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phytochemicals, such as capsaicinoids, phenolics, ascorbic 
acid, and carotenoids (Kumar and Tata 2009). Capsaicinoids 
are the ingredients in pepper that are responsible for its pun-
gent taste (Sarpras et al. 2016). The level of capsaicin ranged 
from 0 to 3636 µg/g in the mature green stage and from 0 
to 4820 µg/g in the red/yellow stage, while the concentra-
tion of dihydrocapsaicin ranged from 0 to 2148 µg/g in the 
mature green stage and from 0 to 2162 µg/g in the red/yel-
low stage (Hamed et al. 2019). Pepper (Capsicum annuum 
L.) belongs to the family Solanaceae which includes tomato 
(Solanum lycopersicum), potato (Solanum. tuberosum), 
eggplant (Solanum. melongena), tobacco (Nicotiana taba-
cum), and petunia (Petunia spp.) (Kelley et al. 2009). The 
origin of pepper is Mexico and Central America countries, 
but generally, it is produced in every country all over the 
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Abstract
High salinity leads to a reduction in growth, germination, metabolic stability, and production of pepper (Capsicum annuum 
L.) plants worldwide. GABA priming showed a positive effect on plant growth and development and improved plant 
stress tolerance. The current study aimed to investigate the effect of exogenous GABA treatments on endogenous GABA 
shunt pathway in germinating seeds of green bell pepper (Capsicum annuum L.) under salt stress (0, 25, 50, 75, 100 and 
200 mM NaCl) through the characterization of seed germination pattern, seedling growth, seed moisture content, GABA 
shunt metabolite levels (GABA, Alanine, and Glutamate), the level of oxidative damage in terms of the accumulation of 
reactive oxygen substances and the expression of pepper dehydrin gene (CaDHN3) in response to all salt stress treatments 
that were examined in this study. Pre-treatment of pepper seeds with GABA improved seed germination by enhancing 
germination percentage, germination rate, seedling length, seedling fresh and dry weights, seed moisture content, and 
decreasing mean time to germinate under salt stress. Data showed an increase with positive correlation between internal 
GABA metabolite, alanine, and glutamate levels and NaCl concentrations in response to all GABA priming treatments. 
The MDA content increased as NaCl concentration increased under all GABA treatments. However, there was a significant 
reduction in MDA content in all GABA treatments and hydro-primed pepper seeds when compared to untreated seeds 
under all NaCl concentrations. The expression of pepper dehydrin gene (CaDHN3) was significantly increased with the 
increase of NaCl concentrations under all GABA treatments. Priming pepper seeds with exogenous GABA significantly 
activates GABA shunt and accumulate GABA internally to maintain C: N balance, stabilize internal metabolism, sustain 
amino acid metabolism, enhance scavenging of reactive oxygen species (ROS) by activating defense mechanisms, and 
significantly increase the expression of CaDHN3 to prevent lipid peroxidation, maintain metabolic stability and enzymes 
function and prevent dehydration during seeds germination in response to salt stress.
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world. In addition to its nutritional importance, also pepper 
is used in various pharmaceutical industries due to its anti-
oxidant, anticancer, and antimicrobial properties (Safari et 
al. 2017; Iranbakhsh et al. 2018). Peppers are picked green 
and immature, but when they ripen on plant, they become 
full-sized and sweeter due to high vitamin content. Addi-
tionally, as fruits become mature, they gradually accept their 
genetic color; such as red, yellow, green, and orange (Zhang 
et al. 2002). The nutrients quantity and vitamins content of 
red pepper is higher than green pepper due to the extra time 
they stay attached to the plant before fruit harvesting (Jovi-
cich et al. 2004). More than 200 common names for pepper, 
including bell pepper, Jalapenos, Cayenne, and Christmas 
pepper (ornamental) (Latham 2009).

Salinity is determined by increasing sodium (Na+) and 
chloride (Cl−) ions concentration in the soil which can be 
induced by either ionic stress or osmotic stress (Ismail et 
al. 2014). Salinity is considered as a limiting factor for the 
production of crops worldwide (Zhu 2002, 2016), because 
it has a negative effect on all aspects of plant growth and 
development (Cuartero et al. 2006; Abbasi et al. 2012). 
Reduction in shoot system fresh and dry weight under salt 
stress was observed in beans (Vicia faba L.) (Qados 2011), 
lettuce (Lactuca sativa L) (Andriolo et al. 2005) and cow-
pea (Vigna unquiculata L) (Dantas et al. 2005). Likewise, 
salt stress disturbed plant internal water relations such as 
decreasing the osmotic potential in beans (Vicia faba L.) 
(Qados 2011), sea buckthorn (Hippophae rhamoides L) 
(Qin et al. 2009) and barley leaves (Hordeum vulgare L) 
(Yağmur et al. 2006). Additionally, salinity changes ion 
equilibrium, mineral nutrition, water status, and efficiency 
of photosynthesis (Nabati et al. 2011). In pepper (Capsicum 
annuum L.), salt stress significantly leads to severe reduc-
tion in leaf numbers, leaf area, root length, and chlorophyll 
contents (Kaouther et al. 2012) which was consistent with 
reduction of leaf area in canola (Bybordi 2010) and leaf 
number in groundnut (Mensah et al. 2006) and sprout plant 
(Al-Thabet et al. 2004).

Gamma-aminobutyric acid (GABA) is a non-protein 
amino acid. In animal cells, it has vital roles roles in neu-
rology and signal communications (Watanabe et al. 2002). 
When the concentration of GABA is altered in the brain it 
may contribute to various neurological disorders includ-
ing parkinson, epilepsy, and seizures (Ting Wong et al. 
2003). In plant cells, the first discovery of GABA was in 
potato tubers and it is synthesized through the GABA shunt 
pathway (Michaeli and Fromm 2015). The metabolism of 
GABA is performed by multistep starting from glutamate 
by glutamate decarboxylase that later is converted to suc-
cinate semialdehyde (SSA) and succinate enter the tricar-
boxylic acid (TCA) cycle (Krishnan et al. 2013). GABA 
shunt involved three main reactions directed by glutamate 

decarboxylase (GAD), GABA transaminase (GABA-T), and 
succinate semialdehyde dehydrogenase (SSADH) enzymes 
(Michaeli and Fromm 2015). Decarboxylation of glutamate 
to GABA is catalyzed by GAD and controlled by Calmod-
ulin\Ca+ 2 complex (Snedden and Fromm 2001). GABA 
transaminase catalyzed the conversion of GABA to SSA by 
using pyruvate or α-ketoglutarate as amino-group acceptor 
that leads to the production of alanine or glutamate (Geigen-
berger and Stitt 1993; Fernie et al. 2001). A significant cor-
relation between SSADH and GAD genes expression was 
observed under various abiotic stresses (Steinhauser et al. 
2004; Usadel et al. 2005). The accumulation of GABA is 
mainly in the cytosol; which is later transported into mito-
chondria (Michaeli et al. 2011). GABA plays a critical role 
in plant metabolism under biotic/abiotic stresses to maintain 
carbon: nitrogen (C: N) balance, scavenging reactive oxy-
gen species (ROS) (AL-Quraan et al. 2013), and regulating 
cytosolic pH (Steinhauser et al. 2004).

The process in which plants attain a unique primed or 
physiological state by pretreatment with any chemical 
priming agent is called priming, and this process (precon-
ditioning) influences the plants’ ability to respond to stress-
ful conditions (Cohen et al. 2007). Several studies proved 
the importance of priming in improving seed germination, 
seedling emergence, growth nodulation, and productivity in 
various crops such as wheat (Tabassum et al. 2018), rice 
(Jisha and Puthur 2016) and sunflower (Moghanibashi et al. 
2013). Furthermore, GABA is used as a priming agent for 
alleviating drought stress (Vijayakumari and Puthur 2016) 
and heat stress (Nayyar et al. 2014). A study performed by 
Tian et al. (2005) proved that GABA priming reduced the 
effect of NaCl treatments by increasing enzyme activity 
such as catalases (CAT) and superoxide dismutase (SOD) in 
maize seed. Moreover, exogenous GABA treatment affected 
stress-related genes expression in the roots of Caragana 
intermedia under NaCl stress (Shi et al. 2010). GABA treat-
ment significantly alleviated the chilling injury in tomato 
seedlings by increasing the activity of antioxidant enzymes 
and scavenging the accumulation of ROS in response to 
cold stress (Malekzadeh et al. 2014). Additionally, exog-
enous GABA treatment can regulate weight loss, chilling 
injury index and cell death and maintain lower rate of elec-
trolyte leakage during postharvest storage of various crops 
fruits, including zucchini, banana, and peaches (Madebo et 
al. 2021). Ramzan et al. (2023) study showed that exoge-
nous treatment of pepper (Capsicum annuum L.) seedlings 
with GABA and glutathione increased the salt tolerance by 
activating the antioxidant defense mechanisms, enhancing 
the activity of respiratory enzymes and up-regulating the 
expression of CaXTHs stress-related genes. Also, GABA 
application enhanced the drought stress tolerance in various 
crops, including grapevines (Malabarba et al. 2019), tomato 
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(Gramazio et al. 2020), and white clover (Zhou et al. 2021) 
by increasing the water use efficiency and improving the 
nitrogen assimilation.

