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Abstract
Micronutrient silicon (Si) is receiving increasing attention in agriculture for its benefits to plant growth and stress tolerance. 
Plants have developed a highly efficient Si-transport mechanism that entails the localization of Si-transporter proteins such 
as Low silicon1 (Lsi1), Low silicon2 (Lsi2), Low silicon3 (Lsi3), and Low silicon6 (Lsi6), as well as the expression profil-
ing that establishes a highly coordinated network between these proteins, facilitating Si uptake and accumulation. It has 
also been discovered that silicon (Si) can promote plant growth and alleviate a variety of biological and abiotic stressors. In 
this review paper, the effects of Si on plant–pathogen interactions are analyzed from physical, biochemical, and molecular 
perspectives. The addition of silica improves the plant’s physiological and chemical characteristics, including its defence 
mechanisms, hormonal modulation, and gene expression patterns. Si activates defence-related enzymes, promotes the pro-
duction of antimicrobial compounds, regulates signal pathways, and induces the expression of defence-related genes. This 
results in combined resistance that dominates the biochemical/molecular resistance during plant–pathogen interactions. 
Furthermore, Si alleviates the toxic effects of abiotic stresses such as salt stress, drought, and heavy metals. Silicon’s ability 
to manage various plant stressors, the mechanisms of silicon-enhanced resistance and silicon’s inhibitory effects on pathogens 
in vitro are also discussed in this review paper. By integrating the information presented, a clear relationship between silicon 
treatments and plant growth promotion can be established. This information is valuable for understanding the role of Si in 
agriculture and improving the utilization of Si fertilizers and sources for agricultural production.

Keywords Silicon · Micronutrient · Signalling cascade · Biotic stress · Abiotic stress · Plant growth · Plant pathogen · Lsi1 · 
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Abbreviations
Si  Silicon
SiO2  Silicon dioxide
(Si(OH)4)  Monosilicic acid
NIP  Nodulin-26 like intrinsic proteins
NPA  Asn-Pro-Ala
CHI  Chitinases
POX/POD  Peroxidase
EVB  Enlarged vascular bundle
DVB  Diffuse vascular bundle
SOD  Superoxide dismutase
APX  Ascorbate peroxidase
CAT   Catalase
PPO  Polyphenol oxidases
PAL  Phenylalanine ammonia-lyase
H2O2  Hydrogen peroxide
K2SiO3  Potassium silicate
EDX  Energy-dispersive x-ray
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SiO2  Silicon dioxide
ACN  Anthocyanins
CAL  Callose
LOX  Lipoxygenase
CHS  Chalcone synthase
GLU  β-1,3-Glucanase
PR  Pathogenesis-related protein
SA  Salicylic acid
JA  Jasmonic acid
ET  Ethylene
GA  Gallic acid
TEM  Transmission electron microscopy
AUDPC  Area under the disease progression curve
NPR1  Nonexpresser of PR Genes1
JAZ1  Jasmonate ZIM-domain protein 1
UV  Ultraviolet
H2SiO3  Metasilicic acid
PSII  Photosystem II
Nramp  Natural resistance-associated macrophage 

protein
OsHMA2  Oryza sativa heavy metal ATPase 2
PDF 1.2  Plant defensin 1.2
ROS  Reactive oxygen species
GSTs  Glutathione S-transferases
GR  Glutathione reductase
MDA  Malondialdehyde
MDHAR  Monodehydroascorbate reductase
SiNPs  Silver nanoparticles
Cr  Chromium
NO  Nitric oxide
H2S  Hydrogen sulphide
CAD  Cinnamyl alcohol dehydrogenase
PGIP  Polygalactouranase inhibitor protein
PA  Phosphatase associated to defense
ERF  Ethylene response factor
JERF3  Jasmonate and ethylene responsive factor 3
TSRF  Tomato stress-responsive factor
ACCO  1-Aminocyclopropane-1-carboxylate oxidase
FD-1  Ferredoxin-I
WRKY II  WRKY group II transcription factor

