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Abstract
Base on atmosphere CO2 concentration increases and Cd pollution stress, the response mechanism of rice to environmental 
change was studied. To explore the changes of endogenous hormones and organic acids in rice roots under high CO2 and Cd 
stress, which provide the theoretical basis for future rice production under the double environmental impacts of atmospheric 
CO2 changes and Cd stress. Rice seedlings (Oryza sativa L., “Beijing No. 2”) were treated from two-leaf stage, with two CO2 
concentrations (400 ± 20 μmol/mol and 800 ± 20 μmol/mol, controlled by an artificial climate chamber) and/or three CdCl2 
concentrations (0, 50, 150 μmol/L) for 7 days. The growth parameters of rice seedlings were measured. The root endogenous 
hormones and organic acids contents were determined by high-performance liquid chromatography (HPLC). Results:(1) 
Increased CO2 concentration promoted the accumulation of aboveground dry weight by 45.6%. The IAA (Indole-3-acetic 
acid), GA3 (Gibberellins A3) and ZT (Zeatin) contents increased by 15.7%, 1.6% and 26.7%. Citric and fumaric acid con-
tents in roots increased11.7 and 19.8 fold, malic acid secreted from roots decreased by 23.4%. (2) The growth was inhibited 
under Cd stress alone, including the fresh weight and dry weight of the aboveground part decreased by 48.5% and 15.4%, 
respectively. The IAA, GA3, ZT, ABA (Abscisic acid), SA (Salicylic acid) and JA (Jasmonic acid) contents increased in 
roots. The large accumulation of malic acid, lactic acid and citric acid under Cd stress. Tartaric acid content increased 87.5% 
in roots. (3) Compared with Cd stress, under high CO2 and Cd stress, IAA, ZT and GA3 contents and endogenous hormones 
ratios significantly increased, and root length and biomass of rice increased (29.9%, 34.1% under high CO2 concentration 
and heavy Cd stress). The total organic acids secretions decreased. In conclusion, Cd stress inhibited the rice growth, the 
more produced (such as SA, JA and ABA) and the secreted (as Cd chelation agents) by roots were involved in the defense 
mechanisms and produced a detoxification mechanism; High CO2 promoted the root growth and resistance to Cd stress by 
changing hormones and organic acids contents.
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Introduction

Atmospheric CO2 concentrations have reached an annual 
average of 410 μmol/mol from 2011 to 2019 and are pro-
jected to reach 570 μmol/mol by the middle of the twenty-
first century (IPCC 2021; Uprety et al. 2010). As an essential 

raw material for photosynthesis, increasing CO2 concentra-
tion will promote plant photosynthesis and increase the con-
tents of carbon, nitrogen, and starch in leaves (Lamichaney 
et al. 2021; Quirk et al. 2019), and root biomass can also 
be significantly increased (Madhu and Hatfield 2013). Ele-
vated CO2 concentration also can significantly increase IAA 
(Indole-3-acetic acid) content in tomato roots, activate cor-
responding enzymes, and promote root growth, IAA may 
stimulate ET (Ethylene) synthesis, and the two can jointly 
regulate the elongation of root hair (Wang et al. 2009). The 
presence of organic acids, especially those intermediates of 
the tricarboxylic acid cycle, in all plants is involved in some 
functions in cellular metabolism (Medeiros et al. 2021). 
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These results indicate that high CO2 concentration can pro-
mote crop growth and development by regulating root secre-
tions and endogenous hormones.

Heavy metals pollution is a widely concerned environ-
mental problem, which is mainly discharged into the air, soil 
and water through metals mining and fossil fuel burning. 
Cadmium (Cd) is a typical heavy metal pollutant. Cd toxic-
ity may result in a disturbance of the uptake and transloca-
tion of mineral nutrients and plant metabolism and inhibit 
plant growth and development (Qin et al. 2020; Nahakpam 
and Shah 2011). Elevated rhizosphere Cd concentrations 
impede plant morphological, physiological, and biochemi-
cal processes and alter signal transduction pathways (such as 
antioxidant systems, photosynthesis, and hormonal systems) 
(Farhat et al. 2022). It was found that the low molecular 
weight secretions of roots in different rice varieties could 
affect Cd uptake (Liu et al. 2007). The secretion of organic 
acids can effectively alleviate Cd toxicity (Xie et al. 2013). 
Malic acid and citric acid, as the root exudates and the most 
reported organic ligands, play an important role in plant 
defense against metal contamination (Pinto et al. 2008). 
Plant endogenous hormones also play a key role in heavy 
metal stress response. It is suggested that plant hormones 
are involved in the early stress response and that Cd stress 
can induce ABA (Abscisic acid) accumulation in roots of 
Phragmites australis (Cav.), since the enzymatic activity is 
induced under stress conditions through an ABA mediated 
pathway (Fediu et al. 2005). Through the regulation of root 
secretions and endogenous hormones, plants can reduce 
the damage caused by heavy metal stress and enhance their 
adaptability to environmental stress, thus ensuring their 
growth and survival. An in-depth understanding of these 
mechanisms is important for improving plant tolerance to 
heavy metal pollution.