The accumulation of GABA in plants is related to envi-
ronmental stress, and this accumulation might interrupt 
the plant growth and development (Bouche and Fromm 
2004). Inducing the accumulation of GABA in tobacco 
caused alteration of vegetative development due to 
reduction in cell elongation of stems (Baum et al. 1996). 
However, a previous study conducted on a hulless barley 
suggested that GABA was essential for mediating NaCl 
stress-induced antioxidant system enhancement and phe-
nolic compound accumulation in germinated seeds (Ma 
et al. 2019). In white clover, applying exogenous GABA 
showed no effect on seed germination under normal con-
ditions but its application at a low concentration under 
salt stress significantly improved seed germination by 
decreasing the osmotic potential, soluble sugar, and free 
proline content (Cheng et al. 2018). Under long-term salt 
stress, exogenous GABA significantly influenced the ger-
mination rate, improved photosynthesis, and decreased 
root dry mass in wheat (Li et al. 2010, 2016a). Various 
studies suggested that GABA has an essential role in 
germination by providing building blocks for metabolic 
reorganization via the TCA cycle (Fait et al. 2006; Guti-
errez et al. 2007). In addition, during seed germination; 
GABA activated gene expression of α-amylase in the 
aleurone of barley seeds and promoted the degradation 
of seed starch in a dose-dependent pattern (Sheng et al. 
2018). In contrast, excess amounts of exogenous GABA 
could inhibit primary root growth and seed germination 
by inducing a change in the balance of nitrogen and car-
bon metabolism to maintain storage and seeds dormancy 
(Du et al. 2020).

Plant treated with GABA showed a crucial role in 
sustaining internal metabolism under stress. Applying 
exogenous GABA to crop plants can alleviate different 
metabolic pathways in response to salinity (Kumar et al. 
2017). Several studies revealed that plants exposed to 
NaCl accompanied with GABA treatment showed higher 
photosynthesis rate and stomatal conductance, enhanced 
resistance against adverse environmental conditions, 
improved seed germination rate, reduced chloroplast and 
mitochondrial damage, and decreased membrane leakage 
(Wang et al. 2017; Cheng et al. 2018). A study on rice 
(Oryza sativa L.) under salinity conditions showed that 
GABA priming significantly controls reactive oxygen 
species (ROS) levels by inducing secondary metabolism 
and antioxidant enzymes during seed germination (Shet-
eiwy et al. 2019). In tomato (Solanum lycopersicum L.), 
treatment with GABA significantly inhibited the effect of 
salt stress on seedling height, reduced the net Na+ efflux 

in leaves and roots, and prevented the accumulation of 
Na+ in tissues (Wu et al. 2020).

Moreover, applying GABA at low concentration 
increased adventitious root growth in poplar (Lirioden-
dron tulipifera L.) (Xie et al. 2020) and increased the 
content of endogenous GABA in the leaves and stem 
of tomato (Lycoperiscan esculentum) seedlings under 
salt stress (Çekiç 2018). In lettuce (Lactuca sativa L.), 
the application of GABA inhibited the negative effect 
of NaCl in early growth stage at both cellular (oxida-
tive stress) and biophysical (chlorophyll content) levels 
(Kalhor et al. 2018). Furthermore, GABA can enhance 
nitric oxide (NO) accumulation in muskmelon (Cucu-
mis melo), where NO acts as a signaling molecule for 
GABA pathway induction to enhance salt stress tolerance 
by improving the antioxidant system, ion homeostasis, 
proline metabolism, and promoted growth and photosyn-
thetic efficiency (Xu et al. 2021). However, NO induction 
to produce GABA was also reported in unstressed wheat 
(Triticum aestivum L.), which in turn was associated 
with various physiological improvements (Khanna et al. 
2021). Additionally, exogenous GABA can protect plants 
from oxidative damage and reduce ROS accumulation in 
tomato in response to long-term cold treatment (Shang 
et al. 2011). In mungbean (Vigna radiate L.) plants, 
GABA had a significant effect on reducing malondialde-
hyde (MDA) and H2O2 levels, improving the antioxidant 
activities in anthers and leaves, upregulating osmolytes 
synthesis, and improving C-fixation and assimilation to 
maintain leaf water status under heat stress (Priya et al. 
2019).

As a result of its significant role in plant metabolism, 
growth and development; exogenous GABA showed a 
significant result in inducting plant responses under vari-
ous abiotic stresses. Therefore, this study was aimed to 
investigate the effect of exogenous GABA treatments on 
endogenous GABA shunt pathway in germinating seeds 
of green bell pepper (Capsicum annuum L.) under salt 
stress through the characterization of seed germination 
pattern, seedling growth, GABA shunt metabolite levels 
(GABA, Alanine, and Glutamate), the level of oxida-
tive damage in terms of the accumulation of MDA and 
the expression of pepper dehydrin gene (CaDHN3) in 
response to all NaCl treatments that were used in this 
study. The present study determined the effects of exoge-
nous GABA on pepper (Capsicum annuum L.) seeds’ tol-
erance to NaCl treatments and investigated the functional 
role of GABA priming in the induction of the GABA 
shunt pathway endogenously and metabolic stability dur-
ing seed germination under salt stress.
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the seed fresh weight and was expressed as a percentage (%) 
of the wet weight using the following equation:

Equation (1)

Seed moisture content = ((Fresh weight − oven Dry weight) /

Fresh weight)) × 100%

Seeds and growth sensitivity to NaCl treatments

Thirty seeds from each GABA treatments (0.5, 1.0, 1.5, 2.0, 
or 2.5 mM) in addition to distilled water (hydro-priming), 
and non-treated seeds as a control group, were planted on 
two filter papers supplemented with 0, 25, 50, 75, 100, and 
200 mM NaCl, separately. The seeds were incubated at 25 
˚C for 8 days. Seeds were considered as germinated seeds 
when the radicle had protruded and grown out of the cover-
ing seed layers. Seeds with radicle protrusion was scored 
after 1, 2, 3, 4, 5, 6, 7, and 8 days after planting. The effect 
of NaCl on seed germination was calculated using the fol-
lowing equation (Bhardwaj et al. 2012):

Equation (2)

Germination percentage (G%) = (( number of seeds germinated /

total number of seeds planted) × 100%)

Germination percentage (G%) after 8 days was compared 
to the untreated seeds (control group). An average of three 
replicate plates were used for each treatment. Eight days 
after planting, only germinated seeds were used for further 
experiments (GABA metabolites extraction, MDA analysis, 
and CaDHN3 expression). The mean time to germination 
(MTG) was calculated using the following equation (Sama-
rah et al. 2016):

Equation (3)

MTG = Σ (ni × ti) / Σni

Where ni is the number of newly germinated seeds at time 
ti; ti is the number of days from the beginning of planting 
(imbibition); and Σ ni is the total number of seeds germi-
nated. An average of three replicate plates were used for 
each treatment. The germination rate (GR) was calculated 
using the following equation (Bhardwaj et al. 2012):

Equation (4)

GR = Σ ni / ti

Where ni is the number of seeds germinated at time ti; 
ti is the number of days from the beginning of planting 

Materials and methods

Plant materials and seed surface sterilization

Freshly harvested green bell pepper seeds (Capsicum ann-
uum L., Sweet pepper, variety: California Wonder) were 
provided by Oula Seeds International company (Irbid, Zarqa 
Highway, Al-Mafraq, Jordan). This pepper variety was used 
in this study since it is not genetically modified and it is 
the most cultivated pepper variety in Jordan. Surface ster-
ilization of the seeds was performed by suspending seeds 
in 100% bleach (v/v, 6% sodium hypochlorite) for 5  min 
followed by five times washing with sterile distilled water 
(Lindsey et al. 2017).

Seeds priming with GABA

The GABA solutions (0.5, 1.0, 1.5, 2.0, or 2.5 mM) were 
prepared by dissolving GABA (Sigma-Aldrich, USA) in 
distilled water (d. H2O). The solution pH was adjusted to 5.6 
using 1 M NaOH solution. Surface sterilized seeds (25,000 
seeds) were treated by submerging in 0.5, 1.0, 1.5, 2.0, or 
2.5 mM GABA solutions, and distilled water, separately for 
24 h at 25˚C. Treatment with distilled water is referred to as 
hydro-priming. After soaking, the seeds were allowed to air 
dry to return to their original moisture at room temperature 
for 3 days. Untreated dry seeds (seeds that were not treated 
with distilled water or GABA solutions) were used as a con-
trol group.

NaCl treatments and growth conditions

The sterilized hydro-primed and GABA-treated seeds (0.5, 
1.0, 1.5, 2.0, or 2.5 mM) in addition to untreated seeds, were 
grown on filter paper in Petri dishes supplemented with dif-
ferent concentrations of sodium chloride (NaCl): 0, 25, 50, 
75, 100, and 200 mM (3 mL in each Petri dish), separately. 
All experiments were conducted in the laboratory by incu-
bating the treated seeds at 25ºC for 8 days (AL-Quraan et 
al. 2023).