Introduction

Although silicon (Si) is the most abundant element in the 
lithosphere, its inclusion in a range of essential components 
has not yet been provided. Si has a critical role in stimulat-
ing plant growth and development. The physiological and 
metabolic features of plants are greatly influenced by Si. 
Even though it is a non-essential element, its presence is 
30%, the majority of which may be found in minerals. In 
general, Si is regarded as a non-essential element for plant 
species, although its inclusion in fertilizer formulations as 

a favourable element helps plants cope with stress circum-
stances (López-Pérez et al. 2018). When growing plants in 
soil-free settings, Si have a positive effect on their growth 
(Luyckx et al. 2017). Abiotic stressors such as drought, 
salinity, heat, cold, metal toxicity and lodging can all be alle-
viated by adding Si to plants. Silicon’s varied contribution 
to plant growth and yield, increased mechanical strength, 
improved light absorption, and resilience to several stresses, 
has earned it the designation of “quasi-essential” from the 
agronomic industry (Bhardwaj et al. 2022). Additionally, Si 
enhances resistance to biotic stressors, such as plant diseases 
and insect pests (Van Bockhaven et al. 2013). Plant tissues 
such as roots, leaves, stems and hulls are mostly responsible 
for Si’s beneficial impacts (Fig. 1). The coating of silicon 
dioxide  (SiO2) acts as a physical barrier, preventing fungus 
from penetrating the plant tissues and insects from probing 
and biting (Ma 2004). The plant’s stress signalling system 
interacts with numerous important molecules in soluble Si, 
suggesting that it may have a role in increasing host resist-
ance to disease (Rodrigues et al. 2004). A wide variety of 
important genes, associated with stress and regulating plant 
growth and development, are activated in response to Si 
absorption (Luyckx et al. 2017; Zargar et al. 2019; Islam 
et al. 2020; Mir et al. 2022). Multiple specialized and non-
specific transporters function together to deliver Si into the 
aerial portions of crop plants. Numerous genes, including 
Low silicon 1 (Lsi1), Low silicon 2 (Lsi2), Low silicon 3 
(Lsi3), and Low silicon 6 (Lsi6), are involved in Si absorp-
tion in roots and aerial parts in several field crops (Wang and 
Munshi 2015; Ratcliffe et al. 2017; Ouellette et al. 2017).

Silicon effectively inhibits the toxicity of elements such 
as Al and Mn, confers resistance to pests and diseases, 
and even allows the production of nanostructures utiliz-
ing organic molecules, enzymes, or organisms as catalysts. 
It improves photosynthesis, reduces transpiration, and 
increases plant resistance to biotic and abiotic stresses by 
regulating the electron transport chain, cellular homeosta-
sis, oxidative phosphorylation, and photosynthetic complex. 
Proposed mechanisms include creating cell-wall barriers 
[made through Si(OH)4 polymerization] for tolerance to 
infection or chemical resistance, modulating antioxidant 
enzymes and compound synthesis, as well as nutrient uptake 
mechanisms during water stress (Soundararajan et al. 2016). 
This review synthesizes the findings of multiple studies to 
gain a deeper understanding of the interactions between Si 
and various factors that impact plant growth and health. 
The paper aims to summarize the mechanism, regulation, 
and interaction between Si and phytohormones, the role of 
Si in mediating biotic and abiotic stress, and the processes 
involved in the influx of Si into the plant through various Si-
transporters after its absorption. By summarizing the current 
state of knowledge on these topics, this review will provide 
valuable insights for further research and a foundation for 
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developing new strategies for optimizing plant growth and 
stress tolerance.

Transporters of silicon: their roles 
and expression patterns in different plant 
species

There must be some transport mechanism for Si in plants 
to reap its benefits. In soils with a pH below 9 (Ma and 
Takahashi 2002), plants absorb silicon as silicic acid, an 
uncharged monomeric molecule. The uptake, transport, 
accumulation and distribution of Si necessitate many trans-
porters (Table S1). There are two types of Si transporters in 
higher plants: channel-type and efflux transporters.