It is generally believed that high CO2 can affect the resist-
ance mechanism of plants to heavy metal stress and enhance 
their resistance to heavy metal stress and adaptation ability. 
The previous studies have found that a high concentration 
of CO2 could significantly increase IAA, ZT (Zeatin) and 
GA3 (Gibberellins A3) contents, and reduce the oxalic acid 
and acetic malic acid contents (Qi et al. 2021), which can 
also increase the ratios of “promoting-hormone/ABA” in 
rice leaves under Pb stress and alleviate Pb harm in rice 
leaves (Wang et al. 2022). Membrane damage, antioxidant 
responses, and extensive metabolomic changes in rice leaves 
under high CO2 and Pb stress were also focused (Wang 
et al. 2023). All the previous studies focused on leaf tissue 
of rice. The growth of below-ground part or above-ground 
part, which is more sensitive to the complex environment 
(high CO2 concentration and/or Cd stress)? The changes of 
endogenous hormones and organic acids in rice roots have 
not been fully studied. This study hypothesizes that high 
CO2 concentrations can mitigate Cd damage by regulating 

root endogenous hormones and organic acids contents (root 
and root secretion), which regulate growth and defense. The 
response mechanism of rice seedling roots under increased 
CO2 concentration and/or Cd stress was discussed. The pre-
sent study aims to provide a theoretical basis for rice growth 
and cultivation in future environments.

Materials and methods

Experimental design

High-quality rice seeds were selected and soaked in a beaker, 
and put in the artificial climate box to avoid light (28℃, 
24 h). Then they were spread evenly on the wet filter paper 
in a tray to accelerate germination for 36 h. The seedlings 
were spread evenly and flatly on a yarn net which covered 
the plastic beakers (total of 18) filled with Hoagland nutri-
ent solution (contains Ca(NO3)2, KNO3, MgSO4, KH2PO4, 
Na2-EDTA, FeSO4, H3BO3, MnSO4,CuSO4, ZnSO4, 
H2MoO4), and cultured in the artificial climate chamber 
(relative humidity 80%; light 16 h, darkness 8 h; light inten-
sity 3000 lx; day temperature 28℃, night temperature 26℃), 
Hoagland nutrient solution was added regularly every day 
until double leaf stage of rice seedlings. Nine beakers of 
rice seedlings (under 400 ± 20 μmol/mol CO2 concentra-
tion treatment) were randomly selected as the first module, 
while the other nine beakers (under 800 ± 20 μmol/mol 
CO2concentration treatment) were selected as the second 
module. Beakers of each module were divided into three 
groups, random three beakers a group with three different 
CdCl2 concentrations (0, 50, 150 μmol/L) respectively. The 
total 6 treatments were named in Table 1. CO2 concentration 
was regulated and controlled by the artificial climate cham-
ber. After7 days, the growth parameters of rice seedlings 
were measured, and the hormones contents in rice roots and 
the organic acids contents in and secreted from rice roots 
were determined by high-performance liquid chromatogra-
phy (Fig. 1).

Table 1   Groups of treatments

Treatments CO2 concentra-
tion (μmol/mol)

Cd con-
centration 
(μmol/L)

AC (Atmospheric CO2) 400 ± 20 0
EC (Elevated CO2) 800 ± 20 0
AC + L (Light Cd stress) 400 ± 20 50
AC + H (Heavy Cd stress) 400 ± 20 150
EC + L (Elevated CO2 + Light Cd 

stress)
800 ± 20 50

EC + H (Elevated CO2 + Heavy Cd 
stress)

800 ± 20 150
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Measure of the growth parameters

Shoot length and Root length: The shoot length and taproot 
length of rice seedlings were accurately measured with a scale.

Fresh weight: The rice seedlings were divided into 
two parts from the base of the stem as the parts of above-
ground and below-ground and weighted by electronic scale 
accurately.

