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Abstract
Plants cannot grow or develop properly without the support of their roots. Gravity plays an essential role in the formation 
of the root structure, but it is not clear how roots respond to gravity signals or how downward growth occurs. The two best-
known models for root gravity sensing affirm the importance of starch. After the hyper-sensitive root crown perceives a 
gravity signal, starch granules within the rootlet cells settle to the endoplasmic reticulum in the direction of the signal, where 
they bind to specific receptors or open ion channels and release downstream signaling molecules. This triggers a series of 
signal transduction mechanisms, and this process involves signaling molecules such as indole-3‐acetic acid (IAA), reac-
tive oxygen species, and calcium signaling, which ultimately induce groundward root growth. This review summarizes the 
mechanism of action underlying, and a research overview of, how plant roots sense and respond to gravity. The role of key 
signals such as starch, IAA, and calcium ions in root gravitropism is analyzed by integrating available information. The results 
provide a more complete theoretical basis for how roots grow toward gravity, which will contribute to our understanding of 
gravitropism and lay the foundation for discovering new directions of scientific research.

Graphical abstract

The graphics developed in this article are done by Microsoft Office PowerPoint 2010, Adobe Illustrator 2018 and ChemDraw 
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Introduction

One of the differences between plants and animals is the 
way of movement. Plants generally cannot move and can 
only passively receive stimuli from the environment. Plants 
have, however, evolved excellent mechanisms to adapt to the 
terrestrial environment: When plants perceive an external 
stimulus, complex signal transduction mechanisms arise to 
eliminate or attenuate damage (Zhang et al. 2022b). These 
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include the directional movements of higher plants, such as 
hydrotropism, phototropism, and gravitropism, which were 
acquired over time as they adapted to the natural environ-
ment (Fig. 1). Well-developed roots anchor plants in the soil 
for better nutrient uptake. The positive groundward motion 
of roots is necessary for plants to obtain nutrients and water, 
while their ultimate, long-term bending angle is the key to 
nutrient utilization by the root tip. The response of the root is 
complex when sensing changes in gravity vectors, obstacles, 
and other stimuli (Toal et al. 2018).

The process of root growth gravitropism is divided into 
three main components: gravity perception, signal transduc-
tion, and differential growth. In this review, we discuss the 
currently validated understanding of these three stages of 
root geotropism and summarize the findings of the molecular 
mechanisms involved in the formation of gravitropism in the 
incipient roots of higher plants. This paper provides a new 
perspective on root growth research by summarizing and 
analyzing the theory of root geotropism.

Gravity perception

Starch‑equilibrium stone hypothesis

Beginning with Knight’s (1806) proposal that gravity con-
trols the direction of root growth, a theoretical system on 
root gravitropism has gradually been established. The amy-
loplast-equilibrium theory was first proposed by Haberlandt 
(1900), who discovered freely moving starch grains in the 
chloroplasts and white bodies of purple duck-toed grass stem 
nodule cells and called them otoliths or equilibrium stones. 
This theory suggests that starch grains sense gravity and 
are deposited in the endoplasmic reticulum. This triggers a 
signal transduction cascade reaction that allows the resulting 
signal molecules to be transmitted to gravity-sensing sites in 
the root elongation zone, ultimately achieving gravitational 
root growth (Němec 1900). Altered starch density affects 

the root’s response to gravitational stimuli. Starch-deficient 
and starch-free mutants have now been discovered, includ-
ing Nicotiana plumbaginifolia and Arabidopsis thaliana; the 
density of amyloplasts in these mutants is much lower than 
in the wild type (WT) (Lin et al. 1988; Kiss et al. 1989; 
Caspar and Pickard 1989; Masson PH et al. 1995). Moreo-
ver, few mutant amyloplasts are deposited at the bottom of 
the cell, which leads to a significantly weaker tendency for 
groundward root growth. In Arabidopsis, artemisinin can 
interfere with the response of roots to gravity by limiting 
the number of amylopectin grains in root tips (Yan et al. 
2018). The application of 3-nitrophthalic acid or 1-naph-
thaleneacetic acid (1-NAA) to Arabidopsis seedlings leads 
to a significant increase in starch grain accumulation in the 
root tip relative to dimethyl sulfoxide treatment and to a 
faster rate of groundward growth (Zhang et al. 2019b). This 
evidence suggests that starch is important to the perception 
of gravity through the primitive root. The columnar cells 
in the root crown, with their dense starch granules, are the 
locus of the response of the vascular plant root to gravity 
(Morita 2010). This explains Barlow’s (1974) suggestion 
that the perception of gravity in maize is diminished after 
the removal of the root crown.