Channel‑type/influx Si transporters

Rice necessitates a significant amount of Si for growth, 
development, and yield. Hence the first Si-influx transporter 
was discovered in rice (Li et al. 2022). Si is passively trans-
ported between the external solution (i.e., apoplast) and the 
plant cells via the channel-type transporter (Lsi1; Low sili-
con 1) of Si. All of the channel-type transporters that have 
been discovered so far, including rice (Lsi6) (Yamaji et al. 

2008) in various crops such as barley (Chiba et al. 2009; 
Yamaji et al. 2012), wheat (Montpetit et al. 2012), maize, 
cucumber (Mitani et al. 2009a), pumpkin, and soybean, are 
homologs of rice Lsi1. They are aquaporin (AQP)-like pro-
teins, which are major intrinsic proteins (MIPs), a member 
of the NIP (Nod26-like intrinsic proteins) subfamily. The 
AQP family contains unique NIPs, which are exclusive to 
plants and not found in animals (Saitoh et al. 2021). Aqua-
porins are a class of membrane channel proteins that facili-
tate the translocation of aqueous molecules and other small 
ions across biological membranes (Mitani et al. 2009a). 
Despite being a passive bidirectional channel, Lsi1 collabo-
rates with an efflux Si transporter to perform the role of an 
inflow transporter of silicon in plants. The rice gene OsLsi1 
brings Si from soil solutions into the roots. Like Lsi1, Lsi6 
transports Si across plasma membranes. Lsi6 differs from 
Lsi1 in expression and subcellular localization. The plant’s 
roots express Lsi1, but it is missing from the shoots, whereas 
both roots and shoots express Lsi6. It was found that Lsi6 
expression is higher in the developing roots nearest to the 
root tip, while Lsi1 expression is higher in the mature roots. 
The side of Lsi6 closest to the vessel shows polar localiza-
tion. This suggests that Lsi6 transports Si from the xylem to 
leaf tissues (Yamaji et al. 2008).

Fig. 1  Beneficial effects of Si under various abiotic stresses. The 
degree of accumulation of Si in plant roots and shoots affects the 
degree of impact of micronutrient in the plant. The amount of Si 

accumulation in shoots is different in different plant spp. Although 
the micronutrient is available in the soil itself, still all the plant’s roots 
do not possess the ability to uptake and accumulate Si
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Efflux Si transporters

Si is exported from plant cells by the efflux transporter (Lsi2) 
of Si (Chain et al. 2009; Ma and Yamaji 2015; Deshmukh 
et al. 2015). Lsi2 was initially discovered in rice (Ma et al. 
2007), and its homologs have since been isolated from barley 
(HvLsi2), maize (ZmLsi2) (Mitani et al. 2009b), and pumpkin 
(CmLsi2). While Lsi1 relies on passive transport, Lsi2 relies 
on an active process driven by the plasma membrane proton 
gradient to transport Si (Mitani-Ueno et al. 2011). Depend-
ing on the type of plant, Lsi1 and Lsi2 have distinct patterns 
of expression in terms of their tissue and/or cellular localiza-
tion (Ma et al. 2008). The rice and barley roots express Lsi2, 
while the roots and the shoots express GmNIP2-1, GmNIP2-2, 
CmLsi1, CSiT1, and CSiT2, as well as additional homologous 
genes, including OsS6, HvLsi6, and ZmLsi6. Another trans-
porter, OsLsi3, is positioned apolarly between the dilated and 
enlarged vascular networks in the parenchyma. Si distribu-
tions in panicles were decreased in Lsi2 and Lsi3 knockouts, 
however, they were elevated in flag leaves, similar to what was 
observed in Lsi6 knockouts (Li et al. 2022).

