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land surpasses the safety threshold for soil heavy metal con-
centration. The primary inorganic pollutants contributing to 
this alarming statistic are cadmium (Cd), nickel (Ni), and 
arsenic (As), with 7.0%, 4.8%, and 2.7% of soils exceed-
ing the threshold, respectively (Liu et al. 2016a). Moreover, 
there is a concerning trend for soil plough layer in China to 
experience Cd-induced pollution, with its rate for increase 
averaged as 0.004 mg kg− 1 per year, which may be mainly 
caused by industrial waste discharge and extensive fertilizer 
usage (Hu et al. 2016). The rate of soil pollution increase 
in China far surpasses that observed in Europe (Luo et al. 
2009). Accumulation of excessive Cd in crops induced by 
pollution has given rise to health issues, notably with the 
emergence of “Cd rice” and “Cd wheat”, prompting wide-
spread concern about the impact on public health.

Cd acts as a nonessential component for both plants and 
animals, yet it can seriously threaten human health when 
accumulated in high concentrations using food chain (Dias 
et al. 2013; Li et al. 2019). Functioning as a plant abiotic 
stress contaminant, Cd exhibits troublesome characteristics, 
such as a low soil-adsorption coefficient, a high soil-plant 

Introduction

Due to the rapid advancement of mining, industrial, and 
agricultural activities, the severity of soil pollution caused 
by heavy metals has escalated significantly. This problem 
arises from various sources, including the discharge of indus-
trial waste water and gas, sewage irrigation, and improper 
use of chemical fertilizers and pesticides (Yan et al. 2021). 
In China, approximately 16.1% of the nation’s agricultural 
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Abstract
Soil cadmium (Cd), which can occur naturally in the environment or arise from industrial pollution, seriously affects 
crop quality and threatens human health. Therefore, reducing grain Cd accumulation (GCA) has become an important 
topic worldwide. To comprehensively assess the research status of GCA, we reviewed the research into physiological 
and molecular mechanisms of GCA, including the characteristics of Cd uptake, transport, and accumulation from roots 
to grain; furthermore, literature on GCA-related quantitative trait locus identification and gene functional analysis were 
reviewed. Based on physiological and molecular mechanisms, two strategies to reduce GCA, namely soil management 
and genetic improvement, were also critically summarized. It became clear that further research is necessary into the 
physiological mechanisms of Cd uptake, transportation, and accumulation in grain. It is also important to accelerate the 
discovery and use of effective functional markers and genes associated with low Cd accumulation and to improve the 
feasibility and potential value of breeding low Cd grain crops.
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mobility, and a substantial plant accumulation factor (Sha-
hid et al. 2017; Chen et al. 2018). In plants, Cd exerts a role 
of disrupting some normal metabolisms (Fan et al. 2011; 
Jaouani et al. 2018), impacting crucial processes like photo-
synthesis and respiration (Song et al. 2019). This disruption 
extends to reduced root activity, slowed seedling growth, 
and the manifestation of small and yellow leaves, ultimately 
culminating in plant death (Ahmad et al. 2015; Zhang et 
al. 2021a). Importantly, human exposure to Cd prevailingly 
occurs via ingesting the plant material contaminated with 
cadmium, constituting a health threat even at low concen-
trations. Prolonged Cd exposure has been linked to a higher 
incidence of lung, prostate, testicular, and kidney cancers 
(Unsal et al. 2020; Reyes-Hinojosa et al. 2019). Conse-
quently, extensive research efforts are underway globally 
to develop strategies for controlling grain Cd accumulation 
(GCA) in crops.

Currently, in most regions globally, the concentration 
of Cd in grain typically aligns with safety standards, albeit 
with regional variations. According to relevant criteria for 
food safety stipulated by the European Union (EU) and 
China, maximum allowable Cd concentration in rice is set 
at 0.2 mg kg− 1, while the Codex Alimentations Commission 
specifies a limit of 0.4 mg kg− 1 (Yang et al. 2019a). Recent 
global research indicates that the average GCA concentra-
tion is 0.093 mg kg− 1, with a 16-fold variation in mean 
values among regions. Notably, South China exhibits the 
highest concentration at 0.32 mg kg− 1, followed by Argen-
tina (0.15 mg kg− 1) ≈ Germany (0.13 mg kg− 1) > Japan 
(0.11 mg kg− 1) > United States (0.064 mg kg− 1) > Cen-
tral-North China (0.020–0.60 mg kg− 1) ≥ Iran (0.042 mg 
kg− 1) > Brazil (0.023 mg kg− 1) ≈ South Korea (0.020 mg 
kg− 1) (Zhang et al. 2021b). However, some studies present 
contrasting findings, emphasizing concerns about Cd levels 
exceeding allowable limits. For instance, in West Bengal, 
a study reported GCA concentrations in rice (between the 
value being below the threshold to 0.49 mg kg− 1) and in 
soil samples (1.76 mg kg− 1 to 13.8 mg kg− 1), surpassing 
the permissible limits (Majumdar et al. 2020). In Germany, 
an investigation into Cd uptake involving 602 soybean 
accessions revealed that the average Cd content should be 
0.13 mg kg− 1, which was 12.5% higher in contrast to the 
stipulated threshod in EU (Franzaring et al. 2019). Addi-
tionally, in New Zealand, an investigation into the GCA 
content of 12 wheat varieties collected in various regions 
showed Cd concentrations can be 0.004–0.205 mg kg− 1, 
which is averaged as 0.066 mg kg− 1, and 7% of the varieties 
surpassing 0.1 mg kg− 1 (Gray et al. 2019).