Seed moisture content

Seed moisture content was measured for three replicates 
of 30 seeds each immediately after imposing seed treat-
ments with GABA solutions and after drying the seeds to 
their original moisture content. Seed moisture content was 
measured according to the International Seed Testing Asso-
ciation (ISTA) by calculating the difference in seed fresh 
weight before and after drying them in an oven at 80 oC for 
72 h (oven-dry weight). This difference was then divided by 
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Alanine level determination

Alanine level was measured according to Bergmeyer and 
Grassl (1988) with the following modifications: the reaction 
mixture contained 180 µL of 0.05 M Na-carbonate buffer pH 
10, 7 µL of 30 mM β-NAD+, 50 µL of sample extract, and 
5 µL of 0.3 u µL− 1 alanine dehydrogenase (Sigma-Aldrich, 
USA) enzyme suspension. Change in spectrophotometric 
absorbance at 340  nm after the addition of alanine dehy-
drogenase was recorded after 60  min incubation at 25oC 
using the microplate reader (Synergy HTX, BioTek Instru-
ments, USA). The level of alanine as nmol mg− 1 (FM) was 
determined using the NADH standard curve (range from 0 
to 5 nmol). An average of three replicates was used for each 
treatment.

Glutamate level determination

Glutamate level was measured according to Bergmeyer and 
Grassl (1983) with the following modifications: the deami-
nation reaction mixture contained 180 µL of 0.1 M Tris-HCl 
pH 8.3, 8 µL of 7.5 mM β-NAD+, 50 µL of sample extract, 
and 5 µL of 0.8 u mL− 1 glutamate dehydrogenase enzyme 
suspension (Sigma-Aldrich, USA). Change in spectropho-
tometric absorbance at 340 nm after the addition of gluta-
mate dehydrogenase was recorded after 60 min incubation 
at 25oC using the microplate reader (Synergy HTX, BioTek 
Instruments, USA). The level of glutamate was determined 
as nmol mg− 1 (FM) using the NADH standard curve (range 
from 0 to 5 nmol). An average of three replicates was used 
for each treatment.

Oxidative damage and MDA assay

The level of malondialdehyde (MDA) as a reference for 
reactive oxygen species in germinating seeds was deter-
mined as the following: 100 mg tissue was grounded using 
a mini pestle and mortar then placed in 1.5 mL microcentri-
fuge tubes at 1st day, 4th day, and 8th−day after planting for 
each NaCl treatment (0, 25, 50, 75, 100, and 200 mM), sepa-
rately. The lipid peroxidation (MDA) assay kit (colorimet-
ric) (ab118970, Abcam, Waltham, USA) was used according 
to the manufacturer’s instructions. In this kit: lipid peroxi-
dation was determined by the reaction of free MDA (present 
in the sample) with thiobarbituric acid (TBA) to generate 
a MDA-TBA adduct that formed a colorimetric (532 nm) 
product, proportional to the MDA present in the sample. 
The absorbance was measured spectrophotometrically at 
532 nm using the microplate reader (Synergy HTX, BioTek 
Instruments, USA). The level of malondialdehyde (MDA) 
was determined as nmol mg− 1 (FM) from a standard curve 

(imbibition). An average of three replicate plates were used 
for each treatment.

Seedling length (cm), seedling fresh weight (g), and dry 
weight (g) were determined for each treatment on the 8th 
day after planting. Seedling length (cm) was measured from 
the seed radicle to the shoot tip using a ruler. Seedling fresh 
weight (g) was determined by collecting the seedling sam-
ples separately and weighing them directly. Seedling dry 
weight (g) was determined after oven drying at 70  °C of 
each seedling sample for 72 h. An average of three replicate 
plates were used for each treatment.

GABA-metabolites extraction

GABA metabolites were extracted according to Zhang and 
Bown (1997) with the following modification: 500 mg of 
germinating seeds (seeds and the emerged seedlings) at 
1st day, 4th day, and 8th day after planting for each NaCl 
treatment (0, 25, 50, 75, 100, and 200 mM) separately were 
grounded with mini pestle and mortar and placed in 1.5 mL 
microcentrifuge tubes. To each tube, 400 µL methanol was 
added and the samples were mixed for 10 min. Liquid from 
the samples was removed by regular evaporation overnight 
(tubes were kept open to allow methanol evaporation). Then 
500 µL of 70 mM lanthanum chloride was added to each 
tube. The tubes were mixed for 15 min and subsequently 
centrifuged at 15,000 rpm for 5 min. The supernatant was 
removed to new tubes and was mixed with 160 µL of 
1  M potassium hydroxide (KOH). The tubes were mixed 
for 10 min and then centrifuged at 15,000 rpm for 5 min. 
The supernatant containing metabolites was transformed 
into a new tube and was used for GABA shunt metabolites 
(GABA, Alanine, and Glutamate) level determination. An 
average of three replicates was used for each treatment.

GABA-metabolite level determination

GABA level was measured according to Zhang and Bown 
(1997) with the following modifications: the reaction mixture 
contained 50 µL of sample extract, 14 µL of 4 mM NADP+, 
19 µL of 0.5 M potassium pyrophosphate at pH 8.6, 10 µL 
of (2 u µL− 1) GABASE enzyme (Gabase enzyme powder 
was suspended in 0.1 M potassium pyrophosphate at pH 7.2 
containing 12.5% glycerol and 5 mM β-mercaptoethanol) 
and 10 µL of α-ketoglutarate. Change in spectrophotometric 
absorbance at 340 nm was recorded after 90 min incubation 
at 25˚C using the microplate reader (Synergy HTX, BioTek 
Instruments, USA). The level of GABA (nmol mg− 1 (FM) 
was determined using the NADPH standard curve (range 
from 0 to 10 nmol). An average of three replicates was used 
for each treatment.
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CaDHN3 RNA in each tube was normalized with respect to 
the fluorescence of the 18 S RNA (1800 bp) (forward primer 
5`CCACCCATAGAATCAAGAAAGAG3` and reverse 
primer 5`GCAAATTACCCAATCCTGAC3`) (Hassan et 
al. 2015) as internal control. The background fluorescence 
on agarose gels was subtracted from the fluorescence value 
of each band. Each determination represents an average of 
three different biological replicates with standard deviation. 
Data was represented as Log2 fold expression in the level 
of CaDHN3 gene expression on day 8 post-germination in 
GABA-treated seeds, hydro-primed seeds and untreated 
seeds after each NaCl treatment compared to normal growth 
(0 mM NaCl).

Data statistical analysis

The experimental design for all studies was a completely 
randomized design (CRD). Treatments were replicated 
three times. All assays and measuring parameters were 
conducted in triplicate. Mean and standard deviation (SD) 
values were determined for all assay parameters. Normal-
ity tests of one-way analysis of variance (ANOVA) using 
the least significant difference (LSD) multiple comparison 
tests on the means were used for data analysis at a 95% 
confidence level (P-value < 0.05) for each GABA concen-
tration, hydro-primed and untreated seeds under all NaCl 
treatments for each measuring parameters and assays (Ger-
mination percentage (G%), seedling length, seedling fresh 
weight, seedling dry weight, germination rate (GR), mean 
time to germinate (MTG), seed moisture content, GABA 
shunt metabolites, MDA level, and Log2 fold expression of 
CaDHN3 gene). Pearson correlation coefficient (r) was used 
to show the trend between the NaCl concentrations and the 
means of measured parameters for each GABA concentra-
tion, hydro-primed and untreated seeds. All statistical analy-
ses were done using the SPSS version 25.0 software.

Results and discussion

Effects of GABA priming on pepper seeds 
germination and seedlings growth under NaCl 
stress

Seed germination percentage (G%), seedling length, and 
seedling fresh and dry weight of pepper (Capsicum annuum 
L.) under salt stress were recorded. Significant differences 
(P ≤ 0.05) in germination percentage, seedling length, fresh 
and dry weights were observed after all GABA treatments 
irrespective of different NaCl concentrations. Seeds G% 
was negatively (r = -0.85 to -0.953) affected by salt stress 
under all GABA treatments (Table 1). Treatment with 0.5 

of MDA (range from 0 to 5 nmol). An average of three rep-
licate plates was used for each treatment.

Total RNA extraction

Total RNA from fresh samples was extracted by using the 
IQeasy™ plus Plant RNA Extraction Kit from Intron Bio-
technology (South Korea) according to the manufacturer’s 
instructions. Total RNA was extracted from germinating 
seeds on 8th−day after planting for each sodium chloride 
(NaCl) concentration (0, 25, 50, 75, 100, and 200 mM), 
separately and suspended in RNase-free water. RNA con-
centrations were determined by their absorbance A260 using 
a nanodrop spectrophotometer (ND-100, NanoDrop Tech-
nologies, USA). The integrity of RNA was determined after 
separation of RNA on a 1.5% (w/V) agarose gel after elec-
trophoresis and stained with RedSafe nucleic acid staining 
solution and was visualized using a UV trans-illuminator 
and detection system.