Efficient coupling of Si influx and efflux transporters

Si uptake is facilitated by the expression of Lsi1 and Lsi2 in 
the roots. The different polarity of cell layers in rice indicates 
that cooperation between Lsi1 and Lsi2 is necessary to uptake 
nutrients (Ma et al. 2007). Exodermis and endodermis of rice 
roots have two Casparian strips that prevent the apoplastic 
movement of water and other solutes across each cell layer 
(Mitani et al. 2009a). Root maturation destroys the majority 
of cortical cells, most of which are lined by sclerenchyma, and 
forms aerenchyma, with the cell wall remnants that are left 
forming narrow, spoke-like apoplastic connections between 
the exodermis and endodermis (Yamaji and Ma 2009; Yamaji 
et al. 2012). As a result, Lsi1 imports Si from the exodermal 
cell’s distal side into the symplast, and Lsi2 exports it to the 
apoplastic connections from the proximal side. Endodermis-
located Lsi1 and exodermis-located Lsi2 are responsible for 
importing and exporting Si from the endodermis to the stele, 
respectively (Sakurai et al. 2015). Si uptake can be efficiently 
transported in a polar orientation due to the polarization of 
Lsi1 and Lsi2. The similarity in their expression patterns 
showed that root Si absorption significantly reduced when 
either Lsi1 or Lsi2 was knocked out (Yamaji et al. 2012).

Mechanism of uptake, transportation, 
and absorption of silicon

Since Si undergoes many chemical changes throughout the 
storing, depositing, and transporting stages, its concentra-
tion varies widely among plant tissues (Fig. S1A). Plants 

have their unique method for absorption and transporta-
tion of nutrients (Kaur and Greger 2019). Physiological 
observations such as plant Si content and water uptake rates 
have been used to predict three distinct Si uptake mecha-
nisms depending on water absorption (Mitani 2005; Kaur 
and Greger 2019). Plants are referred to as active systems 
when they have higher silicon absorption ability than water 
absorption ability. Plants with silicon uptake rates compara-
ble to water uptake rates are called passive systems. In con-
trast, plants with lower silicon uptake rates than water uptake 
rates are referred to as rejective system (Marron et al. 2016).

Active system

This mechanism is exemplified by silicon-accumulating 
plants such as barley and maize. Lsi1 and Lsi2 are Si trans-
porters that participate in both influx and efflux activities. 
Moreover, either one or both of them display polar localiza-
tion. Aerenchyma is present in the majority of rice root corti-
cal cells, which have the morphology of two Casparian strips 
in the exodermis and endodermis. Lsi1, which is polarized 
distally, imports Si into the exodermis before Lsi2, which is 
polarized proximally, exports Si to the aerenchyma. Figure 
S1 illustrates that Lsi1 and Lsi2 transport Si from the apo-
plastic region to the endodermis and then to the xylem. Lsi1 
is a concentration-dependent passive transporter, whereas 
Lsi2 is a concentration-dependent active efflux transporter 
(Ma et al. 2006). Due to the polar localization of Lsi1 and 
Lsi2, which generate an effective directed transport system, 
considerable quantities of Si accumulate in the shoots (Ma 
and Yamaji 2015). Lsi1 and Lsi2 are found in the same cell, 
and Casparian strips have been identified as important com-
ponents of an active Si absorption system (Sakurai et al. 
2015).

Passive system

This absorption system is used in cucumber and pumpkin 
to obtain Si from the environment. It has been shown that 
CmLsi1 and CmLsi2 in pumpkin and CsLi1 and CsLsi2 in 
cucumber have been partially identified (Mitani et al. 2011; 
Sun et al. 2017, 2018). Researchers found that CmLsi1 and 
CsLsi1 are expressed in the majority of root cells, while 
CsLsi2 is found in endodermal cells (Sun et al. 2017). Most 
other Si-accumulating plants, excluding CsLsi1, show no 
polar localization at the cortical cells, unlike Lsi1 and Lsi2 
(Mitani-Ueno et al. 2011). The polarity of CsLsi1 at the 
endodermis may be seen (Sun et al. 2017). Furthermore, 
Lsi1 and Lsi2 are not found in the same cell in these plant 
species (Sun et al. 2018). Because Lsi1 is a bidirectional 
transporter, the presence of Lsi1 and Lsi2 in the same 
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environment makes it difficult for Si to be absorbed (Mitani 
et al. 2009b).