Consequently, addressing the avoidance and mitiga-
tion of soil pollution induced by heavy metal in cropland 
to guarantee the generation and supply of safe food has 
emerged as a crucial global concern. This review centers 

on examining the physiological and molecular mechanisms 
underlying GCA and explores strategies to produce grain 
crops with low Cd (LCd). The review also highlights the 
knowledge gaps in basic research at both physiological and 
molecular levels which require further studies. Ultimately, 
it advocates for research into crop breeding with LCd, offer-
ing a theoretical foundation for producing safe and uncon-
taminated food.

Physiological mechanisms of GCA

With specific concentration, Cd accumulated in the soil can 
seriously impact plant metabolism, photosynthesis, respi-
ration, transport, and overall growth (Sandalio et al. 2001; 
Zhang et al. 2014). Furthermore, it causes GCA, ultimately 
diminishing both crop yield and quality. The intricate physi-
ological processes involved in GCA in crops have been 
investigated many times. Figure 1 illustrates the Cd uptake, 
transport, and accumulation, using rice as an example.

Cd uptake and transport in roots

Generally, available soil Cd is passively or actively absorbed 
into plant root systems through the symplast pathway. Sub-
sequently, it undergoes transportation to aerial parts of a 
plant using xylem, facilitated by transpiration, and accumu-
lates in grains via internode phloem (Feng et al. 2018; Liu 
et al. 2021; Uraguchi et al. 2009). Transporters associated 
with essential elements involve in mediation of Cd transport 
in plants, like Zn, Ca, Fe, and Mn. Processes such as Cd 
uptake and xylem loading in roots, Cd remobilization from 
leaf blades, and intervascular transfer in nodes play pivotal 
roles in redirecting Cd transport to the grain, a critical aspect 
of GCA (Uraguchi and Fujiwara 2013). The root cell wall 
acts as initial barrier in avoiding entrance of Cd to the stem. 
However, cell walls, composed of proteins, polysaccharides, 
lignin, and other phenolic compounds, also serve as a target 
for heavy metals. Functional groups within cell walls can 
form covalent or non-covalent bonds with Cd (Parrotta et al. 
2015), potentially diminishing the Cd uptake by the roots.

Upon entering cells in plant root, some Cd is encapsu-
lated within vacuoles as a complex with Cd-phytochelatin 
proteins (Miyadate et al. 2011), whereas the remaining Cd 
is conveyed to xylem. Sequestering Cd into vacuoles is 
acknowledged to be efficient for Cd tolerance, contributing 
to a reduction of Cd transport to the grain (Gao et al. 2016; 
Xin et al. 2018). Phytochelatins accumulate in plants when 
exposed to heavy metal ions, forming complexes that mini-
mize the free Cd content in the cytosol (Grill et al. 1987). 
These Cd-phytochelatin complexes hinder Cd transport by 
binding Cd ions through metal chelation with organic acids 
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in plants (Saraswat and Rai 2011). For examples, organic 
acids like malonic and malic acids restrict the Cd flow by 
forming strong bonds with Cd ions through metal chelation 
(Osmolovskaya et al. 2018). A one-unit increase in content 
of malonic and malic acids facilitates the chelation of 5.60 
and 2.03 units of Cd in plants (Kocaman 2023). Research 
indicates that root vacuoles in maize genotypes containing 
high Cd (HCd) experience more severe damage compared 
to those in maize genotypes with LCd, which remain largely 
unaffected. The latter is better equipped to generate Cd che-
lates and sequester more Cd into vacuoles (Lin et al. 2022). 
Cd chelation or retention in vacuoles impedes Cd transport 
from roots to aboveground parts, thereby diminishing GCA.

Cd transport to and accumulation in grain

Cd loading into the grain occurs through phloem-mediated 
redistribution following the initial transport using the xylem 

(Vanderschueren et al. 2023; Zhong et al. 2023). In durum 
wheat, excessive GCA did not exhibit a correlation with 
seedling root uptake rates or root-to-shoot translocation. 
Instead, it appears to be linked with Cd transport modulated 
by phloem to the grain (Hart et al. 1998). However, GCA in 
rice demonstrated independence from both the root uptake 
period and the Cd content in soil. While, a strong positive 
association was observed with the Cd content in xylem. Cd 
translocation from the root to the shoot via the xylem pri-
marily affects the GCA concentration in rice (Uraguchi et 
al. 2009). Tanaka et al. (2007) investigated the involvement 
of rice phloem to Cd transport to the grain and unveiled that 
91–100% of the Cd was derived from the topmost internode 
of rice plants during grain-filling.

When the plants are under reproductive growth, they 
absorb Cd through their roots and transport it to grain 
through stems and leaves. In wheat, the early filling stage 
is deemed as a critical period for transporting accumulated 

Fig. 1 Uptake, transport, and Cd accumulation in the rice plant. This 
figure shows that Cd is taken-up from the soil by roots and then partly 
chelated, accumulates in vacuoles, and partly accumulates in grain via 

transport through the xylem and phloem. It also shows the localization 
of genes related to the regulation of Cd accumulation in root cells, 
which ultimately affect GCA.
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the exploration of quantitative trait loci (QTLs) and genes. 
Identifying QTLs and genes linked to GCA have attracted 
increasing attention and has garnered escalating interest, 
emerging as a crucial research domain for pinpointing LCd 
grain germplasm in molecular breeding programs.