Protoplasm hypothesis

Although most authors support the starch-equilibrium 
stone hypothesis, it remains controversial whether this the-
ory is the only basis for the groundward growth of roots 
in higher plants (Richter et al. 2019; Ishikawa and Evans 
1990) showed experimentally that the root tip is not the only 
gravity-sensing tissue, and it was found that plants could 
still sense gravity after the removal of the root crown (Blan-
caflor et al. 1998). This phenomenon was verified in maize 
seedlings (Edelmann et al. 2018). Wayne and Staves (1996) 
proposed the protoplast hypothesis, which holds that plant 
cells use the buoyancy in their protoplasts as a medium to 
sense gravity and that gravity can circulate protoplasts. As 

Fig. 1  Arabidopsis seedling root and hypocotyl develop opposite cur-
vature responses to gravistimulation. Overlaid images of a 4-day-old 
Arabidopsis seedling (Col ecotype) responding to gravistimulation. 

Images were taken every 90 min. Overlaid images are false-colored 
differently with photoshop to better illustrate organ bending. (SU 
et al. 2017)
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the flow of protoplasts in the gravitational field changes, the 
tension between the upper cell wall and the cell membrane 
is enhanced. The tension of the cell membrane then changes, 
which activates tension-sensitive ion channels on the plasma 
membrane (PM). This changes the concentration of  Ca2+ 
in the cytoplasm, triggering downstream signaling and ulti-
mately causing the gravity-bending growth of the root.

Gravity perception model

Perbal (1999) suggested that plants may have derived mul-
tiple gravity-sensing mechanisms during evolution and that 
the starch-equilibrium stone hypothesis and the protoplast 
hypothesis may act simultaneously during gravity percep-
tion in root growth. Researchers have experimentally tested 
two models to describe how physical signals are converted 
into chemical signals after deposition of amyloplasts in root 
column cells. One study suggested that the deposited amy-
loplasts exert pressure on sensitive PM in resting cells, thus 
opening mechanosensitive ion channels in the membrane 
and releasing signaling molecules such as calcium ions 
that trigger downstream signaling (Su et al. 2017). Another 
model, proposed by Limbach et al. (2005), suggested that 
the rootstock senses gravity not through starch deposition in 
the endoplasmic reticulum or pressure in the protoplasm but 
rather through some component of the surface of the depos-
ited amyloplast that is in direct contact with the membrane-
bound receptor; this is known as the ligand-receptor model.

In sum, starch is indispensable for the process of grav-
ity perception in plant roots. In recent years, it has been 
found that, in addition to starch, IAA is also essential for 
gravity perception and starch accumulation in plant root 
tips (Zhang et al. 2019b). However, the establishment of the 
specific mechanisms of gravity perception requires further 
investigation.

Signal transduction

Column root crown cells sense gravity in roots, but the grav-
itropic response occurs in elongation zone cells (Han et al. 
2021). Starch grains in higher plants move vectorially under 
the effect of gravity (Zhang and Friml 2019a). The gravity-
stimulated deposition of starch grains leads to the release 
of a downstream signal from the endoplasmic reticulum, 
which causes gravity tropism of roots (Kiss et al. 1989; 
Evans et al. 1986). This downstream signal is IAA, which 
is synthesized in the developing leaf primordia and stem tip 
and then is transported to the target tissue. It is polarized and 
transported by a carrier. Quantitative biochemical analysis 
of IAA levels and in vivo expression analysis using IAA 
response or the biosensing of IAA levels have revealed the 

presence of a lateral IAA gradient in root tips subjected to 
gravity stimulation (Baldwin et al. 2013).

Transport of IAA in plant roots

In a previous study, labeling IAA with the IAA response ele-
ments DR5 and the IAA2 and IAA sensor DII 28 showed the 
location and differential accumulation of IAA distribution 
in roots under gravity (Brunoud et al. 2012). The Cholodny-
Went theory suggests that the asymmetric distribution of 
IAA in plants causes geotropic bending growth in the roots 
(Mesland 1992). IAA is usually transported between cells 
in polar transport mode, which is primarily regulated by the 
IAA influx carrier AUX1 and the IAA efflux carrier protein 
PIN family in concert (Bennett et al. 1996; Han et al. 2021).