CaDHN3 mRNA expression level by reverse 
transcriptase-PCR

Gene-specific primers for the pepper dehydrin gene 
(CaDHN3) (forward primer 5` ​A​T​G​G​C​A​C​A​T​A​A​C​G​G​T​
A​C​T​A​G​C​C 3` (reverse primer 5` ​C​C​C​T​T​C​A​T​C​T​T​T​C​T​T​
C​A​T​A​G​C​A​T 3`) (Jing et al. 2016) were used for RT-PCR 
analysis of steady-state mRNA levels in pepper seeds that 
were used in this study under all treatments separately. A 
one-step reverse transcriptase-PCR (RT-PCR) reaction was 
performed using primer pairs specific for pepper dehydrin 
gene (CaDHN3) (Jing et al. 2016), SuperScript TM III one-
step RT-PCR system with platinum® Taq DNA polymerase 
according to the manufacturer’s instructions (Intron Bio-
technology, Korea) as the following: one cycle of reverse 
transcription reaction (45℃ 30 min− 1) and denaturation of 
RNA: cDNA hybrid (94℃ 5 min− 1) followed by three step 
cycling (denaturation (94 ͦ C 45  min− 1), annealing (56℃ 
45 s− 1), extension (72℃ 1 min− 1) for 35 cycles then final 
extension (72℃ 10 min− 1) for one cycle. RT-PCR ampli-
fication products were separated on 2% agarose gels and 
were stained with RedSafe nucleic acid staining solution. 
Transcript abundance of CaDHN3 (850 bp) was calculated 
according to AL-Quraan et al. (2010) as the following: the 
expression level of CaDHN3 in all treatments (GABA-
treated seeds, hydro-primed seeds and untreated seeds under 
all NaCl treatments) were determined by measuring the flu-
orescence of RT-PCR amplicon band (850 bp) using the Gel 
Documentation system and Image Analysis System (Alpha 
Innotech.CA, USA). The amount of fluorescence in a cDNA 
amplicon representing specific RNA in each sample was 
used as a measure of the level of expression. The level of 
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Treatment NaCl (mM) G% Seedling length (cm) Seedling fresh weight (gm) Seedling dry weight (gm)
0.5 mM GABA 0 98.33a 5.60a 0.42a 0.04a

25 95.00b 5.17b 0.34b 0.04b
50 90.00c 4.47c 0.27c 0.03c
75 86.67d 3.87d 0.25 cd 0.03d
100 85.00de 3.40e 0.20e 0.03e
200 80.00f 2.17f 0.10f 0.01f
P-value 0.0001 0.0001 0.0001 0.0001
r -0.923 -0.971 -0.953 -0.979

1 mM GABA 0 96.67a 6.57a 0.51a 0.05a
25 93.33a 5.40b 0.46b 0.05a
50 90.00ab 5.17bc 0.40c 0.05ab
75 86.67bc 4.53d 0.32d 0.04c
100 81.67d 2.93e 0.25e 0.03d
200 73.33e 1.18f 0.04f 0.01e
P-value 0.0001 0.0001 0.0001 0.0001
r -0.953 -0.968 -0.987 -0.987

1.5 mM GABA 0 96.67a 6.62a 0.51a 0.05a
25 95.00a 5.70b 0.47a 0.05a
50 93.33a 5.23bc 0.45ab 0.05b
75 88.33b 4.58d 0.39bc 0.04c
100 83.33c 3.96e 0.33d 0.04d
200 78.33d 1.82f 0.12e 0.02e
P-value 0.0001 0.0001 0.0001 0.0001
r -0.917 -0.983 -0.971 -0.971

2 mM GABA 0 98.33a 6.10a 0.52a 0.05a
25 91.67b 5.63a 0.48b 0.05b
50 90.00bc 4.90b 0.41c 0.04bc
75 88.33bcd 4.27c 0.38d 0.04d
100 81.67e 3.53d 0.33e 0.04e
200 70.00f 0.73e 0.05f 0.00f
P-value 0.0001 0.0001 0.0001 0.0001
r -0.951 -0.991 -0.992 -0.965

2.5 mM GABA 0 96.67a 7.04a 0.46a 0.05a
25 91.67b 6.28b 0.41b 0.05b
50 88.33bc 5.63bc 0.40bc 0.04bc
75 83.33d 4.80d 0.37 cd 0.04 cd
100 80.00de 3.47e 0.30e 0.03de
200 78.33ef 2.00f 0.12f 0.01f
P-value 0.0001 0.0001 0.0001 0.0001
r -0.850 -0.962 -0.978 -0.976

D. H2O 0 98.33a 5.47a 0.45a 0.05a
25 95.00a 5.00a 0.43a 0.05a
50 91.67ab 4.80a 0.40a 0.05a
75 86.67bc 4.50a 0.38a 0.04a
100 83.33 cd 2.72b 0.26b 0.03b
200 75.00e 0.66c 0.04c 0.01c
P-value 0.0001 0.0001 0.0001 0.0001
r -0.936 -0.937 -0.913 -0.913

Untreated 0 86.67a 5.60a 0.35a 0.06a
25 76.67b 4.80b 0.32a 0.05b
50 70.00bc 4.17c 0.31ab 0.05bc
75 61.67d 3.63d 0.28c 0.04 cd

Table 1  Germination percentage (G%), seedling length (cm), seedling fresh weight (gm), and seedling dry weight (gm) in pepper (Capsicum 
annum L.) after seven seeds treatments (0.5, 1.0, 1.5, 2.0, 2.5 mM GABA, d.H2O, and untreated seeds) supplemented with (0, 25, 50, 75, 100, 
and 200) mM of NaCl after 8 days after planting. Means followed by different letters are statistically different (P ≤ 0.05) by LSD, r = correlation 
coefficient
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stress negatively affects the growth performance of chufa 
(Cyperus esculentus L. var. Sativus Boeck) resulting in a 
significant decline in length of root and shoot and fresh and 
dry weights. A study on sees of rapeseed (Brassica napus L.) 
under NaCl stress showed a significant reduction in germina-
tion percentage, seedling length, and fresh and dry weights 
when NaCl treatments increased consistently (Zhang et al. 
2023). However, exogenous priming with GABA inhibited 
the negative impact of NaCl and accelerated germination 
index, seedling root length, and fresh and dry weights of 
rapeseed (Brassica napus L.) (Zhang et al. 2023). In the 
mung bean (Vigna radiate L.), exogenous GABA treatment 
increased salt tolerance by improving seedling growth and 
fresh weight (Ullah et al. 2023a).

Moreover, exogenous GABA significantly improved 
the root length, shoot length, and fresh and dry weight of 
maize (Zea mays L.) seedlings under various abiotic stresses 
(Wang et al. 2017). Priming rice (Oryza sativa L.) seeds 
with 0.5 mM GABA showed significant improvement in 
the mobilization of sugar and amino acids which in turn 
enhanced rice seedlings growth and weight under salt stress 
(Sheteiwy et al. 2019). In agreement with our data, lettuce 
(Lactuca sativa L.) seed germination and plant growth were 
significantly improved under saline conditions due to exog-
enous GABA treatments (Kalhor et al. 2018). The applica-
tion of exogenous GABA with different concentrations on 
sweet pepper (Capsicum annuum L.) seeds under drought 
stress significantly increased root and shoot length and fresh 
and dry weights (Iqbal et al. 2023). Our data indicated that 
GABA priming efficiently alleviated the effect of salt stress 
during pepper seed germination and significantly enhanced 
pepper seedlings growth under all NaCl treatments. Fur-
thermore, exogenous GABA treatment increased pepper 
seeds water absorption by adjusting the seed osmolarity, 
maintaining membrane integrity, increasing the turgor pres-
sure, preserving the water balance and metabolic stability 
in Capsicum annuum L. tissues, which in turn boosted the 
seedlings growth under salt stress.

Pepper seeds germination rate (GR) and mean time 
to germinate (MTG) in response to GABA priming

Germination rate (GR) and mean time to germinate (MTG) 
for pepper seeds were recorded 8 days after planting 
(Table 2). The effect of salt stress was recorded on pepper 

mM GABA showed high G% under all NaCl concentra-
tions even at 200 mM NaCl (80%) compared to untreated 
seeds (45%). For 1.0 mM GABA treatment, high G% was 
observed under low NaCl treatments (90–93%) and then 
G% gradually reduced with the increase in NaCl concentra-
tion (73% at 200 mM NaCl). Treatments with 1.5, 2, and 2.5 
mM GABA displayed similar results by enhancing the G% 
(80–98%) under all NaCl concentrations used in this study. 
Like GABA priming, hydro-primed seeds (H2O) showed 
high germination percentage under all NaCl concentrations 
(75–98%) compared to untreated seeds (45–86%).