QTL identification for GCA

Linkage mapping (LM) and association mapping (AM) 
are two essential methods for identifying quantitative trait 
loci (QTLs), based on the construction of genetic maps 
from biparental segregation populations and the linkage 
disequilibrium of natural populations, respectively. While 
numerous QTLs associated with Cd uptake, transport, and 
accumulation in crops have been extensively delved into, 
there is a notable scarcity of reports on QTLs directly con-
trolling GCA. Consequently, only those QTLs directly 
related to GCA in some common crops like rice (Ishikawa et 
al. 2005, 2010; Sato et al. 2011; Guo et al. 2019; Wang et al. 
2020; Zhang et al. 2018; Zhao et al., 2018; Liu et al. 2019b; 
Pan et al. 2020), wheat (Knox et al. 2009; Oladzad-Abba-
sabadi et al. 2018; Ban et al. 2020), soybean (Jegadeesan 
et al. 2010; Benitez et al. 2010), barley (Wu et al. 2015), 
and maize (Tang et al. 2021a), are detailed in Table 1. For 
instance, in rice, 14 QTLs for GCA, with the phenotypic 
variation explained (PVE) of 2.40−4.82%, were identified 

Cd from leaves to the grain (Ma et al. 2022). Nodes serve as 
core organs responsible for transferring Cd from xylem to 
phloem, crucially contributing to the Cd accumulation from 
soil to grain during filling (Harris and Taylor 2013; Zhong et 
al. 2023). Research conducted by Liu et al. (2021) revealed a 
positive relationship between GCA in brown rice and that in 
the upper nodes, along with the efficiency of Cd transloca-
tion from roots to nodes. Shi et al. (2019) studied the spatial 
arrangement and evolving dynamics of Cd concentration in 
one HCd and one LCd common wheat cultivar. The out-
comes indicated substantial differences in GCA concentra-
tions between the two cultivars, while the concentrations in 
rachis and glumes remained similar. This signifies that the 
two cultivars exhibit distinct regulatory mechanisms with 
respect to Cd retransfer and redistribution from rachis and 
glumes to grain during the reproductive stage.

Molecular mechanisms of GCA

Plant genes exert control over physiological and metabolic 
responses to Cd stress by managing the production of their 
specific proteins and functionally related proteins through 
transcription factors. In the last four decades, the accelerated 
progress in technologies associated with molecular marker 
and high-throughput sequencing platforms has advanced 

Table 1 Quantitative trait locus identification related to GCA
Crop Method Population QTL 

Number
Chromosome PVE (%) Reference

Rice LM CSSL 3 C3, C6, C8 Ishikawa et al. 2005
LM BIL 2 C2, C7 11.80, 35.50 Ishikawa et al. 2010
LM RIL 2 C3, C11 13.86/8.29, 

9.41/12.91
Sato et al. 2011

LM F2 2 C9, C12 4.92, 5.18 Guo et al. 2019
LM RIL 5 C7, C8, C9 5.09–10.53 Wang et al. 2020
AM Natural population 62 C1, C2, C3, C4, C5, C6, C7, C8, 

C9, C10, C11, C12
Zhang et al. 2018

AM Natural population 14 C1, C2, C3, C4, C7, C8, C11 2.40–4.82 Zhao et al. 2018
AM Natural population 17 C1, C2, C3, C4, C6, C7, C8, C9, 

C10, C11, C12
Liu et al. 2019b

AM Natural population 35 C1, C2, C3, C4, C6, C7, C8, C9, 
C10, C11, C12

Pan et al. 2020

Wheat LM DH 1 C5B > 80 Knox et al. 2009
LM RIL 1 C5B 70.6 Oladzad-Abbas-

abadi et al. 2018
LM DH 2 C4B, C6B 9.4–25.4, 

9.0-17.8
Ban et al. 2020

Soybean LM RIL 1 C9 57.3 Jegadeesan et al. 
2010

LM RIL, NIL 1 C9 82.4/56.7/74.9 Benitez et al. 2010
Barley AM Natural population 15 C2H, C3H, C4H, C5H, C7H 2.9–12.6, 

3.3–11.3
Wu et al. 2015

Maize AM Natural population 2 C2 20.03, 23.78 Tang et al. 2021a
LM - linkage mapping; AM - association mapping; CSSL - chromosome segment substitution line; BIL - backcross inbred line; RIL - recom-
binant inbred line; DH - doubled haploid; NIL - near isogenic line; PVE - phenotypic variation explained
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regulating Cd accumulation were uncovered (Fig. 1), like 
the heavy metal ATPase (HMA) (Takahashi et al. 2012), the 
Natural resistance-associated macrophage protein (Nramp) 
(Takahashi et al. 2011), the Zn/Fe-regulated transporter-
like (ZIP) (Guerinot 2000; Zheng et al. 2018), and the low-
affinity cation transporter (LCT) (Uraguchi et al. 2011). 
In our previous investigation, the transcriptomic response 
was compared at different Cd concentrations in a HCd and 
a LCd sunflower cultivar, and several Cd-related candidate 
genes were identified, namely ATP-binding cassette (ABC), 
ZIP, heavy metal- associated isoprenylated plant protein 
(HIPP), Nramp, and HMA (Fu et al. 2022). These candidate 
genes, crucial for understanding Cd response mechanisms, 
necessitate further functional verification. Notably, signifi-
cant strides have been taken in unraveling genes correlated 
with Cd uptake, transport, and accumulation in grains, 
thereby influencing GCA (Table 2).