There are three members of the AUX1/LAX gene family 
in Arabidopsis: AUX1, LAX2, and LAX3 (Swarup and Bho-
sale 2019). Only AUX1 is expressed in the lateral root cap 
(LRC), columella, and epidermis, and it plays a root-directed 
role. The functions of these carriers are to sense, transmit, 
and respond to gravity (Swarup et al. 2001, 2004). When 
AUX1 protein is deficient, the rate of IAA transport is lim-
ited, and the gravitational perception of roots is diminished. 
In a previous study, this was alleviated by applying NAA to 
the aux1 mutant (Marchant et al. 1999). By examining the 
local expression of an HA-epitope-tagged AUX1 sequence 
(HA-AUX1) in Arabidopsis root tissues, Swarup et al. (2005) 
found that root-directed growth requires both the LRC and 
epidermal cells to express AUX1, which implies that both 
tissues have IAA transport functions. Measurement of the 
root bending amplitude of WT and Osaux1 mutants in Oryza 
sativa has revealed that this angle is reduced in the absence 
of the AUX1 gene (Taylor et al. 2021). This is further evi-
dence of the important role of AUX1 for groundward root 
growth.

Genomic analysis of Arabidopsis has revealed eight major 
homologs of the PIN gene family, PIN1–PIN8 (Chen et al. 
1998) and some efflux carrier proteins have been found to be 
localized to the root tip (Müller et al. 2014). Among them, 
small column cells contain PIN3, PIN4, and PIN7, whereas 
LRC, epidermal, and cortical cells express PIN2 (Friml et al. 
2002; Blilou et al. 2005). In Band et al. (2012), DII-Venus, 
a novel IAA sensor, was combined with a mathematical 
modeling approach; IAA in the root was asymmetrically 
distributed when stimulated by gravity for a short period, 
and its concentration was significantly greater on the inner 
side of the curved root than on the outer side (Konstanti-
nova et al. 2021). This may be because gravity stimulates 
PIN3/7 to reposition to the earthward side of a columnar 
cell, which results in the initial lateral IAA gradient (Swarup 
et al. 2005).

PIN protein phosphorylation may be responsible for this 
asymmetric distribution. It depends on the small GTPase of 
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the auxin response factor (ARF) associated with GNOM-
type GDP/GTP exchange factor (Ganguly et  al. 2012). 
Researchers have found that both PID/WAGs kinase activity 
and PIN phosphorylation regulate PIN3 protein relocaliza-
tion in roots within the gravitational field. When PID/WAGs 
are downregulated, PIN3 localization is enhanced and roots 
grow in a geotropic bend (Grones et al. 2018). PIN2 induces 
asymmetric localization of IAA, allowing expression of the 
inward and outward flow promoters AUX1 and PIN2 and 
directing IAA from the root crown to the elongation zone 
(Luschnig et al. 1998; Chen et al. 1998). Moreover, AUX1 
usually regulates root reorientation upstream of PIN2 (Liu 
et al. 2018). According to Blilou et al. (2005), PIN2 expres-
sion in the distal elongation zone produces a protein that is 
localized to the epidermal cells at the root apex and LRC, 
which tugs on PIN2 to induce the movement of IAA. PIN3/7 
are expressed in mid-column sheath cells and transport IAA 
from the distal elongation zone to the root crown, which 
forms an IAA return loop (Fig. 2). This loop is important 
for root gravity. Differences in IAA concentrations lead to 
differential cell growth, and PIN-mediated IAA distribution 
controls cell division and elongation (Blilou et al. 2005; 
Sato et al. 2015). Wang et al. (2022b) demonstrated the 

importance of PIN1 in Oryza sativa. Compared to WT, the 
roots of the ospin1b mutant grow non-geotropically, prob-
ably because OsPIN1b regulates root reversion through sig-
nals such as light and nutrients. This complements the study 
of PIN proteins in plant root-oriented heaviness.