Seedling lengths were significantly (P ≤ 0.05) reduced 
and negatively correlated (r = -0.937 to -0.991) by the 
increase of NaCl concentrations among all seeds treated 
with GABA, in addition to hydro-primed (H2O) and 
untreated seeds (Table 1). Under 0 mM NaCl, pepper seed-
lings showed an increase in seedling length (5.6 to 7.04 cm) 
gradually by increasing the concentrations of GABA treat-
ment (from 0.5 to 2.5 mM GABA) compared to other 
NaCl concentrations. Seedling length in hydro-primed and 
untreated seeds was decreased (5.6 to 0.87 cm) by increas-
ing NaCl concentrations. All GABA treatments signifi-
cantly (P ≤ 0.05) enhanced the growth of pepper seedlings 
under all NaCl treatments compared to hydro-primed and 
untreated seeds. Moreover, at 200 mM NaCl treatment, all 
GABA treatments except 2 mM GABA showed a signifi-
cant increase in seedling length compared to hydro-primed 
and untreated seeds. Seedling fresh and dry weights were 
significantly (P ≤ 0.05) increased in response to seed prim-
ing with GABA and distilled water compared to untreated 
seeds. All pepper seeds that were primed with GABA and 
distilled water had significantly (P ≤ 0.05) higher fresh 
weight compared to untreated seeds under all NaCl concen-
trations. Furthermore, seeds treated with 0.5 mM GABA 
showed a reduction in seedling dry weight compared to 
untreated seeds, while seeds treated with 1.0, 1.5, 2.0, 2.5 
mM GABA and hydro-priming showed slight enhancement 
in seedling dry weight among all NaCl concentrations com-
pared to untreated seeds (Table 1).

Seed germination and early seedling growth are impor-
tant stages for plant development which are affected by 
many environmental factors such as high temperature and 
salinity. Generally, high NaCl treatment inhibited both seed 
germination and seedling growth in various cultivated crops 
(Wang et al. 2018).  Ullah et al. (2023b) reported that salt 

Treatment NaCl (mM) G% Seedling length (cm) Seedling fresh weight (gm) Seedling dry weight (gm)
100 56.67de 2.57e 0.22d 0.04e
200 45.00f 0.87f 0.17e 0.02f
P-value 0.0001 0.0001 0.0001 0.0001
r -0.923 -0.978 -0.945 -0.977

Table 1  (continued) 
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Treatment NaCl (mM) Germination Rate (GR) Mean Time to Germinate (MTG)
0.5 mM GABA 0 6.02a 2.88a

25 5.65b 3.18a
50 5.44bc 3.25ab
75 5.39bcd 3.36abc
100 5.04e 3.76d
200 4.12f 4.67e
P-value 0.0001 0.0001
r -0.966 0.955

1 mM GABA 0 5.84a 3.14a
25 5.41a 3.46b
50 5.10ab 3.65bc
75 4.44c 3.87 cd
100 3.64d 4.16e
200 3.38de 5.40f
P-value 0.0001 0.0001
r -0.899 0.980

1.5 mM GABA 0 6.05a 3.07a
25 5.85a 3.26a
50 5.73a 3.48b
75 5.27b 3.58bc
100 4.94bc 3.82d
200 3.40d 4.71e
P-value 0.0001 0.0001
r -0.971 0.981

2 mM GABA 0 6.10a 3.14a
25 5.83a 3.39b
50 5.30b 3.54bc
75 4.85c 3.72 cd
100 4.37d 4.19e
200 2.36e 5.77f
P-value 0.0001 0.0001
r -0.992 0.977

2.5 mM GABA 0 5.52a 3.48a
25 5.06b 3.75b
50 4.79bc 3.79bc
75 4.75bcd 3.82bcd
100 4.55cde 3.86bcde
200 4.20ef 4.55f
P-value 0.0001 0.0001
r -0.850 0.919

D. H2O 0 5.32a 3.53a
25 5.05a 3.66a
50 4.89a 3.82ab
75 4.70ab 4.14c
100 4.46abc 4.36d
200 3.83d 4.80e
P-value 0.0001 0.0001
r -0.916 0.959

Untreated 0 4.11a 3.19a
25 3.81a 3.81b
50 3.20b 3.91bc
75 2.86c 4.11bcd
100 2.40d 4.22bcde

Table 2  Germination rate (GR) and mean time to germinate (MTG) in pepper (Capsicum annum L.) after seven seeds treatments (0.5, 1.0, 1.5, 2.0, 
2.5 mM GABA, d.H2O, and untreated seeds) supplemented with (0, 25, 50, 75, 100, and 200) mM of NaCl after 8 days post germination. Means 
followed by different letters are statistically different (P ≤ 0.05) by LSD, r = correlation coefficient
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Taken together, GABA treatments increased the germination 
capacity of pepper seeds to countercurrent the salt toxicity 
by reducing the accumulation of salt ions, and maintaining 
metabolic homeostasis to restore seedlings growth under 
salt stress.

Pepper seeds moisture content in response to GABA 
priming

Seed moisture content was measured directly after soaking 
seeds for 24 h with different concentrations of GABA (0.5, 
1.0, 1.5, 2.0, 2.5 mM) and hydro-priming treatment. The 
pepper seed moisture content ranged from 45.55 to 60.19% 
for all GABA treatments except in untreated seeds (9.48) 
(Table 3). Results showed a significant (P ≤ 0.05) difference 
in seed moisture content between all GABA-treated seeds, 
and hydro-primed seeds in comparison with untreated seeds 
(Fig. 1). GABA treatments significantly (P ≤ 0.05) increased 
the seed moisture content of pepper which in turn improved 
the capability of seeds to germinate and grow under NaCl 
treatments.

Various studies showed that NaCl caused an increase 
in both stem and root Na+ content which decreased water 
content and changed cell wall properties. Priming wheat 
(Triticum aestivum L.) seeds with GABA greatly allevi-
ated Na + increase and significantly upsurge water absorp-
tion (Wang et al. 2019; Khanna et al. 2021). Exogenous 
GABA treatment in maize (Zea mays L.) seedlings reduced 
the accumulation of substances that caused growth damage 
through significant enhancement of seed moisture content 

seeds by decreasing the GR with a negative correlation and 
increasing the MTG with a positive correlation under all 
NaCl treatments. Seeds treated with 0.5 mM GABA showed 
the highest GR and lower MTG compared to other treat-
ments under all NaCl concentrations. Consequently, seeds 
treated with GABA or hydro-primed seeds showed enhance-
ment in GR and MTG under all NaCl treatments compared 
to untreated seeds as shown in Table 2. GABA treatments 
has increased the germination capacity of pepper seeds 
under salt stress through increasing the activity of α- and 
β-amylases to promote starch metabolism for energy pro-
duction during seed germination (Cheng et al. 2018). Also, 
exogenous GABA treatment induced the production of 
endogenous GABA that performed osmo-regulatory func-
tion and maintained ion homoeostasis inside pepper seeds 
to boost water uptake under NaCl treatments (Hayat et al. 
2023). High concentrations of salt inhibited the activity of 
enzymes that contributed to seed germination and germina-
tion rate in cotton (Maryum et al. 2022). However, cotton 
(Gossypium hirsutum L.) seeds treated with GABA signifi-
cantly improved seeds GR and MTG under the same con-
centrations of NaCl used in this study (Dong et al. 2024).

Similar reports suggested that exogenous GABA treat-
ment had a positive effect on the germination rate of let-
tuce (Kalhor et al. 2018), citrus (Ziogas et al. 2017), and 
wheat (Suhel et al. 2023). Seed germination and growth 
of wheat (Triticum aestivum L.) seedlings was dramati-
cally delayed by high NaCl concentration, whereas wheat 
seeds treated with GABA were less affected by salinity and 
showed improvement in seeds germination rate and seed-
lings growth (Li et al. 2016b). Also, exogenous treatment of 
onion (Allium cepa L.) seeds with amino acids showed the 
highest germination rate compared with non-treated seeds 
(Abdelkader et al. 2023).

Pepper (Capsicum annuum L.) seeds growth and devel-
opment were significantly affected by heavy metals. In con-
trast, melatonin treatment significantly reduced these effects 
by promoting pepper seeds growth characteristics (Riz-
wan et al. 2024). In addition, exogenous treatment of pep-
per (Capsicum annuum L.) with sodium hydrogen sulfide 
reduced salt toxicity and enhanced growth rate in response 
to salt stress (Kaya et al. 2024). All these studies come in 
agreement with our findings which proved the effectiveness 
of exogenous GABA treatment in inducing salt tolerance of 
pepper seeds by increasing the germination rate and reduc-
ing the mean time to germinate under all NaCl treatments. 