OsHMA2 primarily conveys Zn and Cd and is discovered 
in root pericycle and phloem of diffuse vascular bundles 
in the nodes (Yamaji et al. 2013). A reduction in function 
or downshift of OsHMA2 expression has been demon-
strated to lower Cd content in grains (Satoh-Nagasawa et 
al. 2012). OsHMA3, a paralogous gene of OsHMA2 in root 
cell vacuoles, facilitates high root-to-shoot Cd transloca-
tion rates (Miyadate et al. 2011). It acts by restricting Cd 
translocation from roots to aboveground tissues, selectively 
sequestering Cd into root vacuoles (Miyadate et al. 2011; 
Ueno et al. 2010). Liu et al. (2020b) highlighted the sig-
nificance of sequence variation in the OsHMA3 promoter 
GCC7 in regulating variations in Cd accumulation between 
indica and japonica rice accessions. The HCd and LCd 
accumulation alleles, GCC793-11 and GCC7PA64s, exhibit 
distinct OsHMA3 initiation activities, leading to varying 
GCA contents between the two subspecies. Genotypes with 
knockdown mutant alleles of OsHMA3 show reduced the 
capability to isolate Cd in vacuoles, causing HCd in shoots 
and grains (Sui et al. 2019; Yan et al. 2016; Zhao and Wang 
2020). The OsHMA3 expression exposed to OsHMA2 pro-
moter increased Cd storage in vacuoles from various parts, 
greatly lowering GCA in rice (Shao et al., 2018). Tang et al. 
(2021a) reported a potential gene (i.e., ZmHMA3) capable 
of influencing GCA in maize. By capitalizing on the inher-
ent sequence variations in ZmHMA3 among a diverse array 
of maize lines, four PCR-based molecular markers were 
formed, effectively discerning five haplotypes.

OsNramp5, expressed in roots, is crucial in Cd uptake 
and transport. Mutations in it remarkably weaken the Cd 
uptake by roots, diminishing GCA content in rice (Ishikawa 
et al. 2012). Through CRISPR-Cas9 gene-editing system, 
a novel indica cultivar with LCd accumulation was devel-
oped following the knockout of OsNramp5. The mutant 
consistently maintained a GCA content below 0.05 mg kg− 1 

on seven chromosomes based on an AM natural population 
containing 312 rice accessions (Zhao et al. 2018). Another 
example is in soybean, where a significant QTL for grains 
with LCd, located on chromosome 9, explained 57.3% of 
the phenotypic variation, which were derived from con-
structing an RIL population using HCd and LCd parents 
(Jegadeesan et al. 2010).

A comprehensive review of previous studies revealed the 
recurrent detection of certain QTLs for GCA were repeat-
edly detected across diverse populations, generations, envi-
ronments, and mapping methods. In rice, QTL qGCd7, 
demonstrating a significant PVE for GCA of 35.5%, was 
identified in a recombinant inbred line (RIL) population and 
consistently confirmed in chromosome segment substitution 
lines (CSSLs), F2, and germplasm populations (Ishikawa et 
al. 2010; Zhang et al. 2018). Another rice QTL, qLCdG11, 
with an average PVE for GCA of 11.16% (9.41% and 
12.91%), was repeatedly detected across two generations 
(Sato et al. 2011). In wheat, the QTL QCdu.spa-B1, exhib-
iting an average PVE for GCA of 80%, was consistently 
detected in 2 years of testing (Knox et al. 2009). Two addi-
tional wheat QTLs, namely QCdc.4B-kita and QCdc.6B-
kita, with PVE values for GCA ranging from 9.4 to 25.4% 
(chromosome 4B) and 9.0–17.8% (6B), respectively, were 
recurrently detected over 3 years (Ban et al. 2020). In soy-
bean, the QTL Cda1, boasting a PVE of 57.3%, was con-
sistently identified in 2 years and was further validated in 
different populations (Jegadeesan et al. 2010). Another soy-
bean QTL Cd1, with the average PVE of 71.3% (82.4%, 
56.7%, and 74.9%), was repeatedly detected in three RIL 
generations and a NIL population. In barley, the two main 
QTLs, which were 8586 − 1221 and ConsensusGBS0086-5, 
explaining 12.6%/11.3% and 9.5%/8.5% of the average 
PVE, respectively, were repeatedly detected in two environ-
ments (Wu et al. 2015). In maize, the QTL qCd1, featuring 
a PVE of 20.03%, was consistently detected across four dif-
ferent environments and was further validated through AM 
and bulked segregant RNA-seq analyses (Tang et al. 2021a). 
The above major-effect QTLs exhibit high reliability and 
hold potential for utilization in marker-assisted selection 
(MAS) to reduce grain Cd concentration.