Regulation of plant root gravitropism by LAZY1

In addition to the PIN and AUX1/LAX gene families, the 
LAZY1 gene family also has an important role in plant grav-
itropism (Jiao et al. 2021). In this family, AtNGR1 (LZY2), 
AtNGR2 (LZY3), and AtNGR3 (LZY4) are expressed in rhizo-
sphere cells (Yoshihara and Spalding 2017). In recent years, 
researchers have found that ngr mutant roots of Medicago 
truncatula, Arabidopsis, and Lotus japonicus exhibit nega-
tive geotropic growth (Ge and Chen 2016, 2019; Chen et al. 
2020). Further studies of atngr1;2;3 mutants have led to the 
conclusion that the counter-transportation of PIN3 in rootlet 
cells in the mutant to the cell membrane on the outer side in 
response to gravity stimulation may be the cause of this phe-
nomenon. The LAZY1 gene family may thus be the bridge 
between gravity-induced amyloplast migration and direc-
tional IAA transport (Nakamura et al. 2019; Furutani et al. 
2020) further used a yeast two-hybrid screen with an interac-
tion assay and found that the BRX structural domain of the 
RCC1-like (RLD) protein and the CCL structural domain of 
LZY in Arabidopsis interacted in vitro to regulate ground-
ward root growth. LZY3 follows the gravitational direction 
of amyloplast deposition and enriches RLD1 polarity into 
the PM of small column cells. RLD may lead to asymmetric 
distribution of IAA by regulating the transport of PIN3.

Transcriptome analysis of root gravitropism 
mechanism

In the systematic study of root-directed growth gene regu-
lation, there has been a breakthrough regarding the tran-
scriptional level of root-directed growth. A HUB gene with 
high transcriptional activity in Arabidopsis was identified 
(Manian et al. 2021) and these genes are involved in cell wall 
Gene Regulatory Networks only in spaceflight micrograv-
ity. Network analyses suggest that Xyloglucan endoglycosyl 
transferases/hydrolases (XTHs) modify cell walls and medi-
ate cell growth in Arabidopsis in a microgravity environ-
ment. In microgravity conditions, XTHs act on the cell wall 
to produce greater elongation, leading to cell swelling and 
root deflection. Aubry-Hivet et al. (2014) analyzed the early 
changes in Arabidopsis WT and mutant root transcriptome 
under microgravity, hyper-gravity, and other treatments, and 
found that 15 genes in the root responsive to IAA gene ontol-
ogy (GO) classification were upregulated in WT and pin2 
mutants but not significantly in pin3 mutants. This suggests 
that the regulation of IAA-responsive gene expression in 

Fig. 2  Return pattern of root IAA transport. Plant root growth toward 
gravitropism is regulated by the IAA in-flow carrier AUX1 and the 
out-flow carrier PIN family of proteins. Under the effect of gravity, 
AUX1 promotes the expression of PIN2 in epidermal cells and tracts 
PIN2 to induce IAA movement to the elongation zone; meanwhile, 
PIN3/7 expression in the mid-column sheath changes the IAA con-
centration therein and transports IAA from the distal elongation zone 
to the root crown, finally forming a return loop of IAA to make the 
root growth in the direction of gravity
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WT during transient microgravity depends on PIN3-medi-
ated IAA flux. Fuji et al. (2018) subjected seedlings with 
waterward and gravity responses to transcriptome analysis 
of RNA-Seq gene expression. In all, 21 and 45 genes were 
asymmetrically expressed in the root under water and grav-
ity induction, respectively, and 5 genes were identical. GO 
analysis revealed that key genes regulating IAA were signifi-
cantly enriched in the concave side of the root compared to 
the convex side during root growth toward water or toward 
gravity (Fuji et al. 2018).

Geotropic growth of roots

Gravitropism of starch and roots

Starch is a macromolecular carbohydrate that is formed by 
the polymerization of glucose molecules. Altered starch 
density affects the sensitivity of the root to gravitational 
stimuli. With starch-deficient mutants as carriers, the plas-
tids still contain limited amounts of starch, but their density 
increases somewhat. The amyloplasts at this point are not 
sufficient to allow for post-sedimentation response to gravity. 
However, when centrifugal forces are high, these amylo-
plasts continue to precipitate, and plants regain geotropism 
(Vitha et al. 2007). Conversely, mutations such as Arabi-
dopsis sex1, which affect starch-degrading enzyme activity, 
may enhance gravity-sensing sensitivity by producing larger 
amyloplasts (Lin et al. 1988; Vitha et al. 2007). Although 
there is substantial evidence for the important role of starch 
grains in root geotropism, starch deposition may not be the 
only mechanism. Mancuso et al. (2006) found that the root 
of maize seedlings remains somewhat gravitropic after exci-
sion of the root crown, a response that could be enhanced 
by manipulating myosin activity or by disrupting actin fila-
ments. Despite the absence of precipitated amyloplasts in 
this region, gravity sensing may occur through protoplast 
pressure (Su et al. 2017).