Table 3  Seed moisture content of wheat seeds immediately after 
imposing treatments with 0.01, 0.05, 0.1, 0.3, 0.5% chitosan, d.H2O, 
untreated seeds, and 1% acetic acid, separately for 24 h at 25ºC and 
after drying the treated seeds in oven at 80˚ C for 72 h. means followed 
by different letters are statistically different (P ≤ 0.05) by LSD
Treatment Fresh weight 

(gm)
Dry mass (gm) Seed 

moisture 
content 
(%)

0.5 mM GABA 0.137a 0.055a 60.19a
1 mM GABA 0.135a 0.058b 57.01b
1.5 mM GABA 0.135a 0.058bc 57.14bc
2 mM GABA 0.134ab 0.054a 59.78a
2.5 mM GABA 0.135ab 0.058bd 56.83bcd
D.H2O 0.108c 0.059bde 45.55e
Untreated 0.055d 0.050f 9.48f
P-value 0.0001 0.0001 0.0001

Treatment NaCl (mM) Germination Rate (GR) Mean Time to Germinate (MTG)
200 2.02e 4.36cdef
P-value 0.0001 0.0001
r -0.917 0.692

Table 2  (continued) 
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after planting at different NaCl concentrations. Current data 
showed a significant (P ≤ 0.05) increase with positive corre-
lation between internal GABA, alanine, and glutamate lev-
els and NaCl concentration in all GABA priming treatments 
(Table 4). The highest internal GABA level was recorded on 
the 4th day of germination for seeds treated with 0.5 mM 
GABA. Seeds treated with 0.5, 1.0, and 1.5 mM GABA 
concentrations had a higher accumulation of GABA con-
tent in all days recorded, while 2.0 and 2.5 mM GABA and 
hydro-primed seed had lower accumulation of GABA but 
it was relatively high compared to untreated seeds. For ala-
nine; 0.5, 1.0, and 1.5 mM GABA-primed seeds had the 
highest level, and the level of alanine was increased with 
days among all NaCl concentrations. The alanine level in 
2.0 and 2.5 mM GABA and hydro-primed seed was lower 
but still high compared to untreated seeds under all NaCl 
treatments. The same trend was observed in glutamate, 
where glutamate content was increased on the 1st, 4th, and 
8th days of germination in all GABA-primed seeds under all 
NaCl treatments, respectively (Table 4).

The GABA shunt pathway had a critical role in connect-
ing amino acid metabolism with other organic acid inter-
mediates. Also, it serves as a carbon and nitrogen source to 
supply the carbon: nitrogen (C: N) deficit and maintain met-
abolic stability in plants under abiotic conditions (Batushan-
sky et al. 2014; Che-Othman et al. 2020). Under salt stress, 
exogenous GABA priming successfully enhanced pepper 
seeds to accumulate GABA internally to supply the meta-
bolic intermediate and nourish the citric acid cycle during 
seed germination (AL-Quraan et al. 2023; Dabravolski 
and Isayenkov 2023). Also, the elevation of GABA level 

and water avilability, which consequently improved plant 
fresh and dry mass under NaCl stress (Wang et al. 2017).

Moreover, GABA treatment significantly improved the 
relative water content of pepper (Capsicum annuum L.) 
seedlings and significantly enhanced drought stress toler-
ance (Iqbal et al. 2023). Soaking wheat (Triticum durum 
L.) seeds with different concentrations of chitosan exhibited 
significant elevation in seed moisture content, and fresh and 
dry weights compared to untreated seeds (AL-Quraan et al. 
2023). Similarity, Alkahtani et al. (2020) study reported that 
pepper (Capsicum annuum L.) seeds primed with chitosan 
increased relative water uptake and seed moisture content 
under salt stress. Likewise, exogenous GABA effectively 
improved salt stress tolerance of Malus hupehensis by 
promoting seedlings’ growth and development (seedling 
length, biomass (fresh and dry weights), and water content 
of seeds) (Li et al. 2020). Taken together, our data indicated 
that GABA significantly aided pepper seeds to absorb more 
water even when return into their original moisture (data not 
shown) and maintained seed moisture content compared to 
untreated seeds (Table 3; Fig. 1).

The effect of GABA priming on GABA shunt 
metabolism under NaCl stress in pepper seedlings

The GABA shunt pathway is one of the critical metabolic 
pathways in plants that activated by abiotic stress such 
as salt stress (Hayat et al. 2023). In this study, the endog-
enous level of GABA shunt metabolites (GABA, Alanine, 
and Glutamate) in treated and untreated pepper (Capsicum 
annuum L.) seeds were measured on the 1st, 4th, and 8th day 

Fig. 1  Seed moisture content of 
pepper (Capsicum annum L.) 
seeds immediately after imposing 
treatments with 0.5, 1.0, 1.5, 
2.0, 2.5 mM GABA, d.H2O, and 
untreated seeds separately for 
24 h at 25ºC and after drying 
the treated seeds in oven at 80˚C 
for 72 h. Columns with different 
letters are statistically different 
(P ≤ 0.05) by LSD
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GABA Alanine Glutamate
Treatment NaCl (mM) Day 1 Day 4 Day 8 Day 1 Day 4 Day 8 Day 1 Day 4 Day 8
0.5 mM GABA 0 275.78a 280.61a 260.38a 3.37a 3.07a 2.96a 1.99a 2.38a 2.71a

25 286.82a 299.46a 300.15b 6.91a 4.13a 3.15a 2.17b 2.50b 2.89a
50 299.23a 307.51ab 309.81bc 9.30ab 5.91b 3.39a 2.44c 2.59c 3.01a
75 313.94a 317.16ac 319.23bcd 10.46abc 9.57c 3.58a 2.52 cd 2.68d 3.07ab
100 330.04a 327.74bd 330.73cde 17.67d 11.55d 4.07ab 2.57cde 2.76e 3.24abc
200 470.50ab 374.86e 353.94ef 30.80e 14.81e 6.38c 2.76f 2.89f 3.65d
P-value 0.1500 0.0001 0.0010 0.0001 0.0001 0.0001 0.0001 0.0001 0.0020
r 0.653 0.924 0.818 0.958 0.945 0.931 0.879 0.938 0.867

1 mM GABA 0 247.28a 240.38a 188.43a 3.57a 3.59a 3.63a 2.47a 2.49a 2.82a
25 262.68a 244.75a 191.88a 4.03b 4.26b 3.99b 2.60a 2.70b 3.00b
50 275.78a 254.17a 205.67a 4.23bc 4.85c 4.08bc 2.73ab 2.86c 3.09bc
75 290.27ab 263.83a 229.81a 4.39bcd 5.15 cd 4.46d 2.79bc 2.99d 3.22 cd
100 306.82abc 279.23ab 267.97a 4.88e 5.26cde 4.74e 3.04d 3.05de 3.38e
200 381.07d 311.42c 548.43ab 5.55f 5.71ef 5.16f 3.32e 3.24f 3.65f
P-value 0.0001 0.0020 0.1350 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
r 0.906 0.872 0.647 0.939 0.854 0.953 0.944 0.909 0.950

1.5 mM GABA 0 141.53a 147.74a 181.30a 2.78a 2.70a 2.89a 3.16a 3.22a 3.32a
25 146.59b 160.84b 190.27a 2.97b 2.88b 2.99a 3.35b 3.40b 3.43b
50 150.73c 166.36bc 196.70a 3.11bc 2.98bc 3.11ab 3.47c 3.46bc 3.51c
75 153.49 cd 167.97 cd 208.20a 3.23 cd 3.06 cd 3.21bc 3.53 cd 3.52 cd 3.57 cd
100 156.47de 171.65cde 214.40a 3.45e 3.15de 3.40d 3.64de 3.57de 3.62de
200 159.92ef 179.69f 346.59b 3.69f 3.37f 3.66e 3.81f 3.75f 3.73f
P-value 0.0001 0.0001 0.0060 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
r 0.894 0.870 0.797 0.932 0.943 0.935 0.919 0.913 0.922

2 mM GABA 0 73.71a 73.71a 72.11a 1.19a 1.20a 1.18a 1.24a 1.24a 1.18a
25 76.01a 76.70a 74.17a 1.29a 1.29a 1.31a 1.27a 1.31a 1.24a
50 77.85a 151.65b 122.91b 1.32a 1.97b 3.26b 1.31a 2.01b 2.06b
75 79.69a 170.73bc 140.15c 1.35ab 2.04bc 3.66bc 1.33a 2.09bc 2.20c
100 82.22ab 197.16 cd 156.24d 1.39abc 2.16d 4.08bcd 1.36a 2.18 cd 2.26 cd
200 89.35bc 307.74e 171.19e 2.26d 2.41e 6.22e 1.56b 2.50e 2.43e
P-value 0.0170 0.0001 0.0001 0.0001 0.0001 0.0001 0.0040 0.0001 0.0001
r 0.802 0.958 0.883 0.920 0.871 0.917 0.843 0.880 0.816

2.5 mM GABA 0 66.59a 67.51a 65.21a 1.16a 1.16a 1.13a 1.17a 1.17a 1.13a
25 70.04b 73.71a 68.20a 1.22b 1.29a 1.17a 1.23a 1.26a 1.17a
50 73.49c 143.14b 125.67b 1.27c 2.55b 1.89b 1.25ab 1.92b 1.81b
75 76.47 cd 152.57bc 133.94bc 1.30d 2.70bc 1.99bc 1.30abc 2.32c 1.98c
100 78.77de 248.20d 148.89d 1.32de 2.84 cd 2.29 cd 1.33bcd 2.42 cd 2.09 cd
200 81.76ef 394.86e 165.67e 1.35f 3.12e 2.82e 1.41e 2.88e 2.53e
P-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0010 0.0001 0.0001
r 0.894 0.959 0.870 0.865 0.827 0.906 0.872 0.899 0.921

