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Abstract
Silicon is one of the most abundant elements found in nature and also abundant in the earth’s crust. Although it is not 
considered	one	of	the	essential	elements,	it	has	several	fruitful	effects	on	plant	evolution,	expansion	and	amelioration	of	
biotic and abiotic stress factors. In present time of climate change, silicon supplementation can be an environment friendly 
and inexpensive way towards improved crop yield. Major food crops of world including rice, barley and sugarcane are 
accumulators of silicon. Silicon accumulation which varies among the species is dependent on abundance and expression 
of Si transporters. The accumulation of silicon not only acts as a mechanical barrier for pathogen and pest infestation 
into the plant tissue but also modulates phytohormone balance and maintains redox homeostasis to counteract stress. The 
present	review	discusses	in	detail	the	mechanism	of	silicon	uptake,	interaction	with	different	phytohormones	and	transport	
on molecular level. Also, it provides comprehensive vision of the molecular mechanism regarding stress tolerance induced 
by silicon application.
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Introduction

Silicon is numbered as second utmost prevalent element 
on the earth’s crust following oxygen and a crucial micro-
nutrient for various plants (Raza et al. 2023). It is mostly 
obtained in combination with oxygen as silica (SiO2), or 
with other elements to form silicates like CaSiO3, MgSiO3 
and K2SiO3. Silicate minerals are also renowned as one of 
the biggest rock forming minerals present on earth. The con-
tent of silicon (Si) in soil, depends on the type of the par-
ent rock that ranges from 1 to 45% (Sommer et al. 2006). 
Silicon is easily available to plants in the form of monosi-
licic	acid	in	soil.	Silicon	has	an	important	role	as	a	benefi-
cial macronutrient that is widespread in monocot and dicot 
plants. In many plant species, particularly monocots the 
uptake of Si from soil even surpasses the uptake of essen-
tial nutrients (Epstein 1994), still Si is not considered an 
essential element due to the lack of conclusive indication 
on direct involvement of Si in plant metabolism. Also, most 
of the plants complete their life cycle even in the absence 
of Si, which is one of the criteria to classify an element as 
essential (Arnon and Stout 1939). Si stimulates defense-
related enzymes, encourages the formation of antimicro-
bial compounds, controls signalling pathways, and induces 
the expression of defense-related genes to activate defence 
mechanism, hormone regulation and gene expression pat-
terns (Shanmugaiah et al. 2023).

Several	investigations	have	been	made	on	effect	of	Si	on	
plant growth and development. Despite this, several studies 
show that silicon has a positive impact on plant develop-
ment, agricultural productivity, and the reduction of biotic 
and abiotic stressors. The current review highlights recent 
advances in silicon absorption and transport mechanisms, 
as	 well	 as	 their	 significance	 in	 biotic	 and	 abiotic	 stress	
tolerance.

Uptake and transport of silicon

Silicon can be found in soil in liquid or solid or adsorbed 
phase fractions. Poorly crystalline and microcrystalline, 
crystalline, and amorphous forms of silicon make the solid 
Si phase. Primary and secondary silicates, as well as other 
silica materials, include the biggest fraction of crystalline 
form. Amorphous phase of silicon is either derived from sil-
icon complexes with Al, Fe, heavy metals and soil organic 
matter or as biogenic form that is originating from plant res-
idues and microorganisms (Matichencov and Bocharnikova 
2001; Sauer et al. 2006). Monosilicic acid (H4SiO4) and 
polysilicic acids make both the liquid and adsorption phase 
fractions of Si. Weathering of silicate minerals as well as 
biogenic silica contribute to Si in soil solution and adsorbed 

phase (Fraysse et al. 2006). The type of silicon taken by 
plant roots is monosilicic acid (H4SiO4). The pH of soil and 
amount of clay, minerals, organic matter, and Fe/Al oxides/
hydroxides in the soil solution determine the concentration 
of H4SiO4 in the soil solution (Tubana and Hackman 2015).

At pH greater than 9, monosilicic acid is converted into 
ionic silicates (Imtiaz et al. 2016). Plants have been classed 
as Si accumulators (10–15% of shoot dry weight) or inter-
mediates (1–3% of shoot dry weight) including dry land 
grasses, and excluders or non-accumulators (< 1% of shoot 
dry weight) based on their silicon accumulation (Jones and 
Handreck 1967). However, it is also found that many non-
accumulators, such as tomatoes, accumulate more Si in their 
roots than in their shoots (Huang et al. 2011). The H4SiO4 
is absorbed by the root cells and is translocated via xylem 
to the leaf epidermal cells. Through transpiration, the accu-
mulated leaf H4SiO4 is further condensed and polymerized 
into hard silica gel (SiO2.nH2O). Phytolith is a hard, immo-
bile type of silica that is accumulated in shoots and cannot 
be translocated to fresh emerging leaves (Jones and Han-
dreck 1967; Raven 1983).