Gravitropism of calcium ions and roots

Calcium is abundant in plants. It is important in the compo-
sition of the body structure of the plant and has a key role 
in metabolism and signaling (White et al. 2002). One study 
found that  Ca2+ is a secondary messenger that transmits 
gravity signals (Hepler et al. 1985). External stimuli affect 
cellular  Ca2+ concentration balance by triggering transient 
changes in  Ca2+ concentration in cytoplasm and subcellular 
structures (Kordyum 2003).

The large family of  Ca2+-sensing proteins in plants 
contains proteins composed of calcineurin B-like proteins 
(CBLs), calmodulin-like proteins (CMLs), and calmodu-
lin (CaM) with CBL-interacting protein kinases, as well 

as  Ca2+-dependent protein kinases (CDPKs) and related 
kinases (Batistic and Kudla 2012; Wang et al. 2021; Har-
mon et al. 2000) found that Arabidopsis has 34 CDPK-
encoding genes, and the CDPK family is among the largest 
 Ca2+ sensor families.  Ca2+ can stimulate CDPKs to decode 
and translate calcium signals (Cheng et al. 2002). The cal-
cium-dependent ion channel protein located on the vesicle 
membrane releases  Ca2+ from the vesicle to regulate abiotic 
stress responses in stomatal guard cells (Ja´slan et al. 2019). 
Flooding stress leads to root hypoxia in plants, and knocking 
down ACA   (Ca2+-ATPase) and CAX  (Ca2+/H+ exchanger) 
has shown that ACA  alleviates the damage to the root by 
knocking down its  Ca2+ content (Wang et al. 2016). Within 
plant cells, changes in  Ca2+ are sensed by major response 
proteins or sensors. Among them, CMLs, CaM, and CBLs 
can bind to free  Ca2+ in the cytoplasm, which regulates their 
activity and thus triggers downstream physiochemical effects 
(DeFalco et al. 2010; Tian et al. 2020; Grenzi et al. 2021).

Ca2+ in plant cells is transported through specific trans-
port sites (Fig. 3), and transient elevations initiate cellular 
responses to various environmental, developmental, and 
pathological stresses (White 2000). Amyloplast sedimenta-
tion can cause  Ca2+ exocytosis from the endoplasmic reticu-
lum to the cytoplasm, and external environmental stimuli 
and endogenous signals can also cause transient increases in 
cytoplasmic  Ca2+ concentrations, which ultimately activate 
related proteins downstream directly or indirectly (Sander 
et al. 2002; Belyavskaya 1992) found that different stimuli 
result in elevated cytoplasmic  Ca2+ levels and completely 
inhibit Pisum sativum seedling root geotropism, which pro-
vides evidence for the role of  Ca2+ on root geotropism. Lee 
et al. (1983) reported asymmetric  Ca2+ gradients in roots 
under gravity, such as those of Pisum sativum and Zea mays. 
Subsequently, Lee et al. (1984) found that the sensitivity 
of groundward root growth was reduced by applying  Ca2+ 
chelate. The role of  Ca2+ in the root gravity growth of higher 
plants was further verified.  Ca2+ is involved in regulating the 
differential changes in extracellular pH around the elonga-
tion zone at the apical and bottom sides of gravity-stimulated 
roots in response to IAA, which leads to changes in root 
orientation (Su et al. 2017).

Plant hormones and root gravitropism

Plant hormones including IAA, cytokinin (CTK), gibberel-
lin (GA), and ethylene (ET) are key signaling compounds 
that regulate plant growth, development, and adaptation 
responses to environmental stresses. Root system architec-
ture (RSA) is affected by hormonal crosstalk and hormone-
environment interactions that are integrated with plant 
biology (Liu et al. 2014). These factors integrate with the 
plant signaling system through specific downstream regu-
lators, which leads to changes in plant signaling pathways 
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(Sengupta and Reddy 2018; Sharma et al. 2021). Šimášková 
et al. (2015) found that CTK induces the expression of 
PIN1/7 through the CTK response factors CRF2/6, thereby 
regulating RSA. Brassinosteroids can alter the gravitropism 
of Zea mays roots by regulating reactive oxygen species 
(ROS) metabolism and other pathways (Trevisan et  al. 
2020).