Cloning and functional analysis of genes associated 
with GCA

Growth of crop varieties with LCd accumulation hinges on 
identifying genes linked to reduced Cd content, necessitating 
a deeper investigation into Cd uptake and transport mecha-
nisms (Chen and Wu 2020). Studies on genotypes, includ-
ing mutants with varying Cd accumulation levels, have 
necessitated the identification of Cd transporter proteins in 
rice and other grain crops. Numerous genes participated in 
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HvZIP3 and HvZIP8, have been identified as contributors to 
low GCA in barley (Sun et al. 2015).

The LCD protein predominantly localizes to the cyto-
plasm and nucleus, with gene expression occurring in vas-
cular tissues of the roots and cells associated with phloem 
in leaves. In the Cd-tolerant lcd knockout mutant, the GCA 
level in rice decreased by approximately 50%, in contrast 
to the wild type. Importantly, no considerable variation was 
observed in plant biomass or grain yield between the lcd 
knockout mutant and the wild type (Shimo et al. 2011).

The gene responsible for cation/Ca exchange, specifi-
cally OsCCX2, facilitates the direct transport of Cd from 
the roots to the grain. The knockout mutant of the OsCCX2 
gene led to a notable decrease in Cd content within the grain 
(Hao et al. 2018). Guo et al. (2020) focusing on Cd dis-
tribution in rice cultivar ‘YaHui2816’ exhibited a cultivar 
with a LCd concentration in grain and HCd concentration 
in straw. This finding signified that OsHMA2, OsCCX2, and 
OsZIP7 involved in Cd retention at node II. Consequently, 
this restrains transporting Cd to the grain.

A rice Cd transporter, OsLCT1, functions at the nodes, 
where Cd is transported to the grain. The regulation of 
OsLCT1 has been demonstrated to yield “LCd rice” without 
influencing agronomic traits. In the model indica cultivar 
‘Kasalath’, OsLCT1 was observed to be highly expression 
in the reproductive stage than in the vegetative stage (Ura-
guchi et al. 2014). Conversely, OsLCT2 increased the Zn 
concentrations in roots under an overexpression condition 
by up-regulating OsZIP9, which reduced GCA by limiting 

and demonstrated unaffected yields when cultivated in a 
Cd-contaminated paddy field, in contrast to the same culti-
var grown in uncontaminated soil (Tang et al. 2017). OsN-
ramp1 predominantly expresses on plasma membrane of 
root cells, excluding central vascular tissues and mesophyll 
cells. Knockdown of OsNramp1 results in a reduction in Cd 
accumulation, although its impact is less pronounced than 
that of OsNramp5. Declined Cd content is more substantial 
in double mutants of OsNramp1 and OsNramp5 in com-
parison to either single mutant. Another gene within this 
family, OsNramp2, expressed in vacuoles, likely encodes a 
functional Cd transporter (Zhao et al., 2018). The combi-
nation of OsNramp1, OsNramp5, and OsHMA3 has been 
employed in breeding the indica rice variety 93 − 11 with 
low GCA (Wang et al. 2021).

ZIP can transport various cations, like Zn, Fe, Mn, and 
Cd. OsZIP1, identified as a metal-detoxifying transporter, 
is crucial to avoid too much Zn, Cu, and Cd are deposited 
in rice (Liu et al. 2019a). OsLCT1-OsHMA2-OsZIP3 co-
expression effectively diminishes the Cd translocation and 
accumulation, mitigate oxidative stress triggered by Zn and 
Cd, ultimately enhancing the quality of rice grain (Tian et 
al. 2019). OsZIP7 exerts an active effect in loading Zn and 
Cd into xylem in roots and facilitating inter-vascular trans-
fer in nodes, and its specific function involves preferentially 
directing Zn and Cd to developing tissues and grains (Tan et 
al. 2019). Through DNA microarray analysis and confirma-
tion in RNA interference (RNAi) plants, two pivotal genes, 

Table 2 Cloning and functional analysis of genes related to GCA
Gene family Gene name Probable function References
HMA OsHMA2 Cd transport Yamaji et al. 2013; Satoh-Nagasawa et 

al. 2012
OsHMA3 Cd root-to-shoot translocation Miyadate et al. 2011; Ueno et al. 2010; 

Liu et al. 2020b; Sui et al. 2019; Yan et 
al. 2016; Zhao and Wang 2020; Shao et 
al. 2018

ZmHMA3 Cd root-to-shoot translocation Tang et al. 2021a
Nramp OsNramp5 Cd uptake, transport Ishikawa et al. 2012; Tang et al. 2017

OsNramp1 Cd uptake, transport Chang et al. 2020
OsNramp2 Cd transport Zhao et al. 2018

ZIP OsZIP1 Cd transport Liu et al. 2019a
OsZIP3 Cd transport Tian et al. 2019
OsZIP7 Cd transport Tan et al. 2019
HvZIP3, HvZIP8 Cd transport Sun et al. 2015

LCD OsLCD Cd transport Shimo et al. 2011
CCX OsCCX2 Cd efflux transport, loading of Cd into 

xylem vessels
Hao et al. 2018; Guo et al. 2020

LCT OsLCT1 Transport of Cd into grain Shimpei et al. 2014; Uraguchi et al. 2011
OsLCT2 Transport of Cd into grain Tang et al. 2021b

MFS OsCd1 Cd uptake and accumulation Yan et al. 2019
HMA - heavy metal ATPase; Nramp - natural resistance-associated macrophage protein; ZIP - zinc/iron-regulated transporter-like protein; 
LCD - low Cd; CCX - cation/Ca exchanger; LCT - low affinity cation transporter; MFS - major facilitator superfamily
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Current research is actively exploring effects of various fac-
tors, individually or jointly, in controlling Cd contamination 
in plant tissues a (Tang et al. 2020). While these investiga-
tions offer valuable insights, a more systematic approach is 
required, necessitating further comprehensive research in 
this domain.