In higher plants, three types of uptake of Si in relation to 
water uptake was proposed by Takahashi et al. (1990) that 
is, passive (uptake of Si is analogous to the uptake of water), 
active (uptake of Si is faster compared to that of water) and 
rejective (Si uptake is even slower than water). However, 
these modes of Si uptake are based upon the measurement 
of relative Si content and transpiration rates and here tran-
spiration rate was assumed to be 500 and Si content of the 
soil to be 35 mM (Kathryn et al. 2003; Ma et al. 2001).

Active	 Si	 uptake	 involves	 specific	 silicon	 transporters.	
Several silicon transporters have been discovered in plants 
of various species (Mitani and Ma 2005). In plants, there are 
two	types	of	Si	transporters:	channel-type	(Lsi1)	and	efflux	
transporters (Lsi2). Lsi1 transfers silicon into plant cells 
from	 the	 surrounding	 environment	 whereas,	 efflux	 trans-
porters are involved in the movement of Si from plant cells 
to the xylem (Fig. 1). Using a rice mutant (Lsi1, low sili-
con	1)	that	was	deficient	in	Si	uptake,	the	first	Si	transporter	
(OsLsi1) in higher plants was found and cloned (Ma et al. 
2006, 2007). Lsi1 is a member of the Nod26-like major 
intrinsic protein (NIP) aquaporin-like protein subfamily. In 
the projected amino acid sequence of 298 residues, there 
are six transmembrane domains and two NPA motifs that 
are highly conserved in the aquaporin water channel fam-
ily.	Rice’s	efflux	transporter	(Lsi2)	was	also	discovered	and	
cloned	using	a	rice	mutant	that	was	deficient	in	Si	uptake.	
Lsi2 is a hypothetical anion transporter that is not related to 
Lsi1. Lsi1 takes up the Si form distal side of exodermis and 
its deprotonated form is passed by Lsi2 in aerenchyma at the 
proximal side of cell. Unloading of silicon from xylem and 
its	distribution	to	different	aerial	parts	is	accomplished	by	Si	
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transporter Lsi6 (Yamaji et al. 2008). Lsi6 is located mostly 
in xylem transfer cells and the enlarged vascular bundles’ 
outer margins. When the Lsi6 gene is knocked out, the pan-
icles	accumulate	less	Si,	whereas	the	flag	leaf	accumulates	
more Si (Ma 2010). Lsi6 appears to be a carrier betrothed 
in silicon transfer from major vascular bundles of roots to 
diffuse	vascular	bundles	linked	to	the	panicles	(Yamaji	and	
Ma 2009). Along with Lsi2 and Lsi6, another Si transporter, 
Lsi3 also distributes Si in plant tissues.

Si	deposition	in	the	tissues	was	affected	in	Lsi2,	Lsi3	and	
Lsi6	knockout	rice	mutants,	but	there	was	no	influence	on	
Si uptake from the environment, which is predominantly 
controlled by Lsi1. Si transporters found in other crops such 
as maize and barley perform comparable activities to those 
found in rice, but their localization and expression patterns 
differ	(Mitani	et	al.	2009). The functional analysis of tomato 
Si-influx	 and	 Si-efflux	 transporter-encoding	 genes,	 SiLsi1	
and SiLsi2, revealed that low Si accumulation in tomato 
leaves was caused by non-functioning state of SiLsi2 (Sun 
et al. 2020). The overexpression of a cucumber Lsi 2 gene in 
tomato led in the accumulation of Si in the shoots of tomato 
(Sun et al. 2020).

Silicon in biotic stress tolerance

Living organisms, for instance fungal, bacterial, and viral 
pathogens, mycoplasma, oomycetes, nematodes, insects, 
birds, weeds and parasitic plants cause biotic stress that is 

the major concern worldwide for agricultural production. 
Application of Si to plants help in alleviating various biotic 
stresses including disease incidence and pest attack. Plants 
having high Si content in shoots or roots resist pest attack 
than those devoid of Si. The main consequence, however, is 
that it aids in the prevention of soil-borne or foliar disease 
in major crops that are attacked by various biotrophic, hemi-
biotrophic, or necrotrophic pathogens (Cai et al. 2008). It 
also reduced the development, reproductive period, lon-
gevity, and fecundity of insect pests by prolonging incuba-
tion and latent periods, lowering conidial production, and 
reducing numerous characteristics of fungal, bacterial, and 
viral lesions (expansion rate, size, and number) (Wiese et 
al. 2005). Disease development and insect preference rates 
dropped considerably as a result, and susceptible cultivar’s 
resistance was enhanced nearly equal to the cultivars with 
full or partial resistance in several circumstances. Silicon 
enhanced resistance helps in avoiding the penetration of 
pathogen with the help of structural reinforcement (Epstein 
2001)	 or	 biochemical	modification.	To	 successfully	 infect	
the host plant, the virus must cross physical barriers such as 
wax, cuticles, and cell walls. The mechanical strength of the 
plants is aided by density of silica in long and short epider-
mal cells, the thick layer of silica under the cuticle (the dou-
ble cuticular layer), strengthened Si-cellulose membrane, 
papilla development, and complexes created with organic 
compounds in epidermal cell walls. Physical barriers serve 
to limit pathogen penetration and make plant cells less sus-
ceptible to enzymatic damage caused by fungal pathogens. 