Dry weight: The rice seedlings were placed in the oven 
for drying, and the temperature was set at 100℃ for 2 h and 
then 80℃ for 5 h and weighted by electronic scale accurately 
after drying.

Dry matter percentage: Total dry weight / total fresh 
weight × 100%.

Three plastic beakers were cultivated for each treatment, 
and 10 rice seedlings were randomly selected from each 
beaker. Total 30 samples of each treatment for the average 
value.

Determination of the contents of endogenous 
hormones

Firstly, 3 g fresh roots of rice seedlings were respectively 
weighed, cut into pieces, and added with 80% methanol. 

The roots were ground in an ice dish to homogenate in the 
dark, and the volume of 80% methanol was fixed to 8 mL. 
The roots were immersed in a refrigerator at 4℃ for 12 h and 
centrifuged for 20 min (10,000 r/min, 4℃), and the super-
natant was taken. The residue was incubated to 5 mL with 
80% methanol, and then placed in a refrigerator at 4℃ for 
12 h, centrifuged for 20 min (10,000 r/min, 4℃), and the 
supernatant was taken. After that, the residue was continued 
to be filled with 80% methanol to 5 mL. The process was 
repeated for 3 times, and the supernatant was combined, 
and then transferred to the petri dish, placed in an incu-
bator to avoid light, and blow-dried at 4℃. The low-dried 
samples were dissolved with 100% methanol and constant 
volume to 5 mL, centrifuged for 10 min (10000 r/min, 4℃), 
the obtained supernatant was filtered by disposable organic 
filters with pore sizes of 0.45 µm and 0.22 µm successively, 
and finally stored in the refrigerator at 4℃. The methodol-
ogy was referred to the previous study (Wang et al. 2021).

The samples were determined by high-performance 
liquid chromatography (HPLC, Agilent 1200). The Chro-
matographic column is a Diamonsil C18 (2) column 
(250 × 4.6 mm). Methanol, glacial acetic acid and water were 
added in the ratio of 45: 0.8: 54.2, which was as the mobile 
phase (the ratio of JA was 65: 0.035: 34.965). The detection 

Fig.1   Flow chart of experimental design
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wavelength was set as 254 nm. The Column temperature was 
set as 35℃. The current speed was set as 0.8 ml/min. Three 
repeats of each treatment were calculated for the average 
value.

Determination of organic acids contents

Extraction of organic acids in roots: Firstly, 0.5 g fresh roots 
were cut into pieces, 3 mL distilled water was added, and 
grinded to homogenate. Then ultrasonic treatment was at 
25℃ for 30 min, a water bath at 75℃ for 15 min, centrifu-
gation of10000 r/min for 20 min at 4℃, and the superna-
tant was taken. Finally, they were filtered successively with 
the disposable water system filters with pore diameter of 
0.45 µm and 0.22 µm and stored in a 4℃ refrigerator. The 
methodology was referred to the previous study (Qi et al. 
2021).

Collection and determination of the organic acids secreted 
from roots: Firstly, rice seedling roots were cleaned several 
times to remove nutrient solution using deionized water, and 
the clean plastics sheet were put in the porcelain dish with 
wet filter paper, each rice root tip was clamped with two 
pre-treated chromatographic filter paper rounds, then onto a 
plastic sheet, and the other parts of roots were covered with 
a wet filter paper, the rice roots were covered with black 
shading paper finally. The organic acids secreted from roots 
were collected after 2 h under light. The 10 chromatographic 
filter paper rounds of the root tips were placed into a 1.5 mL 
centrifuge tube, 200 μL filtered water was added, and then 
shaken for 10 min, centrifuged for 5 min, then stored in the 
refrigerator at 4℃.

The samples were determined by high-performance liquid 
chromatography (HPLC, Agilent 1200). H2SO4 (0.01 mM) 
and methanol were added in the ratio of 96:4, which was the 
mobile phase. The detection wavelength was set as 210 nm. 
The other measurement conditions were same as those of 
endogenous hormones. The average value is obtained by 3 
repeats.

Data analysis

The significant differences of parameters were using the 
method of two-way ANOVA followed by LSD’s multiple-
range test for multiple comparisons. The data analysis was 
done with the SPSS statistical software (v26.0, SPSS, USA) 
and the figures were drawn by Origin (v2019b, Origin, USA) 
software.