Applying fertilizers and soil conditioners judiciously 
can enhance the physical and chemical properties of soil, 
diminish plant Cd uptake from soil, and foster plant growth. 
The extent of GCA is intricately linked to Cd bioavailabil-
ity in soil. Within a specific range of soil pH values, soil 
acidification has been identified as a factor that amplifies 
the available Cd content in the soil, subsequently elevating 
GCA (Chen et al. 2021). Conversely, alkaline soil amend-
ments can form Cd complexes, chelates, and precipitates, 
effectively weakening the bioavailability of soil Cd (Hamid 
et al. 2019; Jin et al. 2020). Huang et al. (2020) applied 
quicklime for 4 consecutive years to manage soil acidity in 
Cd-polluted farm soils. The outcomes revealed an average 
increase in soil pH by 0.57, a 17% reduction in interchange-
able or water-soluble Cd components in soil, a 10% increase 
in organic binding of Cd components, and a decline in GCA 
concentration in crops below the threshold (0.2 mg kg− 1). 
Various physical and biochemical soil amendments, like 
engineered nanoparticles (Fox et al. 2020), salicylic acid (Li 
et al. 2019; Majumdar et al. 2020), and melatonin (Lv et 
al. 2019), have been employed to mitigate plant Cd uptake. 
Sarwar et al. (2015) demonstrated that spraying a ZnSO4 
solution at a specific concentration onto wheat leaves during 
the booting completes with Cd uptake, effectively reducing 
the GCA in wheat and crops grown on soil suffering from 
Cd pollution.

Isolating and identifying Cd-tolerant microorganisms 
from soil suffering from Cd pollution and exploring the 
potential of plant-microbial symbiosis for Cd remediation 
offer promising avenues for soil bioremediation and miti-
gating GCA (Abbas et al. 2020). Wang et al. (2019) dem-
onstrated that treating soil suffering from Cd pollution 
the fermentation broth of Bacillus cereus strain M4 could 
enhance the growth of pot-grown rice seedlings in soil 
after Cd pollution, resulting in a decrease in the GCA in 
rice from 0.309 to 0.186 mg kg− 1. Arbuscular mycorrhizal 
fungi, which naturally colonize in plant roots, contribute 
to its growth and is key in conferring tolerance to heavy 
metals (Garg and Bhandari 2014). Pseudomonas taiwanen-
sis WRS8 associated with wheat has been shown to reduce 
Cd uptake. This is achieved by enhancing the adsorption of 
Cd on the root surface suppressing the expression of genes 
linked to Cd uptake and transport in wheat. In contrast to 
the controls, there was a substantial reduction in Cd levels 
in both roots (78–85%) and above-ground tissues (88–94%) 
at days 3 and 10 after inoculation, respectively (Cheng et al. 

Cd enter the xylem and restraining root-to-shoot Cd translo-
cation in rice (Tang et al. 2021b).

OsCd1 exerts a role in Cd uptake by rice roots and 
facilitates GCA in rice. The inherent variation observed in 
OsCd1, characterized by a missense mutation Val449Asp, is 
accountable for the disparity GCA between the indica and 
japonica subspecies of rice (Yan et al. 2019).

Strategies to produce LCd grain crops

Enhancing our comprehension of the physiological and 
molecular mechanisms of GCA can pave the way to produce 
grain crops with LCd, facilitating the translation from labo-
ratory research to practical field applications. Two strategies 
have been proposed: soil management and genetic improve-
ment. Soil management endeavors to diminish the effective 
Cd content in the soil through physical, chemical, or bio-
logical methods. This strategy aims to enhance the physi-
ological and metabolic environment in plants as well as 
modulate Cd absorption, transport, and metabolism in grain 
crops. On the other hand, genetic improvement focuses on 
identifying valuable QTLs or alleles associated with LCd. 
It aims to establish efficient breeding technologies that inte-
grate conventional breeding, molecular marker-assisted 
breeding, gene editing, and other modern biotechnological 
approaches, and finally cultivate crop varieties containing 
LCd.