D. H2O 0 68.89a 67.51a 65.67a 1.25a 1.24a 1.21a 1.23a 1.23a 1.21a
25 71.65b 75.55b 68.89a 1.28a 1.30a 1.24a 1.26a 1.29a 1.29a
50 74.63c 185.44c 177.62b 1.33b 3.83b 4.24b 1.30ab 2.16b 2.28b
75 77.85d 196.47d 190.27c 1.35bc 4.36c 5.19bc 1.33bc 2.45c 2.39bc
100 78.77de 200.61de 199.00d 1.38 cd 5.08d 6.90d 1.36 cd 2.53 cd 2.50 cd
200 80.15ef 209.35f 208.89e 1.46e 6.54e 10.13de 1.44e 2.75e 2.89e
P-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
r 0.857 0.760 0.779 0.943 0.921 0.854 0.939 0.844 0.869

Untreated 0 0.11a 0.11a 0.11a 0.11a 0.11a 0.10a 0.11a 0.11a 0.10a
25 0.12a 0.12a 0.11a 0.11a 0.12a 0.11a 0.11a 0.12a 0.11a
50 0.12ab 0.26b 0.27b 0.12b 0.31b 0.37b 0.12ab 0.22b 0.22b

Table 4  Level of GABA shunt metabolites GABA (γ-Aminobutyric acid), Ala (alanine), and glu (glutamate) in pepper (Capsicum annum L.) seeds 
exposed to seven treatments (0.5, 1.0, 1.5, 2.0, 2.5 mM GABA, d.H2O, and untreated seeds) supplemented with (0, 25, 50, 75, 100, and 200) mM 
of NaCl. Metabolite levels were calculated as nmol/mg FW. For each day under different NaCl treatments, means followed by different letters are 
statistically different (P ≤ 0.05) by LSD, r = correlation coefficient

1 3



Plant Growth Regulation

played positive roles in reactive oxygen species scavenging, 
energy conversion, soluble sugar accumulation, osmotic 
adjustment, and ion homeostasis in GABA-primed pepper 
seeds in response to NaCl treatments.

Oxidative damage in pepper seedlings from GABA 
primed seeds under NaCl stress

Malondialdehyde (MDA) is an organic compound that 
is measured to indicate the level of lipid peroxidation in 
response to abiotic stresses. The content of MDA in GABA-
treated, hydroprimed and untreated pepper (Capsicum ann-
uum L.) seeds was recorded at the 1st, 4th, and 8th days after 
germination at different NaCl concentrations (Table 5). Cur-
rent results showed a significant (P ≤ 0.5) increase in MDA 
content with a positive correlation to increasing NaCl con-
centrations. Pepper seeds treated with 2.0 mM GABA had 
the lowest amount of MDA with a trend of small elevation 
on 4th and 8th days of germination. All other GABA-treated 
and hydro-primed seeds showed a significant reduction in 
MDA content compared to untreated seeds under all NaCl 
concentrations. The untreated seeds had the highest MDA 
content, especially on day 4th of germination at 100 and 
200 mM NaCl treatments (Table 5). These results indicated 
that priming pepper seeds with 0.5, 1.0, and 1.5 mM GABA 
under salt stress significantly (P ≤ 0.5) reduced the MDA 
content by activating ROS scavenging defense mechanisms 
to mitigate the oxidative damage caused by NaCl treatments 
during seed germination.

Salt stress increased ROS and oxidative damage of cell 
membranes which leads to increased MDA content under 
stress in plants (AL-Quraan et al. 2023). Exogenous appli-
cation of GABA reduced MDA level under salt stress in 
chufa (Cyperus esculentus L. var. Sativus Boeck) seed-
lings (Ullah et al. 2023b). The accumulation of endogenous 
GABA as a result of exogenous GABA treatment under abi-
otic stress to countercurrent the oxidative damage on inter-
nal metabolism had been reported in various plants (Qi et 
al. 2019). Under heat stress, application of GABA decreased 
the relative conductivity and reduced accumulation of MDA 
amount in wheat (Triticum aestivum L.) seedlings (Wang et 
al. 2022). Foliar spray with GABA on carrot (Daucus carota 
L.) grown under drought stress gave similar results to our 

internally inhibited the accumulation of ROS, provided oxi-
dative protection, maintained the C: N metabolic stability 
and alleviated the negative impact of salt stress during pep-
per seed germination.

Many previous studies showed that exogenous GABA 
induced the accumulation of endogenous GABA and glu-
tamate contents and improved plant tolerance to stress 
(Ramesh et al. 2018; Li et al. 2020). Under salt stress, supple-
mented maize seedlings with exogenous GABA increased 
antioxidant enzymes activity, improved photosynthetic per-
formance, enhanced sugar accumulation, activated nitrogen 
metabolism and improved the C: N balance (Wang et al. 
2023). Under heat and salinity stresses, an increased level of 
internal GABA was observed in wheat (Triticum aestivum 
L.) seeds primed with exogenous GABA (Yu et al. 2023). 
Likewise, exogenous treatment of apple (Malus domestica, 
c.v. Cripps Pink) fruit with GABA caused an increase in 
endogenous GABA and glutamate contents under drought 
stress (Cheng et al. 2023). Heat stress decreased GABA 
content in kiwifruits (Actinidia spp.), while exogenous 
GABA application elevated GABA content up to 3.36 times 
higher than non-treated fruits. However, glutamate level did 
not change under normal conditions, but it was significantly 
increased after GABA application in response to heat stress 
(Huo et al. 2023). Under cold stress, growth and yield were 
inhibited in various plants (Liu et al. 2020). In tea (Camel-
lia sinensis (L.) O. Kuntze) seedlings, exogenous applica-
tion of GABA significantly improved metabolic stability 
by increasing endogenous GABA content under cold stress 
(Zhu et al. 2019). Similarly, exogenous 5-aminolevulinic 
acid (ALA) treatment increased GABA, alanine, and glu-
tamate levels and significantly improved anti-oxidation and 
cell expansion of tomato (Solanum lycopersicum) seedlings 
under cold stress (Liu et al. 2020). In agreement with previ-
ous studies, our data demonstrated that exogenous GABA 
treatments enhanced elevation in endogenous GABA, 
alanine, and glutamate levels to increase the capability of 
pepper seeds to stabilize C: N metabolism during seed ger-
mination under salt stress. Furthermore, GABA-regulated 
intermediate metabolites participated in tricarboxylic acid 
cycle, GABA shunt, antioxidant defense system, carbo-
hydrates and lipid metabolism, and nitrogen assimilation 
(Dabravolski and Isayenkov 2023; Dong et al. 2024) which 

GABA Alanine Glutamate
Treatment NaCl (mM) Day 1 Day 4 Day 8 Day 1 Day 4 Day 8 Day 1 Day 4 Day 8

75 0.12bc 0.27c 0.28c 0.12c 0.33c 0.40c 0.12abc 0.25c 0.24bc
100 0.13 cd 0.29d 0.29 cd 0.12 cd 0.36d 0.41d 0.12abcd 0.27d 0.27d
200 0.13e 0.30de 0.30de 0.13e 0.37e 0.43e 0.13de 0.30e 0.33e
P-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.004 0.0001 0.0001
r 0.923 0.768 0.741 0.889 0.796 0.772 0.829 0.858 0.905

Table 4  (continued) 
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MDA (nmol/mg FW)
Treatment NaCl (mM) Day 1 Day 4 Day 8
0.5 mM GABA 0 0.04a 0.05a 0.04a

25 0.04b 0.05a 0.05a
50 0.04bc 0.18b 0.35b
75 0.05bcd 0.24c 0.40bc
100 0.05e 0.28d 0.45bcd
200 0.05f 0.38e 0.63e
P-value 0.0001 0.0001 0.0001
r 0.964 0.933 0.875

1 mM GABA 0 0.04a 0.05a 0.04a
25 0.04a 0.05a 0.05a
50 0.04ab 0.16b 0.20b
75 0.05c 0.19bc 0.23bc
100 0.05d 0.25d 0.26 cd
200 0.05e 0.35e 0.33e
P-value 0.0001 0.0001 0.0001
r 0.954 0.945 0.893

1.5 mM GABA 0 0.04a 0.04a 0.04a
25 0.04a 0.05a 0.05a
50 0.04a 0.13b 0.19b
75 0.04b 0.17bc 0.21bc
100 0.05abc 0.20 cd 0.25 cd
200 0.05d 0.34e 0.32e
P-value 0.0001 0.0001 0.0001
r 0.927 0.940 0.893

2 mM GABA 0 0.04a 0.04a 0.04a
25 0.04b 0.04a 0.04a
50 0.04bc 0.17b 0.17b
75 0.04d 0.20bc 0.27c
100 0.05e 0.23d 0.29 cd
200 0.05f 0.29e 0.33e
P-value 0.0001 0.0001 0.0001
r 0.973 0.911 0.865

2.5 mM GABA 0 0.04a 0.04a 0.04a
25 0.04a 0.04a 0.04a
50 0.04a 0.18ab 0.19b
75 0.04a 0.25bc 0.24bc
100 0.04ab 0.29bcd 0.32d
200 0.05c 0.62e 0.44e
P-value 0.0020 0.0001 0.0001
r 0.856 0.930 0.932

D. H2O 0 0.04a 0.04a 0.04a
25 0.04b 0.04a 0.04a
50 0.04c 0.20b 0.17b
75 0.04 cd 0.28c 0.28c
100 0.04de 0.31 cd 0.36 cd
200 0.04ef 0.41e 0.58e
P-value 0.0001 0.0001 0.0001
r 0.809 0.907 0.957