Fig. 1 Possible mechanism of silicon transport and deposition in plant cells
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Insect pest tolerance

Silicon increases plant tolerance to insect manifestation 
mainly by deposition of Si in leaves as phytoliths which 
results in weakening of insect mouth parts and poor diges-
tion.	 Its	 effect	 on	 the	 decrease	 of	 pathogens	 and	 insect	
pest attack is also attributed to the chemical protection by 
enzyme synthesis. The reduced digestibility of feeding on 
silicon enriched tissue reduces digestibility of food and 
reduces insect growth. In fact, plant resistance to herbiv-
ory is largely due to silicon accumulation, which causes 
changes in plant nutritional quality and lowers herbivore 
performance (Frew et al. 2019).

Stress related hormones such as jasmonic acid also acts as 
a master regulator in resistance against arthropod herbivores 
and pathogen (Erb et al. 2012). Jasmonic acid regulates 
defense mechanism for tissue chewing herbivore while sali-
cylic acid and jasmonic acid pathway together activates the 
defense	mechanism	against	fluid	 feeding	herbivores	 (Zust	
and Aggarwal 2016).	 Different	 forms	 of	 silica	were	 used	
against several insects (Table 1) such as in case of cucum-
ber	 for	protection	 from	white	fly	Bemisia tabaci, calcium 
silicate was used which reduced the oviposition and mortal-
ity of nymph (Correa et al. 2005), in sweet cherry, sodium 
metasilicate was used where spore germination and germ 
tube extension of Penicillium expansum and Monilinia fruc-
ticola were suppressed (Qin and Tian 2005). In sugarcane 
insect	population	of	spittlebug	was	affected	by	applying	Si	
in plant defense. There was an increase in nymphal mortal-
ity as well as decreased longevity of males and females was 
observed (Korndorfer et al. 2011). Ebrahimi et al. (2012) 
noticed	the	effect	of	sodium	silicate	where	it	 inhibited	the	
mycelial growth in apple whereas calcium silicate was used 
to protect sugarcane plants from stalk borer (Keeping et al. 
2013).	 Significance	 of	 silicon	 in	 rice	 plants	was	 detected	
against rice leaf folder both at lower and higher rates. 

Plant defence against disease and insect pest attack can 
also be induced by (1) increased activity of enzymes that 
are responsible for activating defense mechanism in leaves 
that is phenylalanine ammonia-lyase, polyphenol oxidase, 
peroxidase and glucanase (Liang et al. 2015), (2) increased 
production of anti-disease and anti-insect compounds and 
defensive chemicals in plants, such as phenolic metabolism 
product	(lignin),	flavonoids,	phytoalexins	and	pathogenesis-
related proteins (Sakr 2018). Antimicrobial compounds help 
to prevent the disease occurring in plants. The main enzyme 
for oxidation of phenolic substance that is polyphenol oxi-
dase (PPO) is present in free form in the cytoplasm or are 
bound in chloroplast, mitochondria as well as other subcel-
lular organelles (Quarta et al. 2013). It has been linked to be 
involved in lignin synthesis there by increasing antibacterial 
resistance of host plants (Song et al. 2016). Si is utilised to 
induce the accumulation of antimicrobial compounds like 
phenols,	flavonoids,	and	phytoalexins	after	pathogen	infec-
tion (Rodrigues et al. 2004; Remus et al. 2005). Peroxidase 
(POD) and chitinase (CHT), the enzymes involved in host-
pathogen interactions, are boosted by silicon. POD is linked 
to cell-wall reinforcement and cell-wall protein cross-link-
ing (Brisson et al. 1994).

ET, JA and SA also play a vital role in providing immu-
nity to plants to regulate defense response by plants (Clarke 
et al. 2000). Silicon exhibits a defense mechanism called 
systemic acquired resistance that triggers when pathogen 
attacks the plant. Silicon triggers the local defence by acti-
vating SA signalling, plant organs after receiving the sig-
nals, stimulate SAR for further defence. The uptake of silica 
in root and leaves lowers the accumulation of ROS and also 
lipid peroxidation in the membrane. Deposition of silica in 
the leaf tissue, on the other hand, improves protection of 
plant against various diseases (Mathur and Roy 2020).

