysis introduced in Section 3.2 and Table 1.
In fact, the strategic conflict represented by the Elmiral model provides a good example
of the importance of coalition analysis; in fact, it was an important motivation. Recall (see
Figures 1 and 3) that the model features two strong equilibria – states 5 and 8 – in which
Uniroyal does not abandon its Elmira facility. Basic Graph Model stability analysis provides
no way to distinguish between these two equilibria – they both have all forms of stability
for all DMs. In the actual events in Elmira in 1991, an equilibrium corresponding to state 5
was reached quickly, and remained in place for several months. Then, in a dramatic turn of
events, MoE and Uniroyal announced an agreement that effectively shifted the equilibrium
to state 8. Local Government was not part of the agreement, and was clearly harmed by it.
What happened?

Coalition Analysis offers an answer. If a state is an equilibrium, then no DM is motivated
to move away from it. But there is a catch – a DM prefers not to move away in the expectation
that the opponents may act together, against the DM’s interest, to sanction the move, which
thereby stabilizes the original state. But when a coalition of two or more DMs moves away
from a state, then not only may the coalition reach better states, but also there are fewer
sanctioners. The objective of Coalition Analysis is to detect equilibria (based on what are
now called individual stability calculations) that are vulnerable to coalition moves.

Several conditions define a coalitionally unstable equilibrium state. First, a coalition – a
subset of N containing two or more DMs – must be able to achieve a state, the target state,
that all members of the coalition prefer to the initial state. Second, the coalition must be
minimal with respect to the target state, i.e., no subset of the coalition can reach the target
state. (Nonetheless, the move from the initial state to the target state must require at least
two moves, by at least two DMs.) Finally, the target state must itself be an equilibrium – oth-
erwise, the DMs in the coalition would have no assurance of obtaining a final state that they
all prefer.
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Coalition Analysis (activated by a check box on the Equilibria property page, Figure 3)
shows that the Elmiral model contains a coalitionally unstable equilibrium, namely state
5. DMs MoE and UR can jointly move the conflict from state 5 to state 8, which they
both prefer to state 5 as shown in Figure 1. The primitive Coalition Analysis algorithm in
GMCR II carries out this calculation, and shows that state 5 is coalitionally unstable in favor
of state 8. However, the algorithm is not very sophisticated; it shows a maximum of one
coalitional instability for each equilibrium, and does not indicate the coalition(s) causing
the instability, which must be calculated directly from the model. Nonetheless, the Coalition
Analysis feature of GMCR II is noteworthy as it was the first success for the Graph Model
methodology beyond the traditional individual stability calculations.

4.5. Applying GMCR II

The methodology of the Graph Model for Conflict Resolution and its associated decision
support system GMCR II capture the key characteristics of a strategic conflict, so that the
strategic issues are better understood and decision makers are better informed. Among the
benefits to be gained from this methodology are the following:

• Putting a strategic conflict into perspective,
• Furnishing a systematic structure,
• Facilitating a better understanding of strategic decisions,
• Permitting easy and convenient communication,
• Pointing out where more information is required,
• Understanding strategic implications quickly, before a conflict is resolved or progresses

to another phase,
• Identifying stable compromises,
• Providing strategic insights and advice,
• Expeditiously performing extensive sensitivity analyses to determine how model param-

eters affect conclusions,
• Suggesting optimal decision paths to a specific DM, and
• Identifying opportunities for coalition formation to move to a mutually preferred stable

outcome.

Specific advantages of employing Graph Model decision technologies include

• Strategic conflicts with any finite number of decision makers and states can be analyzed
(GMCR II can analyze small, medium and relatively large disputes);

• Minimal information is required to perform an analysis (using GMCR II, a model can
be calibrated using a list of DMs, a list of options, and relative preference information);

• All possible states (scenarios) are algorithmically generated;
• Moves can be modeled as reversible or irreversible according to the analyst’s choice;
• Movements among states are tracked systematically, using each DM’s own directed graph

of state transitions;
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• A rich range of human behavior under conflict conditions can enter into the calculation
of stability;

• Equilibria, including compromise resolutions, can be forecast;
• Extensive sensitivity analyses can be conveniently executed.