Results

Changes of rice seedlings growth under high CO2 
and/or Cd stress

Compared with AC, EC increased the above-ground part dry 
weight by 45.6%; AC + L significantly (P < 0.05) increased 
the dry matter rate by 38.9%, reduced the shoot length, root 
length, above-ground parts fresh weight and above-ground 
parts dry weight by 42.5%, 30.2%, 48.5% and 15.4%; AC + H 
significantly increased the dry matter rate by 43.6%, other 
growth parameters decreased.

Compared with AC + L, EC + L significantly (P < 0.05) 
increased the shoot length, root length, and above-ground 
part dry weight by 15.3%, 25.1% and 32.7%; Compared 
with AC + H, EC + H significantly (P < 0.05) increased the 
root length and above-ground part dry weight by 29.9% and 
34.1% respectively (Table 2).

Changes of rice roots endogenous hormones 
contents under high CO2 and/or Cd stress

Compared with AC, EC significantly (P < 0.05) increased 
ZT, GA3 and IAA contents by 26.7%, 1.6% and 15.7%, while 
the ABA, JA and SA contents were decreased significantly 
by 2%, 22.7% and 6% (P < 0.05); AC + L and AC + H sig-
nificantly (P > 0.05) increased ZT, ABA, IAA, GA3, SA and 
JA contents.

Table 2   Changes of rice seedlings growth under high CO2 and/or Cd stress

Different lowercase letters indicate significant difference between treatments (P < 0.05), the same below
SL Shoot length, RL Root length, SFW Shoot fresh weight, SDW Shoot dry weight, RFW Root fresh weight, RDW Root dry weight, DMR Dry 
matter rate

Treatments Growth parameters

SL (cm) RL (cm) SFW (g) SDW (mg) RFW (g) RDW (mg) DMR (%)

AC 16.60 ± 2.48a 11.63 ± 2.05a 0.66 ± 0.06a 65.87 ± 4.09b 0.31 ± 0.02ab 34.43 ± 2.48a 10.33 ± 1.12b
EC 17.30 ± 2.14a 12.28 ± 1.62a 0.74 ± 0.07a 95.93 ± 0.35a 0.38 ± 0.04a 37.20 ± 0.44a 11.94 ± 0.62ab
AC + L 9.55 ± 1.04c 8.11 ± 1.28c 0.36 ± 0.03bc 55.70 ± 2.07c 0.26 ± 0.03bc 31.30 ± 2.07ab 14.35 ± 2.56a
AC + H 8.28 ± 1.20d 6.53 ± 1.54d 0.32 ± 0.04c 49.20 ± 6.32c 0.21 ± 0.01c 28.47 ± 0.23b 11.84 ± 3.51a
EC + L 11.01 ± 1.21b 10.15 ± 1.16b 0.44 ± 0.03b 73.90 ± 4.81b 0.29 ± 0.06b 35.23 ± 6.21a 14.90 ± 0.80a
EC + H 8.92 ± 1.16 cd 8.48 ± 1.58c 0.37 ± 0.02bc 65.97 ± 6.57b 0.29 ± 0.05bc 34.17 ± 2.66ab 15.20 ± 1.74a
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Compared with AC + L, EC + L increased IAA, ZT and 
GA3 contents by 190%, 41.27% and 1.8%, while decreased 
ABA, SA and JA contents significantly (P > 0.05) by 6.1%, 
16.6% and 23.7%; Compared with AC + H, EC + H increased 
IAA, ZT and GA3 contents by 154.6%, 38.2%, 3.5%, while 
decreased ABA, SA and JA contents significantly (P > 0.05) 
by 4.7%, 12.5%, 8.3%. (Fig. 2 A–F).

Compared with AC, EC increased all ratios of endog-
enous hormones contents; AC + L increased IAA/ABA, ZT/
ABA and decreased GA3/JA significantly (P > 0.05); AC + H 
increased IAA/ABA, ZT/ABA, GA3/ABA, IAA/JA and ZT/
JA. Compared with Cd stress alone, EC + L and EC + H 
increased all ratios of endogenous hormones contents sig-
nificantly (P > 0.05) (Fig. 3 A–F).

Changes of organic acids contents in rice roots 
under high CO2 and/or Cd stress

Compared with AC, EC increased citric acid and fumaric 
acid contents in rice roots by 11.7 and 19.8 fold; AC + L 
increased malic acid, lactic acid, acetic acid, citric acid and 
the total organic acids contents in roots by 419.4%, 104.6%, 
287.4% and 23.6%, while significantly (P < 0.05) decreased 
oxalic acid content by 3.3%; AC + H increased tartaric acid, 
malic acid, lactic acid, fumaric acid and the total organic 
acids contents by 87.5%, 790.7%, 142.7%, 202.9% and 
24.6%.