Table 1	 Role	of	Si	in	mitigation	of	insect	pest	resistance	in	different	crop	species
Plant Form Stress Effect Reference
Cucumber Calcium silicate White	fly	Bemisia 

tabaci
Reduced oviposition and mortality of nymph Correa et al. 2005

Sweet cherry Sodium 
metasilicate

Penicillium expan-
sum and Monilinia 
fructicola

Germination of spores and elongation of germ tubes 
inhibited

Qian and Tian 2005

Sugarcane Silicon Spittlebug high mortality of nymph while males and females longev-
ity decreased

Korndorfer et al. 
2011

Apple Sodium silicate Penicillium expansum Inhibition of mycelial growth Ebrahimi et al. 2012
Sugarcane Calcium silicate Stalk borer Enhanced mechanical barrier and biochemical properties Keeping et al. 2013
Rice Calcium silicate Rice leaf folder Survival and pupation rates of larvae decreased Han et al. 2015
Rice Fly ash Leptocorisa acuta Feeding activity of the insect inhibited Peera and Khanam 

2020
Maize Silicon oxide Fall armyworm Decreased larval and pupal biomass in fall armyworms Haq et al. 2021
Onion and 
garlic

Potassium silicate 
and sodium meta 
silicate

Stromatinia cepivora Enhanced systemic defense enzymes and expression of 
genes into proteins stimulated

Elshahawy et al. 
2021
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formed by applying slag-based Si fertilizer in rice where 
immobile Si deposited in cell wall and papillae sites of host 
plant protects them from brown spot disease (Ning et al. 
2014).	Si-	deficient	plants	showed	a	poor	defence	response	
than Si- treated plants, according to a transcriptomic analysis 
of	the	effect	of	Si	on	Phytophthora sojae-infected soybean 
plants. On Si-treated plants, P. sojae had substantially lower 
diversity	and	intensity	of	effector	transcripts.	These	findings	
back up the theory that Si disrupts the signalling mechanism 
between a plant and a pathogen, resulting in an incompatible 
connection (Rasoolizadeh et al. 2018). Another well studied 
aspect of transcriptome analysis in tomato against Ralstonia 
solanacearum revealed that Si primes the defense capacity 
of plants by enhancing expression of jasmonic acid/eth-
ylene genes. They overexpressed the genes JERF3, TSR-
F1and ACCO, the oxidative stress markers (FD-I and POD) 
and the basal defense marker (AGP-1 g) thereby alleviating 
stress imposed by the pathogen (Ghareeb et al. 2011). Fur-
thermore, Si treatment may improve tomato resistance to R. 
solanacearum infection in three ways: by activating PTI-
related	 responses;	 by	 influencing	multiple	 hormone	 (e.g.,	
SA, JA, ET, and auxin) signalling pathways; and by alle-
viating	adverse	effects	 (e.g.,	 senescence,	water	deficiency,	
and	oxidative	stress)	caused	by	infection	(Jiang	and	Zhang	
2021). Silicon is proposed to improve disease resistance 
through increasing the generation of secondary metabolites 
and antioxidant/defense related enzymes, as well as scav-
enging	ROS.	Effect	of	silicon	against	bacterial	wilt	in	sweet	
pepper	was	recorded	where	Si	directly	affected	colonization	
of the pathogen, increased Ca+ 2 absorption, and signalled to 
produce plant defence enzymes (Alves et al. 2015). Potas-
sium silicate was used in case of bitter gourd to enhance the 
activity of all the defense related enzymes and pathogen-
esis-related proteins providing protection against powdery 
mildew (Ratnayake et al. 2016).	Silicon	also	effects	metabo-
lism of defence hormones like ethylene, jasmonic acid and 
salicylic acid. In rice, silicon induces brown spot resistance 
by interfering with the action of fungal ethylene (Bock-
haven et al. 2015). Applications of silicon has shown to 
reduce disease incidence in various plant species (Table 2). 
In Chinese cantaloupe, sodium silicate inhibited growth of 
pathogen that was responsible for postharvest rotting (Guo 
et al. 2007). Potassium silicate was used in case of soybean 
against soybean rust and reduced intensity of soybean rust 
was	detected	after	 applying	potassium	silicate	 in	 the	field	
(Rodrigues et al. 2009).

Silicon	 modification	 at	 higher	 rate	 lowered	 third-instar	
weight gain and pupal weight. The larval development was 
prolonged at both low and high levels of Si content, and the 
larval survival rate and pupation rate was also suppressed. 
As a result, resistance to rice leaf folder was developed in 
the susceptible rice variety (Han et al. 2015). Similarly, 
fly	ash	was	used	in	rice	plants	to	avoid	the	adverse	effects	
by ear head bug and increase in yield was also observed 
(Peera and Khanam 2020). In maize, foliar application and 
soil drenching techniques were used to treat silicon diox-
ide (SiO2) and potassium silicate (K2SiO3) in plants. The 
findings	revealed	that	foliar	treatments	of	SiO2 and K2SiO3 
increased mortality percentage and developmental period in 
autumn armyworms but decreased larval and pupal biomass 
(P	 0.05).	 Likewise,	 both	 Si	 sources	 significantly	 (P	 0.05)	
reduced lipase activity of larvae and adult fecundity, but the 
adults had a longer life expectancy (Haq et al. 2021).