Further benefits of employing the upgraded version of GMCR II are described in Sec-
tion 5. Below is a list of situations to which GMCR II can be beneficially applied.

• Analysis and simulation tool for conflict participants: A consultant can use GMCR II in
simulation and role-playing exercises, for example to help participants to understand the
thinking of their competitors.

• Analysis and communication tool for mediators: Between sessions, a mediator may use
GMCR II to gain insight into how to guide conflicting parties toward a stable win/win
resolution. In addition to the avoidance of unstable outcomes, the mediator may see op-
portunities for side payments which might change preferences so as to stabilize desirable
outcomes.

• Analysis tool for a third party or a regulator: Others are interested in the outcomes of
strategic conflicts, such as representatives of third parties and regulators who frame the
rules within which conflicts are played out.

Besides these general situations, GMCR II can be employed in conjunction with many
other procedures for negotiation and conflict resolution.

5. Future: New Initiatives

5.1. Status Quo Analysis

The general idea for Status Quo Analysis was conceived early in the development of the
Graph Model, and GMCR II provides for it, but the concept was not sufficiently devel-
oped to include in the Decision Support System. A consistent and effective set of Sta-
tus Quo Analysis definitions and algorithms was introduced in Li et al. (2004b, 2005,
2006).

The main idea of Status Quo Analysis is to look forward from the current state, usually
the status quo, in order to identify attainable states and to assess how readily they can be
attained. Special attention is paid to attaining states known to be stable (for example, states
that were found to be equilibria in some prior stability analysis). In a sense, Status Quo
Analysis is the reverse of Stability Analysis; Status Quo Analysis is dynamic, following the
actual choices of the DMs, whereas Stability Analysis is static, identifying states which, if
attained, would be stable.

Several Status Quo Analysis algorithms have been developed. One variation takes ac-
count of the DMs’ propensity to disimprove, and another optimizes the procedure when the
DMs’ graphs Gi = (S, Ai ) are transitive. The result is a Status Quo Diagram, which tracks
possible moves beginning at the status quo state in order to identify attractors and other states
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Table 3. Status Quo table for Elmiral model.

V (h)
t SQ 2 3 9 5 4 6 7 8

V (0)
T

√

V (1)
T

√
MoE UR UR LG

V (2)
T

√
MoE UR UR LG

√ √ √

V (3)
T

√
UR LG

√ √ √ √

V (4)
T

√
UR LG

√ √ √ √

Source. Li et al. (2005).

of interest. Other procedures summarize information about attainability by constructing a
Status Quo Table. To illustrate, the basic Status Quo table for the Elmiral model of Figure 1
is given in Table 3.

To interpret Table 3, note that the status quo state, called SQ, is state 1. The states
reachable from the status quo (in this case, all states) are listed on the top row of the table.
Rows of the table correspond to numbers of moves, h = 0, 1, 2, 3, and 4. If there is no entry
in the cell corresponding to state s and row h, then state s cannot be reached from the status
quo in h moves. If the name of a DM appears in this cell, then state s can be reached from
the status quo in h or fewer moves, and the named DM must make the last move (by which
state s is actually attained). Finally, if the symbol

√
appears in this cell, then state s can be

reached from the status quo in h or fewer moves, and at least two different DMs can make
the last move. (It is important to keep track of the last mover because of the Graph Model
convention that no DM can move twice in succession. For example, the sequence SQ, 3,
9 would be ruled out in the Elmiral model, since it requires two consecutive moves by UR.
But in this model all DMs’ graphs are transitive, so the one-move sequence SQ, 9 would be
possible.)

Algorithms have been developed and tested for Status Quo Analysis, and several appli-
cations have demonstrated how much Status Quo Analysis adds to Stability Analysis. But
coding and testing have yet to be done; although GMCR II makes provision for Status Quo
Analysis, including it in the software remains a future project.