Untreated 0 0.42a 0.42a 0.42a
25 0.42a 0.46a 0.43a
50 0.43a 1.71b 1.25b
75 0.44a 2.45c 1.76c

Table 5  Level of Malondialdehyde (MDA) in pepper (Capsicum annum L.) seeds exposed to seven treatments (0.5, 1.0, 1.5, 2.0, 2.5 mM GABA, 
d.H2O, and untreated seeds) supplemented with (0, 25, 50, 75, 100, and 200) mM of NaCl. MDA levels were calculated as nmol/mg FW. For each 
day under different NaCl treatments, means followed by different letters are statistically different (P ≤ 0.05) by LSD, r = correlation coefficient
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The effect of GABA on CaDHN3 mRNA transcript 
level in response to NaCl stress in pepper seedlings

The expression of dehydrins is usually considered as a 
significant marker for abiotic stress tolerance in various 
plants (Clarke et al. 2015). Expression of pepper (Capsicum 
annuum L.) dehydrin gene (CaDHN3) mRNA transcript of 
GABA-primed pepper seeds in response to different con-
centrations of NaCl after 8 days of germination was deter-
mined (Table 6; Fig. 2). Data showed a significant increase 
(P ≤ 0.05) in the level of CaDHN3 mRNA transcript with 
the increase of NaCl concentrations under all GABA treat-
ments. Pepper seeds treated with 0.5 mM GABA showed 
an upsurge in CaDHN3 transcription with the increase in 
NaCl concentration compared to other GABA treatments 
and untreated seeds. Also, the expression of CaDHN3 in 
seeds treated with 1.0 and 2.5 mM GABA was significantly 
elevated with the increase in NaCl concentration compared 
to untreated seeds. On the other hand, the expression of 
CaDHN3 in seeds treated with 1.5 and 2 mM GABA was 
lower than that in untreated seeds. Hydro-primed seeds 
showed lower CaDHN3 transcription level compared to 
untreated seeds under all NaCl concentrations (Table  6; 
Fig. 2). The elevation in CaDHN3 transcription in GABA-
treated pepper seeds might be connected with the diverse 
protective effects of dehydrin during the later stages of seed 
embryogenesis and development to prevent electrolyte leak-
age and lipid peroxidation, stabilize cell membranes and 
cellular molecules, maintain enzyme function and prevent 
dehydration (Zhou et al. 2021; Cheng et al. 2018) that even-
tually promoted seed germination and seedlings growth of 
pepper in response to salt stress.

study, where GABA enhanced tolerance to drought stress by 
increasing the antioxidant enzymes activities and decreased 
ROS and MDA contents (Bashir et al. 2021).

Moreover, GABA treatment significantly reduced ROS 
and MDA contents that resulted from chilling in cucumber 
(Cucumis sativus L.) (Malekzadeh et al. 2017), cold stress 
in Banana (Musa acuminata) fruits (Wang et al. 2016), and 
drought stress in pepper (Capsicum annuum L.) seedlings 
(Iqbal et al. 2023) to boost plant tolerance and inhibit the 
stress negative effect on growth and yield production. Gol-
nari et al. (2021) study showed higher membrane stability 
and lower H2O2 and MDA contents when used GABA as a 
priming agent in strawberry (Fragaria × ananassa Duch.) 
compared with untreated plants. Furthermore, AL-Quraan 
et al. (2023) showed that treated durum wheat (Triticum 
durum L.) seeds with chitosan reduced MDA content on 
1st, 4th and 8th days of germination under different concen-
trations of NaCl compared to untreated seeds, which indi-
cated that seeds priming with bio-activators significantly 
enhanced ROS scavenging against salt stress. Our data 
come in agreement with all previous studies that supported 
the fact that cellular damage induced by NaCl treatments 
is controlled by exogenous GABA application as shown by 
lower MDA content in GABA primed seeds compared to 
untreated seeds during pepper seeds germination. GABA 
treatments significantly reduced the oxidative damage and 
the ROS production by increasing the activity of antioxidant 
enzymes to maintain membrane integrity and reduce meta-
bolic disruption (Shala et al. 2024) which in turn increased 
the pepper seeds tolerance to salt stress.

Table 6  Log2 fold expression of CaDHN3 in pepper (Capsicum annum L.) seeds exposed to seven treatments (0.5, 1.0, 1.5, 2.0, 2.5 mM GABA, 
d.H2O, and untreated seeds) supplemented with (0, 25, 50, 75, 100, and 200) mM of NaCl. For each seed treatment under different NaCl treat-
ments, means followed by different letters are statistically different (P ≤ 0.05) by LSD

CaDHN3Log2 Fold Expression
NaCl (mM) 0.5 mM GABA 1 mM GABA 1.5 mM GABA 2 mM GABA 2.5 mM GABA D.H2O Untreated
0 0.121a 0.099a 0.146a 0.053a 0.221a 0.027a 0.071a
25 0.315a 0.341a 0.205a 0.478b 0.368a 0.079a 0.163a
50 0.478a 0.502a 0.334ab 0.576bc 0.635ab 0.209ab 0.374a
75 0.844ab 0.675ab 0.413bc 0.679 cd 0.958bc 0.305bc 0.546ab
100 2.322c 0.847abc 0.717d 0.875e 1.194 cd 0.539d 0.793bc
200 2.845d 2.039d 0.957e 1.472f 2.180e 1.191e 1.570d
P-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MDA (nmol/mg FW)
Treatment NaCl (mM) Day 1 Day 4 Day 8

100 0.46ab 3.31d 2.10d
200 0.52c 4.36e 2.62e
P-value 0.0001 0.0001 0.0001
r 0.906 0.942 0.917

Table 5  (continued) 
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genes enhanced tolerance to salt and drought stresses and 
improved the growth rate of Arabidopsis thaliana seedlings 
exposed to 100 mM NaCl (Lv et al. 2018). Furthermore, 
soaking white clover (Trifolium repens) seeds with differ-
ent concentrations of GABA significantly exhibited higher 
DHNs (SK1, Y2K, Y2SK, and dehydrin b) genes expres-
sion levels (using a real-time quantitative polymerase chain 
reaction (qRT-PCR) than both seeds treated with water and 
untreated seeds under the same NaCl treatments (Cheng et 
al. 2018).

In pepper, the overexpression of CaDHN2 enhanced 
drought tolerance by increasing the antioxidant enzymes 
activities, and lowering ROS content (Li et al. 2023). In the 
current study, GABA-treated pepper (Capsicum annuum L.) 

Dehydrins (DHNs) are the most abundant proteins in 
seeds that used in the later stage of embryonic development 
and also accumulated in plants under various abiotic stresses 
including high or low temperature, dehydration, and salinity 
(Graether and Boddington 2014). During the late stage of 
seed germination, the accumulation of DHNs is associated 
with several vital functions such as ROS scavenging, sus-
taining flow-ability of cell sap, and stabilizing structure and 
function of proteins to countercurrent the impact of environ-
mental stresses (Allagulova et al. 2003; Hundertmark and 
Hincha 2008). Studies showed that overexpression of dehy-
drins (DHNs) in crops and ornamental plants significantly 
enhanced tolerance to cold, drought, and salt stress (Sun et 
al. 2021; AL-Quraan et al. 2022). Overexpression of DHNs 

Fig. 2  Log2 fold expression of 
CaDHN3 in in pepper (Capsi-
cum annum L.) seeds exposed to 
seven treatments (0.5, 1.0, 1.5, 
2.0, 2.5 mM GABA, d.H2O, and 
untreated seeds) supplemented 
with (0, 25, 50, 75, 100, and 200) 
mM of NaCl. For each seeds 
treatment under different NaCl 
treatments, Means followed by 
different letters are statistically 
different (P ≤ 0.05) by LSD
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GABA treatments and hydro-primed pepper seeds when 
compared to untreated seeds under all NaCl concentrations. 
Priming pepper seeds with GABA protected cell mem-
branes and enhanced ROS scavenging abilities under salt 
stress. The level of pepper dehydrin gene (CaDHN3) was 
significantly increased with the increase of NaCl concentra-
tions under all GABA treatments. The significant elevation 
in CaDHN3 transcription in GABA-treated pepper seeds 
might be connected with the important role of dehydrin dur-
ing the later stages of seed embryogenesis and development 
to prevent electrolyte leakage and lipid peroxidation, sta-
bilize cellular molecules, maintain metabolic stability and 
enzymes function and prevent dehydration during seeds 
germination in response to salt stress. Our data suggested 
that the maintenance of higher CaDHN3 gene expression 
is significantly important to improve salt stress tolerance in 
pepper during seeds germination to boost growth and main-
tain metabolic stability regulated by GABA. Collectively, 
the current study provided significant evidence that priming 
Capsicum annuum L. seeds with GABA could successfully 
reduce salinity-induced adverse effect on seed germination, 
seedlings growth and internal metabolism. Further research 
should be directed toward investigating the effect of GABA 
treatment on nutritional composition of pepper and the pro-
duction of valuable phytochemicals.
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