Silicon is also involved in induction of plant defense 
responses in phytophagous insects. It also induces biochem-
ical responses such as increased antioxidant enzyme activ-
ity and synthesis of secondary metabolites which reduce 
insect infestation. Silicon amendment to rice plant enhanced 
silicification	of	leaf	sheaths.	Thus,	affecting	the	working	of	
brown spot hopper. Compared to non-amended plants, sili-
con amended plants infested with brown plant hopper had 
higher catalase and superoxide dismutase (SOD) activity. 
Also,	higher	activation	of	polyphenol	oxidase,	β1,	3-	glu-
canase and phenylalanine was observed (Yang et al. 2017). 
Potassium	silicate	and	sodium	meta-silicate	offered	protec-
tion against Stromatinia cepivora in onion and garlic by 
activating defense-related genes (Elshahawy et al. 2021).

Disease resistance

The interaction between disease resistance and plant patho-
gens is a complex process mediated by pathogen and plant 
derived chemicals. Silicon application also triggers immune 
response	 against	 various	 pathogens.	 The	 first	 interaction	
between a plant and a pathogen occurs at the apoplast, when 
membrane-localized receptors called Pattern Recognition 
Receptor (PRR) recognise microbe- or pathogen-associated 
molecular	patterns	(MAMPs	or	PAMPs),	triggering	the	first	
line of defence known as PAMP triggered immunity (PTI) 
(Bigeard et al. 2014). Further, in response to PTI, patho-
gen	 secrete	 various	 effectors	 recognised	 by	 R	 genes	 and	
induces	 second	 line	 of	 defence	 called	ETI	 (Effector	Trig-
gered Immunity). Mechanical barrier posed by Si deposition 
in	the	apoplast	prevents	secretion	of	effectors	by	pathogen.	
It also prevents the pathogen from suppressing the immune 
response	 by	 preventing	 the	 effectors	 from	 reaching	 these	
target locations (Vivancos et al. 2015). Physical barrier was 
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some polyphenols. Metalloenzyme SOD helps in mediat-
ing the disproportionation of O2¯ into H2O2 and O2 and is 
present in all aerobic organism and subcellular components 
that are vulnerable to oxidative stress (Kim et al. 2017). 
Other antioxidant enzyme catalase removes H2O2 generated 
in peroxisome and controls peroxisomal H2O2 synthesis 
whereas	peroxidase	 is	 specific	 for	GSH	and	uses	H2O2 to 
oxidise the other substrate. MDHAR is also found in chlo-
roplast and cytosol that regenerates the reduced ascorbate 
and was typically found in drought stressed conditions in 
rice seedlings (Yadav and Sharma 2016). Silicon has shown 
to reduced ROS accumulation by increasing the activity of 
these enzymes (Mostafa et al. 2021) thus providing toler-
ance to various abiotic stresses (Table 3).

In salt stressed tomato plants, application of sodium sil-
icate along with NaCl enhanced the activity of SOD and 
CAT enzyme (Al-aghabary et al. 2005). A decrease in H2O2 
level and MDA concentration showed that silicon reduces 
oxidative stress caused by salinity. Wheat growth under salt 
stress was improved using calcium silicate which lowered 
the sodium absorption and increased potassium uptake (Ali 
et al. 2009; Liang 1999)	noted	that	Si	has	a	protective	effect	
against salt stress by allowing for the selective absorption 
and transport of potassium and sodium. Both sodium and 
potassium silicate were used to check sugarcane’s resilience 
to drought stress. Regardless of the water conditions, it was 
discovered that Si leads to lower C concentrations by caus-
ing the stomatal closer for longer periods of time throughout 
the day. Additionally, the type of Si also had an impact on 
the concentrations of nitrogen and phosphorus (Teixeira et 
al. 2020). In sorghum under drought stress, silica enhanced 
the leaf area index, chlorophyll content, leaf dry weight, 
specific	leaf	weight,	shoot	dry	weight,	total	dry	weight,	and	
root dry weight of the plant (Ahmed et al. 2011). At low 
temperatures the impact of Sodium silicate was tested in 
barley where it was observed that biochemical properties 
of	leaf	apoplasm	was	modified,	which	further	mitigated	the	
cold stress (Joudmand and Hajiboland 2019). Similarly, in 
maize,	silica	showed	cold-protective	effects	with	enhanced	