Rejective system

Non-Si accumulator, such as tomato, employs this uptake 
method. The larger distance between NPA domains in 
tomato Lsi1 renders it inactive (Deshmukh et al. 2015). 
According to a recent study, tomato roots, on the other hand, 
have a functional Lsi1 called SlLsi1 (Sun et al. 2020). There 
is no polar localization of SlLsi1 in the root cells. It appears 
that the lack of a Lsi2-type transporter in tomatoes is the 
cause for the tomato’s low levels of accumulative accumula-
tion. When a functional Lsi2 from cucumber was produced 
in tomato, the transgenic tomato plants showed an increase 
in Si accumulation (Sun et al. 2020). Depending on the 
processes involved in Si absorption, plants’ capacities for 
accumulating Si vary substantially. Accumulators (10–15% 
dry weight), intermediate (1–3% dry weight), and excluders 
or non-accumulators (1% dry weight); are the three types of 
plants (Liang et al. 2007). According to recent studies, Si-
accumulators, intermediates, and excluders have active and 
passive systems for absorption and transport. After absorp-
tion by the roots, silicic acid is transferred from the cortex to 
the stele, then moved through the xylem, and finally translo-
cated via a transpiration stream into the shoots.

Reproductive stages of husks of rice and barley are rich 
in Si. Si increases grain fertility in the husk by reducing 
water loss and protecting against disease infestation. No 
stomata can be found on the husk, and the grains have a 
smaller surface area than the enlarged leaves. This means 
that transpiration contributes to the uptake of Si by the grain. 

The nodes of graminaceous plants are important for redis-
tributing absorbed minerals (Fig. S2). Several transporters 
congregate in the first node under the panicles, providing 
selective mineral element delivery to the grains with the 
lowest transpiration (Mostofa et al. 2021).

Si is collected in shoots by transpiration and subsequently 
polymerized into amorphous silica  (SiO2–nH2O) through 
Si polymerization (Ma et al. 2006). Therefore, this amor-
phous silica is concentrated in plant cell walls and can also 
be deposited in root cells. When silicon content in the plant 
grows, monosilicic acid polymerizes into silica gel through 
a non-enzymatic process. The silicon remains in the plant 
tissue (Mitani 2005). The pathway of Si from leaf xylem via 
Lsi6 is shown in Fig. 2.

Involvement of Si in enhancing plant growth 
by down‑regulation of stresses via various 
cellular signaling cascade

Plant species such as wheat, rice, maize, and bamboo have 
already been shown to benefit from Si, although it is still not 
listed as an essential element for plants. Si provides mechan-
ical support for plant species that are prone to lodging and 
makes them more resistant to disease. This mechanical sup-
port may be owing to the adhesion of Si to cell walls, which 
increases cell wall rigidity (Collin et al. 2014). Excessive 
water loss by transpiration can be prevented by deposit-
ing silicates in the epidermal tissues of the plants, as well. 
There are many ways in which Si might help plants recover 
from environmental stressors such as heavy metals, disease 
and radiation. Under stressful conditions, Si has a positive 

Fig. 2  Accumulation of Si in 
leaves. Rice leaves must have 
a physical barrier (Casparian 
strip) in order to efficiently 
assimilate Si from the environ-
ment. Lsi6 removes Si from 
the xylem sap and deposits it in 
specified cells. Guttation fluid 
is the only means of removing 
Si from the roots, and most of 
the remaining Si is deposited as 
amorphous hydrated silica for 
future deposition (Liang et al. 
2015a)
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impact on plants and soils because of its several roles (Côté-
Beaulieu et al. 2009).