IAA can modulate plant perception and response to grav-
ity (Zhang et al. 2019b). Approaches based on plant physiol-
ogy, genetics, and cell biology revealed that the signal medi-
ating the gravimetric response is IAA (Friml et al. 2002). 
Following gravity sensing, PIN2 and AUX1 control IAA 
transport aboveground, while PIN3/7 shift to the gravity-
facing side of the columnar cells and mediate IAA reposi-
tioning (Bennett et al. 1996; Utsuno et al. 1998; Luschnig 
et al. 1998; Kleine-Vehn et al. 2010). This promotes high 
IAA concentrations on the groundward side, which inhib-
its differential cell growth and leads to a groundward root 
curvature. The asymmetric IAA gradient in plant roots is 
regulated by several IAA signaling molecules, including 
ARF, the Auxin/IAA (Aux/IAA) family, and small auxin-
upregulated RNA (SAUR ), among others (Luo et al. 2018). 
Among these, the ubiquitination of Aux/IAA proteins can 
inhibit the activity of ARFs, thus regulating IAA activity 
(Yu et al. 2022). The arf10/16 double mutant of Arabidop-
sis significantly suppresses the positive gravitropism of its 
roots compared to WT, perhaps because ARF10 and ARF16 
control root crown formation by limiting cell division and 
differentiation, thereby altering the sensitivity of their roots 

to gravity (Wang et al. 2005). ARF7 can induce the asym-
metric distribution of downstream methyltransferase, which 
converts IAA from inactive methylindole-3-acetate to bio-
logically active IAA, thereby enhancing the concentration 
gradient of IAA in the hypocotyl and creating a different 
growth curvature to gravity (Zhang et al. 2022a).

ET can regulate root growth by affecting gravity-induced 
lateral transport of IAA to alter root orientation. This pro-
cess may interfere with the transport of IAA to alter the 
adaptation to gravitational stimuli (Lee et al. 1990). Root 
elongation is inhibited by ET in the transport of IAA through 
PIN2. The intrinsic mechanism is the involvement of the 
ET-responsive HD-Zip gene HB52 in ET-induced primary 
root elongation in Arabidopsis. HB52 inhibits root growth 
by regulating the expression of the IAA transporter-related 
genes WAG1, WAG2, and PIN2 (Miao et al. 2018) (Fig. 4).

The PIN transporter within the root tip has been shown 
to alter local IAA concentration changes, which induces the 
expression of downstream key genes for starch synthesis 
(ADG1, SS4, and PGM) and ultimately alters the strength 
of gravity perception (Zhang et al. 2019b). GA is essen-
tial for the germination, growth, and development process 
of plant seeds (Richards et al. 2001). Abscisic acid (ABA) 
can block GA biosynthesis and inhibit seed growth (Meng 
et al. 2016). An embryo synthesizes biologically active 
GAs, which are then transported to the dextrin layer dur-
ing germination. GA-induced cGMP catalyzes the synthe-
sis of the α-amylase gene by regulating the transcription 
of GAMYB to enable its expression. Finally, to hydrolyze 

Fig. 3  Ca2+ transport pathway.   
 Ca2+ transport in plants is 
achieved through  Ca2+ transport 
channels and sites of action on 
the plasma membrane of orga-
nelles. Reference Tong et al. 
(2021) plotted
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Fig. 4  Plant hormone interac-
tions affect root growth. The 
action of plant hormones on 
RSA. CTK (KT, ZT, 6-BA) 
induces the expression of 
PIN1/7 through the cytokinin 
response factor CRF2/6; HB52, 
the gene of ET response to 
HD-Zip, inhibits root growth 
by regulating the expression 
of IAA transport-related genes 
PIN2, WAG1, and WAG2. Both 
CTK and ET ultimately act on 
the RSA by altering the IAA.