Role of silicon in abiotic stress tolerance

Being sessile organism plants are continuously being chal-
lenged by adverse environmental conditions such as heat, 
cold, drought, frost, heavy metal toxicity. These conditions 
negatively	 affect	 plant	 growth	 as	well	 as	 reduce	 the	 crop	
yield. During environmental stress, ROS gets accumulated 
and its production is an obvious result of abiotic stresses 
and it is gaining importance not only due to its wide-
spread production and subsequent damage to plants, but 
also	for	 its	diverse	roles	 in	signalling	cascades,	 that	affect	
other biomolecules, hormones involved in growth, devel-
opment, and stress tolerance regulation. Superoxide (O2), 
hydroxyl (OH), per hydroxy (HO2), and alkoxy (RO) group 
are examples of free radicals, while hydrogen peroxide 
(H2O2) and singlet oxygen are examples of non-radicals 
that are covered by ROS. Their production and reactiv-
ity are well understood. When ROS levels exceed a cell’s 
antioxidative capabilities, oxidative stress occurs, which 
can cause the cell to malfunction and eventually the cells 
die. Most biomolecules in the cell react easily with sin-
glet oxygen, superoxide, hydroxyl and hydrogen peroxide, 
causing their breakdown and death, contributing to cellular 
stress. ROS are generated in plant cells as a result of envi-
ronmental changes and developmental transitions such as 
seed germination. Plant cells are equipped with antioxida-
tive machinery (Fig. 2), which includes both enzymatic and 
non-enzymatic components, to combat oxidative stress and 
excess ROS (Yadav and Sharma 2016). As a result, main-
taining a favourable balance between ROS generation and 
antioxidant defence becomes necessary so that it preserves 
photosynthetic machinery, membrane integrity and nucleic 
acid and protein degradation (Hasanuzzaman et al. 2020). 
ROS	must	be	effectively	controlled	and	eliminated	in	order	
for organisms to survive. A powerful antioxidant defence 
system is responsible for that and includes antioxidant 
enzymes such as SOD, CAT, POD, APX and GR as well 
as low molecular weight antioxidants that is ascorbic acid, 
GSH or lipid like tocopherol, carotenoids, quinines and also 

Table 2	 Effect	of	silicon	in	mitigating	stress	from	various	bacterial	and	fungal	pathogens	in	different	crops
Plant Form Stress Effect Reference
Chinese 
cantaloupe

Sodium silicate Postharvest rot Radial growth of the pathogen was inhibited Guo et al. 2007

Soybean Potassium silicate Soybean rust Reduced intensity of soybean rust Rodrigues et al. 
2009

Rice Slag-based silicon 
fertilizer

Brown spot (Bipo-
laris oryzae)

Physical barrier against penetration of fungus Ning et al. 2014

Oil palm Silicon oxide Basal stem rot Host cell walls detered the penetration of pathogen Najihah et al. 2015
Sweet pepper Calcium silicate Bacterial wilt Production of plant defence enzymes Alves et al. 2015
Bitter gourd Potassium silicate Powdery mildew Activities of enzymes peroxidase, polyphenol oxi-

dase	and	PR	proteins	chitinase	and	β-1,3-glucanase	
enhanced

Ratnayake et al. 
2016
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Table 3	 Role	of	silicon	in	alleviating	different	abiotic	stresses	in	various	crops
Plant Form Stress Impact Reference
Barley Potassium silicate Salt stress Potassium and sodium absorbed and transported selectively Liang et al. 

2003; Liang 1999
Wheat Calcium silicate Salt Reduced Na + and increased K + uptake Ali et al. 2009
Sorghum Silicon Drought Specific	leaf	weight	(SLW),	leaf	dry	weight	(LDW),	increased	leaf	

area index (LAI), chlorophyll content (SPAD), root dry weight 
(RDW), shoot dry weight (SDW), total dry weight (TDW) (TDW)

Ahmed et al. 2011

Tomato Sodium silicate Salt H2O2 level and MDA concentration fell as Superoxide dismutase, 
CAT, and APx activity increased

Al-aghabary et al. 
2005

Rapeseed Silicon dioxide Cadmium Modulated AsA-GSH Pathway and Glyoxalase System Hasanuzzaman et 
al. 2017

Maize Silicon Chilling Increased superoxide dismutase activity in the shoots and roots, as 
well	as	a	reduction	in	Zn	and	Mn	losses	from	germinating	seeds

Moradtalab et al. 
2018

Sorghum Calcium silicate Drought Dry	forage	yield	and	water	use	efficiency	enhanced Niyazi et al. 2018
Barley Sodium silicate Cold Modified	activity	of	apoplasmic	enzymes	and	concentration	of	

metabolites
Joudmand and 
Hajiboland 2019

Oil palm Sodium silicate Drought Seedlings tolerant to drought Amanah et al. 2019
Sweet pepper Foliar application Salt stress Enhanced antioxidant activity of enzyme Abdelaal and 