Biotic stresses

Silicon is mostly found in the epidermal cells of leaves, 
stems, and roots. In rice leaf blades, Si is deposited as a 
2.5 µm thick film slightly below the cuticular film (0.1 µm 
thick), forming a double coating of Si-cuticle (Liang et al. 
2015b). The blockage is thought to be caused mostly by 
Si deposition in the cell wall and foliage. Si moves from 
roots to leaves via the apoplast area. Si is polymerized in 
intercellular gaps, while Si is deposited in xylem vessels 
and leaf forming walls (Etesami and Jeong 2018). The 
polymerized Si of the apoplast and cell wall region can 
effectively prevent pathogen invasion (Fleck et al. 2011). 
Additionally, Si has been shown to increase resistance to 
various diseases. Bacterial blight, brown spot, Magna-
porthe grisea, leaf blast, sheath blight, stalk rot in rice, 
and the powdery mildew of Triticum aestivum, Hordeum 
vulgare, and Cucumis sativus are some of the diseases that 
are suppressed by application of silicon (Liang et al. 2007; 
Marchenkov et al. 2018). Furthermore, Ratnayake et al. 
(2016) believed that biochemical processes derived from Si 
is a major tool for providing plant resistance to pathogens 
than physical mechanisms. For example, Si diminishes 
disease by developing several chemical barriers such as 
β-1,3-glucanases, chitinases (CHI) (Cruz et al. 2013), per-
oxidase (POX) (Mburu et al. 2016), superoxide dismutase 
(SOD), ascorbate peroxidase (APX), catalase (CAT), 
polyphenol oxidases (PPO), phenylalanine ammonia lyase 
(Zhang et al. 2013). Cruz et al. (2013) discovered that Si 
increases chitinase activity in response to Asian soybean 
rust. Rice plants treated with Si showed increased POX 
activity, while cucumber plants supplied with Si exhib-
ited significant chitinase activity (Dallagnol et al. 2011). 
 H2O2 hydrolysis and cell wall lignification are accelerated 
in POX-enhanced hosts (Torres et al. 2006). Peroxide also 
attaches to phenolic polymers that promote tissue ligni-
fication. A vital task of PPO is the synthesis of quinines 
that are much more hazardous to plant pathogens than phe-
nols due to the oxidation of phenolic compounds. In the 
synthesis of lignin, PPO is critical (Song et al. 2016). By 
reducing the mechanical disintegration of leaves, silica pro-
tects grass chlorenchyma cells from locusts (Schistocerca 
gregaria). The abaxial surface with a thick wax coating 
provides coffee plants protection from insect-eating, which 
is influenced by the presence of Si. Rice plants treated 
with silica had silicified trichomes resembling a ladder 
(Alhousari and Greger 2018). Microstructures generated 
by Si can also act as a mechanical barrier against planthop-
pers and stem borers.

Induction of plant resistance to plant pathogens by Si 
(plant–pathogen interaction)

There are two ways in which Si plays an important role in 
plant defence: (i) physical and (ii) biochemical, and molecu-
lar mechanisms (Wang et al. 2017). The formation of silica 
layer and papillae as well as the depositing of callose are the 
physical mechanisms of plant defense. Different defence-
related enzymes are activated, antimicrobial chemicals are 
produced, and numerous plant signalling pathways are acti-
vated as part of the biochemical mechanism of defence.

(i) Physical defense mechanism

There are two main types of physical defense reactions 
induced by Si in plant cells such as silica layer formation 
and papillae formation.

Silica layer formation (silicification): plant mechanical 
strength has been linked to Si. When silicon is present in 
the epidermal cells of plants, it encourages silicification, 
which leads to the formation of papillae and the deposition 
of complex organic compounds in the epidermal cell walls. 
Since fungal pathogens cannot penetrate the physical bar-
riers that protect plants, their cells are less vulnerable (Van 
Bockhaven et al. 2013). The cuticle-Si double layer prevents 
pathogen entry and disease, reducing disease’s prevalence by 
building silicon beneath the plant’s cuticle (Ma and Yamaji 
2006; Yamaji et al. 2008). There is a Si–cuticle double layer 
in rice leaf blades, where silica is discovered in a 2–5 µm 
layer immediately beneath the cuticle layer.