Fig. 5  Regulation of starch 
metabolism. Starch metabo-
lism in plant seeds. When IAA 
concentration changes, the 
expression of its downstream 
starch synthesis genes (SS4, 
PGM, and ADG1) is induced, 
thus altering the starch con-
tent. When seeds germinate, 
biologically active GAs are 
synthesized in the embryo and 
transported to the dextrin layer. 
GA regulates the transcription 
of GAMYB through the cGMP 
pathway to enable the expres-
sion of α-amylase genes, which 
catalyze their synthesis. Finally, 
α-amylase in the paste layer is 
secreted into the endosperm, 
thereby altering the starch 
content. ABA acts on starch by 
blocking GA biosynthesis
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starch, α-amylase is secreted into the endosperm (Kaneko 
et al. 2002), thus affecting changes in starch quantity and 
leading to changes in the direction of root growth (Fig. 5).

Cell wall and root gravitropism

The cell wall is an important structure that protects plant 
cells. It is mainly composed of cellulose, hemicellulose, 
lignin, and other components. Cell growth is constrained 
by the cell wall, and differences in cell size and shape in the 
root elongation zone can lead to changes in the growth phe-
notype of the plant body, such as the gravity growth of roots. 
Voids in the cell wall can be rapidly expanded by acidifica-
tion with IAA, which activates cell wall localization proteins 
and loosens the cell wall; this growth mechanism follows 
acid growth theory (McQueen-Mason et al. 1992).

It has been theorized that IAA induces proton efflux by 
activating the p-type  H+-ATPase proteins located at PM, 
which leads to ectoplasmic acidification (Hager 2003). 
Increased  H+ concentration activates the cell wall by 
expanding the activity of  H+, which leads to cell elonga-
tion (McQueen-Mason et al. 1992). Receptor-like kinases 
(RLKs) have an important role in regulating the growth and 
development physiology of higher plants (Walker and Zhang 
1990). RLKs are in the LRR XI subfamily. Most of their 
functions have been verified, but three have not been char-
acterized. The researchers found an increase in the number 
of cells in the apical meristem of RLKs triple mutants and 
an increase in the size of cells in the mature and elongated 
regions (Wang et al. 2022a).

ROS and root gravitropism

ROS are a class of metabolites with high reactive activity pro-
duced by the progressive reduction of  O2 (Mittler et al. 2011). 
 H2O2, a major component in the ROS system, plays a criti-
cal role in the root-directed growth pathway.  H2O2 in plants 
maintains its balance through production and removal path-
ways (Fig. 6); it can mediate the signaling pathway of ABA 
to induce stomata closure and, through NADPH oxidase, can 

enable ABA to activate  H2O2 synthesis (Pei et al. 2000), lateral 
root development (Potikha et al. 1999), and cell wall expansion 
(Su et al. 2006). The process of IAA regulation of the gravi-
tonic response is also mediated by  H2O2 (Neill et al. 2002).

Li et al. (2007) found that exogenous  H2O2 promotes adven-
titious root formation in mung bean and cucumber seedlings 
and increases the germination rate of Pisum sativum by inter-
acting with phytohormones (Barba-Espin et al. 2010). Sub-
sequent studies have found that treatment of sallow seeds 
with  H2O2 results in non-terrestrial differential growth of the 
primary roots of seedlings (Jiang et al. 2012; Li et al. 2015) 
treated Pisum sativum seeds with  H2O2 to verify this phenom-
enon and found that primary root development was caused by 
the uneven distribution of hormones (IAA,  GA3) on both the 
inner and outer sides of the curved root. Appropriate exog-
enous  H2O2 can regulate  Ca2+ concentration and IAA distribu-
tion in Arabidopsis root tip cells during early germination to 
alter primary root growth (Zhou et al. 2018).

Many plant hormones produce ROS when regulating 
growth and developmental mechanisms (Vivancos et al. 
2010). ROS and hormone interactions not only regulate plant 
growth and development but can also improve stress toler-
ance (Xia et al. 2015).  H2O2 downregulates ABA biosyn-
thesis while upregulating GA biosynthesis (Shu et al. 2015, 
2018). This in turn regulates α-amylase activity (Kaneko 
et al. 2002), which leads to changes in the number of starch 
grains and alters the gravitational sensitivity of plant roots. 
IAA induces ROS accumulation during the induction of 
gravity growth of roots, and groundward bending depends on 
ROS. In Joo et al. (2001), in the early stages of the ground-
ward response, the IAA concentration in the concave surface 
of the maize root was higher while there was a transient 
increase in ROS concentration in the root. This asymmetric 
ROS distribution is necessary for the gravitational growth of 
roots, which is diminished by the treatment of maize roots 
with ROS scavengers. Signaling between ROS and IAA 
occurs during the gravity growth of roots oxidizing active 
IAA into the inactive and non-transported form oxIAA (Peer 
et al. 2013).  H2O2 may be involved in the regulation of cal-
cium signaling; for example, the involvement of  H2O2 pro-
duced by tobacco cell inducers increases the concentration 
of  Ca2+, probably due to the activation of  H2O2-sensitive 
 Ca2+ channels in PM (Lecourieux et al. 2002). NADPH 
oxidase regulates the expansion of plant cells through the 
activation of hyperpolarized  Ca2+ channels by ROS, thereby 
regulating cell development (Foreman et al. 2003).