Compared with AC + L, EC + L significantly (P < 0.05) 
decreased tartaric acid content in roots by 50%; Compared 
with AC + H, EC + H significantly (P < 0.05) decreased 

tartaric acid and lactic acid contents in roots while increased 
fumaric acid content by 74.8% (Fig. 4 A–H).

Changes of rice roots secreted organic acids 
contents under high CO2 and/or Cd stress

Compared with AC, EC significantly (P < 0.05) decreased 
secreted malate acid and succinate acid contents by 23.4% 
and 41.1%; AC + L significantly (P < 0.05) increased 
secreted citric acid, acetic acid oxalic acid, malic acid, suc-
cinate acid and the total organic acids contents by 56.6%, 
26.4%, 105.3%, 54.3%, 50%, 73.4%; AC + H increased 
secreted oxalic acid, malic acid, succinate acid and the total 
organic acids contents by 63.8%, 32.5%, 36% and 42.5%.

Compared with AC + L, EC + L decreased citric acid 
and succinic acid contents secreted by roots with 21.7% and 
13.3% respectively. Compared with AC + H, EC + H signifi-
cantly (P < 0.05) decreased oxalic acid, malic acid, succinic 
acid and total organic acids contents of roots secreted by 
23.1%, 19%, 22.6% and 22% respectively (Fig. 5 A–F).

Discussion

Effects of high CO2 concentration on rice roots 
growth, endogenous hormones and organic acids 
contents

Increased atmospheric CO2concentration has a positive 
effect on plant growth. As an important nutrient for plants, 
increased CO2 concentration can promote plant growth and 

Fig.2   Changes of rice roots 
endogenous hormones contents 
under high CO2 and/or Cd 
stress. Different lowercase 
letters indicate significant 
difference between treatments 
(P < 0.05)
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development, including promoting plant height, root growth, 
biomass, fruit quality, and dry weight (Boretti and Florentine 
2019; Huber et al. 2021; Uddin et al. 2018). The results of 
this study showed that compared with AC, EC significantly 
promoted dry weight accumulation in the above-ground part 
by 45.6%. This was indicated that high CO2 can promote rice 
root to absorb more nutrients and increase above-ground 
dry weight of rice seedlings. This trend was related to the 

positive effects of increasing CO2 concentration on plant 
biomass, plant height, root mass and lateral root number 
(Temme et al. 2015; Drag et al. 2020). The same results 
have been found in other studies (Roy et al. 2012; Wang 
et al. 2019).

Plant hormones promote or inhibit each other in plants 
and play an important role in regulating plant growth and 
development. High CO2 can change the balance of plant 

Fig.3   Changes of rice roots 
endogenous hormones contents 
ratios under high CO2 and/or 
Cd stress
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hormones, that leading to significant changes in plant growth 
and nutrient levels (Pinero et al. 2014). In this study, high 
CO2 increased IAA, GA3 and ZT contents in rice roots by 
26.7%, 1.6% and 15.7%, while decreased ABA, JA, and SA 
contents by 2%, 22.7% and 6%. Studies have shown that 
increased CO2 concentration can increase the IAA content 
in plants and play an important role in inducing root hair 
development (Niu et al. 2011; Negishi et al. 2014). IAA and 
GA3 can promote plant growth by stimulating cell elonga-
tion and division (Teng et al. 2006). ZT has been shown to 
induce cell division in plants (Jameson 2023). These results 
indicate that high CO2 could regulate rice roots growth by 
increasing the accumulation of growth-promoting hormones 
(IAA, GA3, ZT), thus playing a positive role in rice growth.

The ratio of plant hormone contents can regulate plant 
growth and development under elevated CO2 concentration. 
In this study, the ratios of endogenous hormones in the root 
of rice seedlings showed an increasing trend under EC treat-
ment, indicating the promotion effect of high CO2 on growth 
and metabolic activities of rice seedlings. The increases of 
IAA, GA3, and ZT contents in root was one of the reasons 
for the enhanced growth of rice in this study.