Hafez 2020
Sugarcane Sodium and potas-

sium silicate
Water	deficit Modified	C:	N:	P	stoichiometry	and	increased	C	use	efficiency Teixeira et al. 2020

Fig. 2	 Schematic	representation	of	the	interaction	of	silicon	against	different	environmental	stresses
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wall, thus controlling the transport of heavy metals (Tubana 
and Heckman 2015). Application of Si in cadmium stressed 
rapeseed, reduced MDA content and H2O2. There was an 
increase in AsA and GSH pools as well as activities of gly-
oxalase system (Gly I and Gly II) enzymes and CAT, lead-
ing to an improved antioxidant defense (Hasanuzzaman et 
al. 2017).	Rice	showed	the	positive	effect	of	Si	against	cad-
mium stress by reducing the accumulation of heavy metals 
in rice roots (Kim et al. 2014). The combined stress of Cd 
and Pb in quinoa led to 11-fold increase in H2O2 genera-
tion and a 13-fold increase in TBARS synthesis, as well as 
a decrease in membrane stability (59%). Exogenous injec-
tion of K and Si in combination reduced oxidative stress 
caused by metals by eight times. SOD, CAT, APX, and POD 
activities increased 9-fold, 7-fold, and 11-fold, respectively 
(Algharby et al. 2022).

Interaction of silicon with other 
phytohormones for growth, development 
and stress alleviation

Silicon (Si) plays a crucial role to enhance the nutritional 
state of crop plants for the promotion of development and 
productivity. Under biotic and abiotic stresses, the exog-
enous application of Si activates plant defense and phyto-
hormone signalling mechanisms (Khan et al. 2022) (Fig. 3). 
Plant	biological	processes	are	frequently	influenced	by	phy-
tohormones that also control cellular signalling in response 
to salt, drought, extremely high temperatures and nutrient 
shortage stress (Salvi et al. 2021). In order to better under-
stand the mechanism, regulation and interaction of silicon 
with	 various	 phytohormones,	 the	 findings	 from	 diverse	
investigations have been discussed.

In rice plants, it was observed that under arsenate stress, 
the expression of auxin biosynthesis genes (OsYUCCA1 and 
OsTAA1) dropped along with the decrease in root biomass. 
However,	the	presence	of	Si	significantly	boosted	the	expres-
sion of OsYUCCA1 and OsTAA1, which ultimately leads 
to an increase in the number of roots and biomass. It was 
suggested that Si-driven root development under arsenate 
stress in rice plants is mediated by auxin biosynthesis genes 
(Tripathi et al. 2021). The addition of IAA to the AgNPs + Si 

superoxide dismutase (SOD) activity in shoot and roots as 
well as an increase in concentrations of proline, phenolics, 
and antioxidants and reduced levels of H2O2 in the tissues 
(Moradtalab et al. 2018).

In sorghum, foliar spray of calcium silicate increased 
the	forage	dry	yield	and	water	use	efficiency	(Niyazi	et	al.	
2018), while in leaves of oil palm seedlings, enhanced pro-
line concentration, nitrate reductase activity (NRA), stoma-
tal closure and chlorophyll content was observed. Amanah 
et al. (2019) also tried Na2SiO3 in oil palm against drought 
stress and observed that the oil palm seedlings showed toler-
ance against drought. Foliar application of silicon in sweet 
pepper helped to defend salt stress by enhancing the activity 
of antioxidant enzymes (Abdelaal et al. 2020). In sugarcane, 
silicon (Si) supplementation mitigated the damage caused 
due	 to	water	 deficiency	 by	 improving	 the	C:N:P	 balance,	
increasing	 C,	 N,	 and	 P	 use	 efficiencies	 and	 the	 biomass	
conversion,	and	finally	enhancing	the	yield	(Teixeira	et	al.	
2020, 2022). Si treatment increased rice submergence toler-
ance and decreased yield loss by reducing the unfavourable 
impacts of reactive oxygen species and quiescence strategy. 
Through, the synergistic regulation of endogenous hor-
mones ethylene (ET), gibberellic acid (GA), and jasmonic 
acid (JA), Si dramatically suppressed elongation and inter-
node length in wild type rice under submergence (Pan et 
al. 2022).	However,	the	addition	of	Si	had	no	effect	on	the	
expression of the SUB1A gene, which is responsible for 
submergence tolerance features of rice (Xu et al. 2006; Pan 
et al. 2022).