Soil management

Appropriate utilization of conventional agronomic methods 
on farmland polluted by Cd has demonstrated the potential 
to yield crops that meet relevant national stipulations on 
limiting the Cd content (Kang et al. 2020; Li et al. 2017; 
Liu et al. 2016b). Effective soil management, encompassing 
precise control of soil moisture and nutrient levels, along 
with the regulation of soil pH and redox potential, empowers 
farmers to curtail Cd migration from soil to roots, thereby 
contributing to a reduction in GCA (Hussain et al. 2021; 
Yuan et al. 2020). Strategic control of water and fertilizer is 
conductive for weakening the utilization of heavy metals in 
paddy soils. Specifically, flooding is a method to decrease 
GCA in rice, with additional benefits observed when lime is 
concurrently applied (Han et al. 2018). However, it’s worth 
noting that flooding may lead to increased arsenic accumu-
lation in crops (Hu et al. 2013). Notably, the implementa-
tion of film mulch technology, as demonstrated by Wang et 
al. (2015), exhibited a 50% reduction in GCA in rice when 
comparing to the control. Under the condition of collective 
use of complementary measures (like biochar and silica 
foliar fertilizer), the reduction in GCA content is enhanced. 
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Conclusion and future perspectives

The comprehension of physiological regulatory mecha-
nisms in plants exposed to Cd is advancing. However, there 
is a lack of systematic exploration into the physiological 
mechanisms governing Cd distribution and accumulation in 
crops. For example, the mechanisms behind LCd accumula-
tion in the storage roots of sweet potatoes remain unclear. 
This includes the factors influencing why the Cd absorbed 
by root is accumulated primarily in the feeder roots rather 
than storage roots (Zhang et al. 2020). Such uncertainties 
may be attributed to the limitations in conditions and facili-
ties in the research process. Many studies focusing on the 
physiology of regulating Cd stress during the seedling stage, 
but there is a relative scarcity of corresponding research at 
later growth stages, an important point because GCA is pri-
marily determined during the reproductive stage.

In major crops, predecessors have identified several QTLs 
for GCA that exhibit stability across multiple populations, 
generations, environments, and mapping methods. These 
reliable QTLs hold potential for application in MAS. How-
ever, it’s noteworthy that some QTLs for GCA are consis-
tently localized on the same chromosomes across different 
studies. The absence of bridge markers necessitates further 
confirmation of the consistency and stability of these QTLs 
through the accumulation of additional data in future inves-
tigations. In conjunction with QTL identification and gene 
cloning efforts, seven candidate genes, namely OsHMA3, 
OsNRAMP1, OsNRAMP5, OsLCD, CAL1, OsABCB24, and 
OsCd1, which co-located with major-effect QTLs, were 
identified, although this represents a limited number. Con-
sequently, there is a need to identify and validate Cd-related 
functional markers or regulatory genes with practical breed-
ing significance. At present, most studies involve only the 
growth or physiological metabolic responses of crops to Cd, 
with limited attempts to elucidate the physiological regula-
tion routes induced by Cd-related genes in crops. Hence, it 
is imperative to systematically analyze the molecular foun-
dation of physiological traits related to Cd accumulation.

The strategies aimed at reducing GCA by diminishing 
Cd bioavailability in the soil through physical, chemical, or 
biological interventions have been extensively studied and 
can be promptly applied in the short term to crop production 
systems. However, research focused on reducing grain Cd 
concentration in crops at the genetic level is mostl predomi-
nantly in the initial or theoretical research stage. In contrast, 
most of the varieties with LCd have been identified employ-
ing traditional screening methods, and there are few reports 
on the development of varieties with consistently stable 
LCd grain based on modern biotechnologies. By combin-
ing comparative grain Cd concentration evaluation and LCd 
allelic genotyping, Sun et al. (2022) successfully developed 

2021). Li et al. (2020) observed that arbuscular mycorrhi-
zal fungi reduces GCA in maize but may also have adverse 
effects on maize seedling growth. This highlights the need 
for further exploration and optimization in the selection and 
application of microorganisms for soil Cd remediation.

Genetic improvement

The cultivation of crops containing LCd represents a strongly 
effective approach for mitigating the risk of GCA in crops 
and safeguarding human health (Grant et al. 2008; Ishikawa 
2020; Liu et al. 2020a; ZaidImdad et al. 2018). The breeding 
technologies employed for crops with LCd have evolved 
from traditional breeding approaches to a synergistic blend 
of traditional and molecular breeding methods. This pro-
gression signifies a shift from empirical breeding practices 
to more precise and design-oriented breeding strategies.

Efforts to mitigate grain GCA involve manipulating Cd 
transporter proteins through strategies such as overexpres-
sion or knockout of the transporter genes, and MAS breed-
ing based on genotypic differences in GCA (Ma et al. 2021). 
Chen et al. (2020) employed molecular marker-assisted 
breeding to individually introgress the OsHMA3 gene or 
the qlGCd3 QTL, both associated with LCd accumulation, 
into the recipient parent rice accession ‘C5S’. The result-
ing improved material consistently expressed the LCd 
trait, with the average grain Cd concentration reduced by 
52.8% or 50.8% for those carrying OsHMA3 or qlGCd3, 
respectively, compared to wild-type ‘C5S’. Several studies 
highlighted negative associations between Cd uptake and 
the concentrations of other mineral elements when a plant 
grows (Hou et al. 2021; Jia et al. 2016). HCd accumula-
tion varieties tend to over-accumulate calcium, magnesium, 
manganese, iron, zinc, and other mineral elements, while 
wheat grain of LCd varieties may be deficient in essential 
nutrients (Qin et al. 2021). In rice, OsNramp5 serves as the 
major transporter for both Cd and manganese (Mn). Yang et 
al. (2019b) employed the CRISPR-Cas9 gene editing tech-
nique to knock out OsNramp5 in two japonica rice cultivars, 
leading to significantly lower GCA concentrations, albeit 
with reduced Mn accumulation. This negatively impacted 
various agronomic traits, including plant height, seed set-
ting rate, and grain number per panicle, resulting in a slight 
decrease in crop yield. Some LCd cultivars maintain nor-
mal concentrations of essential minerals (Luo et al. 2018), 
making them valuable parental materials for LCd cultivar 
breeding. Through conventional and molecular breeding 
techniques, either individually or in combination, valuable 
alleles, such as lcd, have been selected or designed and inte-
grated into new cultivars to achieve a balance between high 
yield and quality with low GCA.
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Chang JD, Huang S, Yamaji N, Zhang W, Ma JF, Zhao FJ (2020) 
OsNRAMP1 transporter contributes to cadmium and manganese 
uptake in rice. Plant Cell Environ 43(10):2476–2491. https://doi.
org/10.1111/pce.13843