Slp1 (Siliplant1) is a basic protein high in proline, lysine, 
and glutamic acid and has seven repeat units. Studies on 
the overexpression and localization of Slp1 indicate that it 
plays a significant role in silicification in the silica cells of 
sorghum leaves (Fig. 3) (Kumar et al. 2020). During the 
process of cell extension, silica cells begin transcribing Slp1. 
Vesicles containing translated Slp1 molecules are stored in 
the cytoplasm. As the cell matures and prepares for silici-
fication, its vesicle contents are secreted into the apoplasm 
(Kumar et al. 2021). In that spot, Slp1 molecules interact 
with the supersaturated silicic acid, leading to the rapid dep-
osition of silica. The production of the mineral within silica 
cells generates an inner siliceous secondary wall (Kumar and 
Elbaum 2018). This reduces the amount of the silica cell’s 
cytoplasm while the cell is still alive and maintains cell-
to-cell connection via plasmodesmata (Kumar et al. 2017). 
Within a few hours, the thickened silica wall nearly fills the 
cell volume as the silica cell completes its development and 
the cell dies. Transient overexpression of Slp1 in sorghum 
causes ectopic silica accumulation in all leaf epidermal cells 
(Kumar et al. 2020).

Papillae formation: In response to fungal attempts to enter 
the cell wall, plants commonly produce cell wall appositions 
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called papillae, whose chemical composition differs from 
that of primary and secondary cell walls (Hückelhoven 
2014). It has also been demonstrated that Si promotes papil-
lae formation upon pathogen infection. Silicon accumula-
tion was found in the haustorial neck and collar region, as 
well as in the papillae, preventing pathogen access (Akhtar 
et al. 2018). The papilla is a complex structure that develops 
between the plasma membrane and the cell wall of a plant 
(Voigt 2014).

In response to Blumeria graminis f. sp. hordei infection, 
the application of Si results in the development of papil-
lae in the epidermal cells of barley. Si availability extended 
the range of papillae in rose leaf cells in response to infec-
tion by Podosphaera pannosa (Shetty et al. 2012). The 
predominance of papillae after Si treatment could boost 
rice resistance to blast, and wheat and barley resistance to 
powdery mildew and rust (Cai et al. 2008). The applica-
tion of silica increases the deposition of callose and phe-
nolics, resulting in the creation of effective papillae during 
the barley–Blumeria graminis f. sp. hordei interaction and 
restricting fungal growth by trapping the penetration peg in 
the papillae (Chowdhury et al. 2014).

(ii) Biochemical and molecular defenses as induced 
by silicon

Despite the physical barriers, Si induced a range of chemi-
cal defence mechanisms involving the rapid creation of 
defence chemicals via primary and secondary metabolic 
pathways (Ahanger et al. 2020). Increased production and 
accumulation of antimicrobial compounds such as pheno-
lics, anthocyanins (I), lignin, callose (CAL), phytoalexins, 
and defence-related enzyme activities such as PAL, PPO, 
POX, lipoxygenase (LOX), chalcone synthase (CHS), 
chalcone isomerase, β-1,3-glucanase (GLU), and patho-
genesis-related (PR) proteins are all examples (Akhtar 
et  al. 2018; Ahammed and Yang 2021). Si acts upon 
several signaling pathways such as salicylic acid (SA), 
jasmonic acid (JA), and ethylene signaling pathways, in 
order to cascade defence signalling in plant’s immunity 
systems and in the regulation of plant defence responses 
(Van Bockhaven et al. 2013). The mechanism of induc-
ing resistance by Si is classified into two categories such 
as inducing secondary metabolites, and defense-related 
enzymes and compounds.