5.2. Stability analysis with uncertain preferences

In a Graph Model, DM i’s preference over S can be thought of as a pair of binary relations
{	i , ∼i } on S, 	i indicating i’s strict preference, and ∼i , i’s indifference. The Graph Model
methodology assumes that this pair of relations is strongly complete in the sense that, for
any states s, t ∈ S, exactly one of s 	i t , s ∼i t , or t 	i s is true. But in practice, DMs and
analysts sometimes lack information about some state comparisons, to the point that they
cannot estimate preference. Now, using recently developed definitions (Li et al., 2004a), a
partial stability analysis can be carried out even if there is some uncertainty in preferences;
moreover, this partial analysis can be updated as additional preference information becomes
available.
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In this new approach, the preferences of DM i are described by a triple of relations
{	i , ∼i , Ui } on S, such that 	i and ∼i , are interpreted as before, and sUi t means that
the relative preference of states s and t is unknown. Under the assumptions that (1) 	i

is asymmetric; (2) ∼i is symmetric and reflexive; (3) Ui is symmetric; and (4) the triple
{	i , ∼i , Ui } is strongly complete, four different extensions of the Nash, GMR, SMR, and
SEQ stability definitions have been developed. Stability under these definitions is effectively
standard stability modified to take the unknown preferences into account. Under Nash,
GMR, SMR, or SEQ, the strongest of the new definitions never has more stable states than
the standard definitions, and the weakest never has fewer.

The new definitions have been shown to be consistent and useful in some applications.
Algorithms could be developed now, but a few modeling issues remain to be addressed
before computer implementation.

5.3. Stability analysis including strength of preference

One of the great advantages of the Graph Model for Conflict Resolution is that it depends
only on ordinal preference information, which is easy to elicit and leads to conclusions
that are game-theoretically unimpeachable. But it is natural to wonder whether additional
preference information, if available, could be included in a Graph Model so as to give more
nuanced conclusions. For example, suppose that a DM is deterred from moving away from
a state because of a possible sanction; if that sanction resulted in a state much less preferred
than the original, then the stability of the original state would be enhanced, whereas if the
sanction resulted in a mildly less preferred state, the stability of the original state would be
somewhat weaker.

Hamouda et al. (2004a) introduced a refined preference structure that includes more
information about strength of preference, and developed new stability definitions to reflect
the refinement. As usual, DM i’s preference is described by a pair of binary relations {	i , ∼i }
on S. But now the strict preference relation 	i , is split into two relations, �i and >i , in the
sense that s 	i t if and only if s �i t or s >i t . The interpretation is that s �i t indicates
that i strongly prefers s to t, while s >i t indicates that i mildly prefers s to t. Formally,
the relations �i , >i , and ∼i , on S have the properties that (1) �i is asymmetric; (2) >i is
asymmetric; (3) ∼i is symmetric and reflexive; and (4) the triple {�i , >i , ∼i } is strongly
complete.

Then changes in the GMR, SMR, and SEQ stability definitions were proposed to reflect
this more detailed preference information. Roughly, a state s ∈ S is strongly stable for
DM i if i has improvements from s, but after any improvement the opponents could move
to a state t such that s �i t . Analogously, a state s ∈ S is weakly stable for i if i has
improvements from s, and after any improvement the opponents could move to a state t
such that s 	i , t , but for at least one improvement from s the sanction t satisfies s >i t .
Examples described by Hamouda et al. (2004a) show that information about strength of
preference can distinguish levels of stability that are meaningful in practice.

Again, while these new definitions are known to be consistent and believed to be useful,
algorithms for computing them are a future project; coding and testing will follow later.
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5.4. Perceptual graph models

Coalition Analysis and Status Quo Analysis constitute new ways of analyzing a standard
Graph Model. Uncertain Preference and Strength of Preference constitute features that can
be added to Graph Models in a way that enhances, rather than compromises, the standard
Stability Analysis. Yet another recent initiative is the development of the Perceptual Graph
Model, which is a Graph Model in which different DMs perceive different sets of states. A
good argument can be made that models in which state perceptions differ offer a descriptive
dimension that cannot be achieved by other means (Obeidi et al., 2005). For example, it
has been established that the presence of strong negative emotion may prevent a DM from
perceiving certain possibilities.