Conclusion

This paper reviews the response pathways and interre-
lationships among key signaling molecules during root 
gravitropism in higher plants to provide a reference for 

Fig. 6  Production and removal of hydrogen peroxide. CAT: catalase, 
NOX: NADPH oxidase, SOD: superoxide dismutase, APX: ascorbate 
peroxidase, GPX: glutathione peroxidase, NADPH: nicotinamide 
adenine dinucleotide phosphate, NADP: nicotinamide adenine dinu-
cleotide phosphate.  O2 forms  O2.− by NOX and converts NADPH to 
NADP,  O2.− to  H2O2 by SOD, and finally to  H2O and  O2 by CAT, 
APX, and GPX.
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the study of root gravitropism. Under gravity stimula-
tion, amyloplasts settle in horizontally placed plant root 
tip cells, resulting in PIN3/7 re-localization in the rootlet 
cells. At the same time, PIN2 is degraded asymmetrically 
on both sides of the root, prompting the flow of IAA from 
the root crown to the elongation zone, leading to a high 
IAA concentration that inhibits lower cell growth (Mul-
ler et al. 2018). Furthermore, starch deposition causes 
fluctuations in cytoplasmic  Ca2+ content, which are posi-
tively correlated with changes in IAA and trigger down-
stream plasma ectodomain ROS production and changes 
in pH (Sato et al. 2015). Cells on both sides of the root 
are induced to grow asymmetrically, and the root thus 
bends toward gravity (Fig. 7). The signal transduction 

mechanisms involved in the occurrence of gravity growth 
of roots contain complex physiological and biochemical 
responses, and the following questions still need to be 
explored to clarify their interactions and links to gravity 
growth of roots:

(1) How is thephysical signal of gravity translated into 
intracellular chemical signals?

(2) Is the rootperception of groundward growth triggered 
by one mechanism or multiplemechanisms interacting 
with each other?

(3) How areunknown pathways involved in the signal trans-
duction process of root growthtoward gravity carried 
out, and how can they be verified?

Fig. 7  Model diagram of gravimetric growth mechanism of plant 
roots. Mechanism of gravity growth signal transduction in plant roots. 
① When plant roots are placed flat, the root crown senses gravity, and 
then starch grains are deposited in the direction of gravity (the ini-
tiation of downstream signaling may be the result of the interplay of 
multiple models of gravity perception). ② When starch is deposited 
into the endoplasmic reticulum of the cell, it causes the release of 
 Ca2+ from it into the cytoplasm, changing the  Ca2+ concentration in 
the cell. ③ At the same time, starch deposition alters the activity of 
LAZY1, causing the asymmetric distribution of IAA on both sides of 
the root under the action of endocytic and efflux carriers. ④ And  Ca2+ 

in the cytoplasm can CaM binding activate the activity of ATPase 
on the plasma membrane, open ion channels and transmit the signal 
molecules to the outside of the cell. ⑤ The acid growth theory sug-
gests that IAA activates the p-type  H+-ATPase protein to cause pro-
ton efflux, which subsequently triggers changes in extracellular ROS 
and pH; an increase in  H+ concentration can activate cell wall exten-
sion and activate the cell wall, thus altering cell growth. ⑥The effect 
of gravity differentiates the IAA concentrations on both sides of the 
transversely placed roots, resulting in different  H+ concentrations, 
asymmetric cell growth, and eventually root growth toward heavy 
curvature  
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(4) Exogenous  H2O2application causes different ground-
oriented responses in the primary roots ofdifferent spe-
cies of plants (Li et al. 2016); Leguminosae root grows 
non-geotropically under certainconcentrations, while 
Zea mays doesnot: What is the reason for this? Is it due 
to the difference in the mechanismfor gravity sensing in 
the roots due to species variability or to a differencein 
root resistance?
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