As the important metabolic regulators, organic acids 
play an important role in the metabolisms of secondary 
metabolites, amino acids and fatty acids (Nelson et al. 
2008). This study shows that CO2 enrichment increased 
the citric acid and fumaric acid contents in roots by 11.7 
and 19.8 fold, but significantly reduced the secreted malic 
acid and succinic acid by 23.4% and 41.1%. That maybe 
relate to the TCA cycle in rice root, the intrinsic physi-
ological mechanism needs further study. Malic acid is 
an important node of plant carbon metabolism, and CO2 
enrichment can reduce malic acid content (Sicher 2008). 
The production of citric acid may also act as a CO2 res-
ervoir for some plants (López-Bucio et al. 2000). Malate 
import and citrate export are two of the most critical fluxes 
that mitochondria contribute to the cellular metabolic net-
work in plants (Lee et al. 2021). In summary, high CO2 can 
enhance the metabolic capacity of rice roots, which can 
be demonstrated by the increased citric acid in roots and 
reduced malic acid secreted by roots.
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Fig.5   Changes of rice roots secreted organic acids contents under high CO2 and/or Cd stress
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Effects of Cd stress on rice roots growth, 
endogenous hormones and organic acids contents

Cd stress can inhibit rice growth, including root length, root 
area, root number, and stem length, meanwhile reduced seed 
germination, growth, yield, and quality of brown rice (Yu 
et al. 2006; Song et al. 2015; Rizwan et al. 2016). Under 
Cd stress, the plasma membrane of root epidermal cells is 
destroyed, cell activity is reduced, and Cd2+ enters root cells 
and inhibits root elongation (Dong et al. 2020). In this study, 
Cd stress significantly inhibited the growth of shoot length 
and root length of rice seedlings by 42.5% and 30.2%, and 
the greater the degree of stress, the more obvious the inhibi-
tion effect. Cd stress also had a significant effect on the dry 
matter percentage of rice seedlings. The study found that the 
above-ground part of rice seedlings was more sensitive to Cd 
stress than the below-ground part. When Cd was absorbed 
by root, the above-ground part was affected firstly.

When plants are stressed by heavy metals, phytohormones 
are involved in resistance to stress, and balance is disturbed 
(Guo et al. 2019). This study showed, AC + L increased 
ABA, SA and JA contents significantly by 6.1%, 16.6% and 
23.7%, and AC + H increased ABA, SA and JA contents sig-
nificantly by 4.7%, 12.5% and 8.3%.The enhancement of Cd 
enables plants to produce more endogenous hormones, such 
as SA, JA and ABA, which are involved in the signaling of 
plant stress responses to enhance their own defense mecha-
nisms (Arin and Balci 2016; Khan et al. 2020; Matayoshi 
et al. 2022). Studies have shown that the expression levels 
and activities of stress-related hormones (under environmen-
tal stress), especially ABA, generally increase after stress, 
transcription factors from the MYC, MYB, and NAC protein 
families also enhance plant tolerance in an ABA-dependent 
manner (Asgher et al. 2015; Verma et al. 2016). The signal-
ing pathways of ABA, SA and JA interact at various nodes, 
such as hormone-responsive transcription factors to regulate 
plant defense response. The crosstalk of ABA, SA and JA 
with the major growth-promoting hormones (IAA and GAs) 
plays an important role in mediating the stress responses. 
The signaling pathways of SA and JA are known to inter-
sect at various points because SA and JA regulate biotic 
stress responses antagonistically (Bari and Jones 2009). This 
study showed that under AC + H, compared with AC + L, 
SA content increased but JA content decreased in roots. The 
changes of SA and JA contents showed the opposite results, 
indicated that under AC + L, the root system responds to Cd 
stress through JA, and SA plays an important role with the 
increase of Cd2+.

In the results of the ratios of endogenous hormones, 
the study found that Cd increased IAA/ABA; while GA3/
JA decreased under AC + L, these results were caused by 
the accumulated ABA and JA in rice roots under Cd stress, 
which affected the root metabolic process and eventually led 

to the change of growth pattern to adapt to environmental 
stress. The different changes in hormone ratios in the results 
indicated that Cd stress disrupted the normal balance of hor-
mone regulation in rice roots.

Organic acids are a class of extremely important metal 
ligands, which are mainly generated by TCA cycle in mito-
chondria and play a key role in the absorption, transporta-
tion, storage, and detoxification of heavy metals and other 
physiological metabolic processes. In this study, the lactic 
acid and tartaric acid increased 142.7% and 87.5%. Lac-
tic acid is a metabolite produced by anaerobic metabolism 
and an important energy carrier; it is probably the most 
important energy source in the TCA cycle (Sun et al. 2020). 
Tartaric acid is efficient in complexing metals, The study 
showed that root tartaric acid content was positively cor-
related with Cd accumulation (Tao et al. 2020). The large 
accumulation of lactic acid in this study indicates that the 
TCA cycle of rice roots was sharply elevated to maintain 
roots energy metabolism under Cd stress. Tartaric acid 
plays an important role in detoxification. As the main chan-
nel for plants to absorb heavy metals, roots will quickly 
develop a coping mechanism when plants are damaged by 
an external adverse environment. This study showed that 
Cd stress increased malic acid, lactic acid, and citric acid 
contents in rice roots, TCA cycle-related metabolites were 
the main cause of rice root resistance to Cd stress, which 
was similar with the previous results (Wójcik et al. 2006). A 
large increase of malic acid content is beneficial to enhance 
restrict the Cd flow by forming strong bonds with Cd ions 
through metal chelation (Li et al. 2023).