Chen HP, Zhang WW, Yang XP, Wang P, McGrath Steve P, Zhao FJ 
(2018) Effective methods to reduce cadmium accumulation in 
rice grain. Chemosphere 207:699–707. https://doi.org/10.1016/j.
chemosphere.2018.05.143

Chen Q, Wu FB (2020) Breeding for low cadmium accumulatin cere-
als. J Zhejiang, Univ-Sci B, (Biomedicine & Biotechnology) 
21(06):442–459. https://doi.org/10.1631/jzus.B1900576

Chen QH, Tang W, Zeng G, Sheng HW, Shi WJ, Xiao YH (2020) 
Reduction of cadmium accumulation in the grains of male 
sterile rice Chuang-5S carrying Pi48 or Pi49 through marker-
assisted selection. 3 Biotech 10(12):539. https://doi.org/10.1007/
s13205-020-02533-6

Chen JL, Zheng C, Ruan JZ, Zhang CH, Ge Y (2021) Cadmium bio-
availability and accumulation in rice grain are controlled by pH 
and Ca in paddy soils with high geological background of trans-
portation and deposition. B Environ Contam Tox 106(1):92–98. 
https://doi.org/10.1007/s00128-020-03067-6

Cheng C, Wang Q, Wang QX, He LY, Sheng XF (2021) Wheat-
associated Pseudomonas taiwanensis WRS8 reduces cadmium 
uptake by increasing root surface cadmium adsorption and 
decreasing cadmium uptake and transport related gene expres-
sion in wheat. Environ Pollut 268. https://doi.org/10.1016/j.
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1289. https://doi.org/10.1007/s11738-012-1167-8

Fan JL, Wei XZ, Wan LC, Zhang LY, Zhao XQ, Liu WZ, Hao HQ, 
Zhang HY (2011) Disarrangement of actin filaments and Ca2+ gra-
dient by CdCl2 alters cell wall construction in Arabidopsis thali-
ana root hairs by inhibiting vesicular trafficking. J Plant Physiol 
168(11):1157–1167. https://doi.org/10.1016/j.jplph.2011.01.031

Feng J, Jia W, Lv S, Bao H, Miao F, Zhang X, Wang J, Li J, Li D, 
Zhu C, Li S, Li Y (2018) Comparative transcriptome combined 
with morpho-physiological analyses revealed key factors for dif-
ferential cadmium accumulation in two contrasting sweet sor-
ghum genotypes. Plant Biotechnol J 16(2):558–571. https://doi.
org/10.1111/pbi.12795

Fox JP, Capen Jonathan D, Zhang WL, Ma XM, Rossi L (2020) Effects 
of cerium oxide nanoparticles and cadmium on corn (Zea mays L.) 
seedlings physiology and root anatomy. NanoImpact 20:100264. 
https://doi.org/10.1016/j.impact.2020.100264

Franzaring J, Fangmeier A, Schlosser S, Hahn V (2019) Cadmium 
concentrations in German soybeans are elevated in conurbations 
and in regions dominated by mining and the metal industry. J Sci 
Food Agric 99(7):3711–3715. https://doi.org/10.1002/jsfa.9548

Fu Y, Zhatova H, Li Y, Liu Q, Trotsenko V, Li C (2022) Physiologi-
cal and transcriptomic comparison of two sunflower (Helianthus 
annuus L.) cultivars with high/Low cadmium accumulation. Front 
Plant Sci 13:854386. https://doi.org/10.3389/fpls.2022.854386

Gao L, Chang JD, Chen RJ, Li HB, Lu HF, Tao LX, Xiong J (2016) 
Comparison on cellular mechanisms of iron and cadmium accu-
mulation in rice: prospects for cultivating Fe-rich but Cd-free 
rice. Rice (New York NY) 9(1):39. https://doi.org/10.1186/
s12284-016-0112-7

Garg N, Bhandari P (2014) Cadmium toxicity in crop plants and its 
alleviation by arbuscular mycorrhizal (AM) fungi: an overview. 
Plant Biosyst 148(4):609–621. https://doi.org/10.1080/11263504
.2013.788096

Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and 
breeding of plant cultivars to minimize cadmium accumulation. 

a new variety with LCd (‘Lushansimiao’), which exhibited 
low GCA content in large-scale field trials. However, the 
stability of this variety requires further investigation under 
diverse production conditions, environments, and years. 
Future breeding endeavors should concentrate on integrat-
ing traditional and molecular techniques to accurately pyra-
mid multiple valuable LCd accumulation alleles, and finally 
giving rise to new crop varieties characterized by high yield, 
excellent quality, and LCd accumulation.
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