Silicon contributes in the alleviation of heavy metal stress 
caused by cadmium, copper, aluminium, and other metals 
(Table 4). Si application alters soil physical qualities such 
as pH, electrical conductivity, and organic matter, as well as 
soil microorganisms, causing nutrient release that competes 
with heavy metals for uptake and translocation to plant roots 
to	be	expedited.	Furthermore,	Si	significantly	reduced	heavy	
metal uptake through chelation or arresting heavy metals in 
the soil. Heavy metal bioavailability is reduced which as 
a result limits their transmission from root to shoot. Also, 
Si	 reduces	 adverse	 effects	 of	 heavy	metal	 toxicity	 in	 the	
cells by stimulating the antioxidant enzyme activity, com-
plex formation with metal ions and compartmentalization 
of metal -silicon complex and exerting change in the cell 

Table 4	 Effect	of	silicon	for	alleviating	various	metal	stress	in	different	crop	species
Plant Form Stress Effect Reference
Rice Silicon Aluminium (Al) Alleviation in aluminium accumulation Singh et al. 2011
Rice Silicon Cadmium (Cd) and copper (Cu) Ameliorated root function Kim et al. 2014
Maize Sodium silicate Cadmium

(Cd)
Enhanced thylakoid formation and photosynthetic rate Vaculik et al. 2015

Tobacco Potassium silicate Copper (Cu) Elevated ET and PA biosynthetic genes Flora et al. 2019
Quinoa Sodium silicate Cadmium

(Cd) and Lead (Pb)
Improved antioxidant capacity Alharby et al. 2022
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increased (Ayub et al. 2018). In date palm, exogenous appli-
cation of Si and GA3 activated the genes associated with 
the heat shock factor. Moreover, the combined treatment of 
Si and GA3 dramatically reduced the transcript accumula-
tion of genes involved in ABA signalling (PYL4, PYL8, and 
PYR1). These results imply that the combined application of 
Si and GA3 promotes plant growth and metabolic regulation 
and confers stress resilience (Khan et al. 2020). Cytokinin 
is also a major plant growth hormone which is responsible 
for cell division and shoot proliferation in plants. Si treat-
ment enhanced zeatin concentration in the root and shoot 
tissues	 of	maize	which	finally	 lead	 to	 protect	 plants	 from	
cold-stress (Moradtalab et al. 2018).

Si also encourages the production of phenylalanine 
ammonia-lyase, which is a precursor to SA biosynthesis 
(Souri et al. 2020). Silicon in combination with SA pro-
motes arsenic toxicity tolerance in wheat by inducing plant 
morphological characters, minimise electrolyte leakage and 
decreased ROS lipid peroxidation (Maghsoudi et al. 2020, 
Arif et al. 2021).	The	physiological	 effects	of	methyl	 jas-
monate (MeJA) (0.5 mM) and silicon nanoparticles (2 mM) 
on some salinity-related genes (DREB, cAPX, Mn-SOD, 

mixture	was	also	effective	 in	 reducing	 the	harmful	effects	
of the silver nanoparticles in Brassica juncea. Increased 
length of shoots and roots as well as reduced nitric oxide 
levels under AgNPs stress was observed in Brassica juncea 
(Vishwakarma et al. 2019). In maize, phytohormones (auxin 
IAA, gibberellins GA and abscisic acid ABA) and antioxi-
dant enzyme activity (superoxide dismutase SOD, ascorbic 
peroxidase APX, and catalase CAT) were used to determine 
if plants were resistant to drought stress. Stressed plants 
without silicon treatment showed enhanced SOD and CAT 
activity along with a decrease in IAA. Plants grown on non-
tillage soils applied with silicon treatment showed increase 
in IAA concentration with decreased SOD and CAT activity 
(Merhij et al. 2019).

Silicon supplementation along with NAA indicated that 
silica might have contributed in polar transport of auxin as 
an elicitor of ABA biosynthesis leading to initiation of lat-
eral root growth of cowpea (Hu et al. 2020). However, exog-
enous GA3 and potassium silicate proved to be extremely 
successful in reducing salt-induced damages in okra culti-
vars. Along with that, fresh weight and dry weight of roots 
and shoots, plant height, root and shoot length were also 

Fig. 3	 Pictorial	representation	for	interactions	of	silicon	with	different	phytohormones	for	growth	promotion	and	stress	resilience
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fortification	 and	 sustainable	 agricultural	 development,	 it	
is also necessary to uncover other genes related to physi-
ological functions. Detailed investigation of the cross-
talk between Si and phytohormones can be improved by 
cutting-edge omics technologies including transcriptomic, 
proteomic, and metabolomic research in order to eluci-
date new signalling molecules responsible for alleviating 
the stress tolerance in plants. Additionally, Si’s function in 
controlling signal transduction pathways under a variety of 
abiotic	stress	conditions	requires	specific	attention.	Silicon	
has a strong impact on crop quality, strength, and yield and 
therefore silicon supplementation holds a great potential as 
a plant protectant and growth stimulant for sustainable resil-
ient agriculture.
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