Under environmental stress, roots rapidly synthesize and 
accumulate lots of organic acids to cope with the damage 
caused by the stress, and root secretions also significantly 
increase (López-Bucio et al. 2000; Hu et al. 2023). In this 
results, rice roots’ oxalic acid, citric acid, malic acid, acetic 
acid, and succinic acid secretion increased under a light Cd 
environment by 56.6%, 26.4%, 105.3%, 54.3%, 50%, those 
were consistent with previous report (Javed et al. 2017). 
These results indicate that Cd induced the secretion of 
organic acids from rice roots, and maybe produced a detoxi-
fication mechanism through the organic complexation of Cd 
ions, thus alleviation of Cd toxicity. Studies have also shown 
that citrate and malate are effective complexing agents of 
iron and can induce the dissolution of iron hydroxide (Joens 
1998). Entry through Zn2+, Fe2+, and Ca2+ transporters is 
the molecular basis for the entry of Cd2+ into plant cells 
(Clemens 2006). Iron has been shown to inhibit the inflow 
of Cd (Thomas 2021). This indicates that there is a com-
petitive relationship between Fe2+ and Cd2+ uptake by roots 
under Cd stress. The large increase in organic acids contents 
in roots of rice under Cd stress also indicates that the rice 
inhibits Cd uptake by absorbing more nutrients, such as iron, 
to achieve the purpose of reducing Cd toxicity.
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Effects of high CO2 and Cd on rice roots growth, 
endogenous hormones and organic acids contents

The increase of CO2 has a certain dilution effect on the 
accumulation of Cd in plants (Jia et al. 2010). In this study, 
it was found that high CO2 promoted the root growth of 
rice seedlings under Cd stress, and the dry weight and 
fresh weight of rice seedlings were effectively elevated. 
The effect was more obvious under EC + H treatment, 
and the above-ground part was more sensitive than the 
below-ground part. The research on Lolium perenne L 
seedlings showed that under Cd stress, when CO2 con-
centration increased, the Cd contents in roots and shoots 
significantly decreased, effectively alleviating Cd toxic-
ity, promoting seedling growth, and increasing yield (Shi 
et al. 2021). Under Cd stress, increased CO2 can promote 
the accumulation of plant biomass, which is related to the 
dilution effect of CO2 (Jia et al. 2010). The above results 
indicate that the elevated CO2 concentration can alleviate 
the reduction of Cd treatment on the growth of rice seed-
lings to a certain extent.

The responses of plants to different environmental condi-
tions are the result of the combined action of various fac-
tors. Plant hormones are necessary for stress adaptation 
and defense against abiotic stress such as metal toxicity 
(El Rasafi et al. 2020; Chu et al. 2020). This study showed 
that compared with Cd stress alone, EC + L and EC + H 
promoted the accumulation of IAA, ZT, and GA3 in rice 
seedlings roots, and decreased the contents of ABA, JA, 
and SA in roots. Some studies have shown that ABA, JA, 
SA and GAs played key roles in plant response to abiotic 
stress, and they interact by activating multiple proteins and 
transcription factors under stress (Verma et al. 2016; Vish-
wakarma et al. 2017). ABA, SA, and IAA also play a role in 
regulating plant response to heavy metal stresses (Yue et al. 
2016; Shao et al. 2010). They are synergistic, and it has been 
reported that under Cd stress, plants mainly produce ABA 
and JA to regulate plant growth (Pérez et al. 2014). Down-
regulation of auxin signaling is part of the plant-induced 
immune response, and auxin is also involved in the attenu-
ation of the plant defense response (Bari and Jones 2009). 
The results indicate that high CO2 perhaps decreased the 
adverse effect of Cd stress, so more IAA was accumulated 
to promote the growth of rice. The decrease of ABA and JA 
contents indicates the same point. High CO2 can increase 
JA content in leaf under Pb stress in our prior study, while 
in this study, which decreased JA content in roots under Cd 
stress, may be due to different plant parts and heavy metal 
stresses (Wang et al. 2022). The hormone ratios in leaves 
under EC + L and EC + H treatment were higher than those 
under Cd stress alone, indicating that high CO2 increased 
the contents of growth-promoting hormones in rice roots 
under Cd stress, and reduced the inhibitory effect of Cd on 

rice growth ability. These findings provide a basis for future 
rice planting and breeding screening.