A simple way to produce Perceptual Graph Models that remain amenable to Stability
Analysis is now under development. It begins with a complete underlying Graph Model and
assumes that each DM perceives only a subset of the states. Then it requires that transitions
between perceived states, and preference orderings on perceived states, be inherited from
the complete model. Although this approach is far from complete, it provides enough
consistency across DMs’ models that many established analysis techniques can be applied
meaningfully and, we believe, usefully.

5.5. Policy stability

Zeng et al. (2005) develop a novel approach to the analysis of a Graph Model. A policy
for a DM is a complete plan that specifies the DM’s intended move starting at every state
in a graph model. Given a profile of policies, a Policy Stable State (PSS) is a state s∗ ∈ S
such that (1) s∗ is an equilibrium in the sense that no DM’s policy calls for a move away
from s∗; and (2) no DM would prefer to change its policy, given that the policies of the
other DMs are fixed. The profile of policies associated with a PSS is a Policy Equilib-
rium. Policy stability is an interesting and useful idea on its own; moreover, examination
of its relationship with the standard forms, including Nash, GMR, SMR and SEQ (see
Table 1), is providing new perspectives on Stability Analysis in the Graph Model for Conflict
Resolution.

6. Summary and Conclusions

Table 4 summarizes the status of the various initiatives, discussed above, that have been
undertaken to develop the methodology of the Graph Model for Conflict Resolution.

Section 5 of this review was called “Future”, to suggest that the developments and
initiatives described there are soon to be implemented in software and used widely in
practice. But it is appropriate to end this review with some other perspectives on the future.
The authors, and their many colleagues and collaborators, are confident that the Graph
Model methodology offers a valuable and flexible tool for the study and understanding of
strategic conflict.
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Table 4. Current status of graph model initiatives.

Model Analysis Current status

Graph model Individual stability status Quo
policy stability

Definitions and algorithms definitions
and algorithms definitions

Graph model with option-form
entry

Individual stability

Coalitional stability

In GMCR II

In GMCR II

Graph model with uncertain
preference

Individual stability Definitions and algorithms

Graph model with strength of
Preference

Individual stability Definitions

Perceived graph models Individual stability Under development

We believe that strategic conflict is best understood as a process of negotiation—often
informal or implicit, and sometimes even ill-structured. The voluminous literature on ne-
gotiation includes many calls for systems to analyze the strategic problems of negotiators,
but few reports of success. Many have suggested that the natural tool to analyze strategic
problems “should be” game theory. But for various reasons, including its insistence on
fixed rules of play and its strong assumptions about shared knowledge, game theory was
dismissed as “theoretical acrobatics” by those who study negotiation (Raiffa, 1982, p. 6).
Later, Raiffa explicated: “[F]or a long time I have found the assumptions made in standard
game theory too restrictive for it to have wide applicability [to negotiation] . . . Such limits
are hard to swallow in seeking to put this elegant theory into practice” (Raiffa et al., 2002,
p.12). In our view, a negotiation is a strategic conflict; as we argued above (Section 2),
games are often poor models for strategic conflicts.

The Graph Model for Conflict Resolution models strategic conflicts in a way that avoids
the problems of game models. It draws on game theory, but is not game-theoretic in the
traditional sense. Its strength is its simplicity and flexibility, both in modeling and analyzing
strategic decision problems. The Graph Model incorporates some plausible restrictions
on knowledge and rationality, making it appropriate for advising individuals in a multi-
decision-maker context. Another advantage is that it has been implemented efficiently in
a decision support system, which has led to an extensive list of applications. With this
experience has come considerable expertise in Graph Model analysis and application. Yet
the Graph Model is a continuing project and, as this article has shown, there is plenty of
scope for developments and improvements over the next few decades.
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