The research previously studied the response mechanism 
of rice seedling leaves under high concentrations of CO2 
and Pb stress and found that CO2 can reduce the damage 
degree of leaf cell membrane under Pb stress and enhance 
the antioxidant capacity of cells, in which secondary metab-
olites play an important role (Wang et al. 2023). This study 
found that high CO2 also decreased tartaric acid content in 
root under Cd stress, indicated that CO2 had a detoxifying 
effect on Cd toxicity in roots and thus reduced tartaric acid 
accumulation (Chen et al. 2017; Riaz et al. 2018).In the 
combined of high CO2 and Cd stress, the increase of CO2 
resulted in the decrease of oxalic acid, citrate acid and suc-
cinic acid secretion in rice roots, while under severe stress 
(H treatment), the total organic acid contents secreted by 
rice roots were decreased. Oxalic acid, as the most common 
dicarboxylic acid, has a strong ability to bind heavy metals, 
which can reduce the oxidative damage caused by abiotic 
stress, and then affect the accumulation of heavy metals in 
plants (Huang et al. 2023). Under Cd stress, high CO2 can 
reduce oxalic acid secretion and tartaric acid accumulation 
in roots, which may be related to the reduction of Cd in 
rice roots and the weakened Cd toxicity. The previous study 
found that the high CO2 decreased oxalic acid, citric acid, 
succinic acid, and lactic acid contents in rice leaves (Qi et al. 
2021), which were similar with the present study on root. 
One reason may be that high CO2 inhibited the respiration 
of roots, resulting in reduced secretion of metabolites related 
to the TCA cycle. Another reason may be that CO2 could 
promote plant growth stress and alleviate root damage under 
Cd, thus reducing root organic acids secretion. It was also 
found that high CO2 promoted the organic acid content of 
wheat seedlings under Cd stress, which is different from the 
results of this study (Jia et al. 2014, 2016).

In summary, high CO2 can alleviate the damage of rice 
roots under Cd stress to a certain extent, and hormones play 
a major role, which is proved by the increase of IAA, GA3 
and ZT contents. Interestingly, this study found that the root 
organic acids contents decreased under high CO2 and Cd, 
indicating that there was a complex change mechanism of 
rice root under the combined treatment.

Conclusion

The changes of endogenous hormones and organic acids 
were studied in rice seedling roots under high CO2 and Cd 
stress. The results showed:

(1)	 High CO2 promoted the growth of rice seedlings by 
increasing the growth hormones (IAA, ZT and GA3) 
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contents. High CO2 can enhance TCA cycle by increas-
ing citric acid and fumaric acid contents in rice roots.

(2)	 Under Cd stress, the growth of rice seedlings is strongly 
inhibited. ABA, SA and JA contents were changed to 
enhance Cd stress resistance. The total organic acids 
contents in and secreted from roots increased signifi-
cantly. The secreted organic acids (especially tartaric 
acid) also showed positive metal complexation ability.

(3)	 High CO2 effectively promoted the accumulation of 
IAA, ZT and GA3 in roots under Cd stress, but ABA, 
SA and JA content decreased. All the elevated hormone 
ratios indicated that CO2 promoted the growth of rice 
under Cd stress. High CO2 had a certain detoxification 
effect by decreasing tartaric acid and the secrete (by 
root) oxalic acid contents.

In summary, high CO2 can resist Cd stress by regulating 
the content of growth-promoting hormones, while organic 
acids play an important role. The above results verify the 
study hypothesis. It can provide data support for rice cultiva-
tion in future agriculture.

The molecular response mechanism of rice roots under 
high CO2 concentration and Cd stress is not clear. Those will 
be the future research directions. Cadmium ions (Cd2+) are 
similar in size and charge to some plant essential elements, 
these elements may compete with Cd. Under Cd stress, the 
interference of other ions in nutrient solution cannot be com-
pletely eliminated, so the method of this study has limita-
tions. The stress treatment time in this study was 7 days. 
Future experiments will explore the mechanism of rice roots 
response to high CO2 and Cd stress during dynamic time.
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