Fig. 3  Process of silicification in plants. A Different forms of silicon 
in soil. B Silicon can only be taken up by the plant in the form of 
monosilicic acid [Si(OH)4]. C Siliplant1 (Slp1) influences sorghum 
silica cell silica biogenesis. The silicification of plants improved their 
physical barrier resistance to fungi. Slp1 is transcribed, translated, 
encapsulated in membrane-bound vesicles (Slp1v), and preserved 
until silicification in the cytoplasm. When the silica cells are pre-
pared for silicification, the apoplastic region receives Slp1 from the 
cytoplasm. In the apoplastic solution, the protein template (secreted 

Slp1; Slp1s) deposits solid silica from supersaturated silicic acid. 
Additional diffusion of silicic acid from the apoplastic fluid decreases 
the cytoplasmic volume of silica cells that is constrained by the grow-
ing cell wall of silica deposits. D Si application under drought stress 
restricts leaf transpiration by (1) physically preventing cuticular tran-
spiration through cuticle layer thickening caused by silica deposits 
and (2) controlling stomatal movement via turgor loss of guard cell 
and cell wall physical and mechanical modifications (Kumar et  al. 
2017, 2020, 2021; Kumar and Elbaum 2018)
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Secondary metabolites in silicon‑induced defense Phenyl-
propanoid-derived secondary metabolites, such as phenols 
and flavonoids, have long been recognized for their anti-
fungal properties. An in vitro study demonstrated that both 
Si and Si-induced secondary metabolites can significantly 
restrict the growth of fungal pathogens (Ahammed and 
Yang 2021). Secondary metabolism and phenylpropanoid 
accumulation are aided by exogenous Si administration in 
response to microbial pathogens (Ahanger et al. 2020). For 
example, in bitter gourd, enhanced accumulation of phenols 
and flavonoids caused by Si is a major factor in controlling 
powdery mildew (Ahammed and Yang 2021). Antifungal 
toxic chemicals, such as aglycones and phytoalexins, can 
be found in the leaves of plants that receive silica from the 
soil. The sclerenchyma and vascular tissues of banana roots 
may be more resistant to Fusarium oxysporum f. sp. cubense 
because of the increased accumulation of phenols, flavo-
noids, lignin, and dopamine that is generated by Si (Fortu-
nato et al. 2014).

The stem strength of Paeonia lactiflora was improved 
by an average of 24.86% when Si was applied (Zhao et al. 
2021). It was found that Si-induced phenolic acids, such 
as chlorogenic acid, and the relative amounts of genes that 
encode PAL and lipoxygenase, led to the strengthening of 
tolerance to grey leaf spot disease (Magnaporthe oryzae) 
in perennial ryegrass systems (Rahman et al. 2015). Fur-
thermore, the presence of damaged fungal hyphae in the 
endodermal cell layers and vascular veins of cotton roots 
demonstrates a strong Si-stimulated chemical defence in 
addition to physical barriers (Ahammed and Yang 2021). 
During the interaction between rice and Cochliobolus miya-
beanus, applying Si not only improves the rate of photosyn-
thesis but also increases photorespiration. Hence, it increases 
rice’s susceptibility to brown spot disease (Van Bockhaven 
et al. 2015).

Defense‑related enzymes and  compounds in  Si‑induced 
defense Enzymes associated with host defence, which 
include β-1,3-glucanase, chitinases, and peroxidases, are 
essential for plant resistance to diseases (Ramamoorthy 
et  al. 2002; Brunings et  al. 2009; Ghareeb et  al. 2011; 
Suresh et al. 2022) (Table 1). Si supplementation increases 
the activity of PAL, PPO, GLU, CHI, and POX, possibly 
through defence priming, which greatly contributes to plant 
immunity against pathogens and several host–pathogen 
interactions (Bakhat et al. 2018). Phenolic compounds and 
lignin are more abundant in cotton roots treated with potas-
sium silicate (Whan et  al. 2016). Si-induced elevation of 
phenolic acids, particularly chlorogenic acid and flavonoids, 
and relative levels of genes encoding PAL and lipoxygenase 
contributed to better resistance to grey leaf spot disease in 
perennial ryegrass (Magnaporthe oryzae) (Rahman et  al. 
2015).

Upregulation of various systemic signals in Si‑induced 
defense

To protect against biotrophic diseases, SA primarily gen-
erates defence mechanisms, while JA and ET-mediated 
defence strategies are more commonly used to protect 
against necrotizing infections (Ramamoorthy et al. 2001; 
Pieterse et al. 2012). In consequence of lesions, patho-
gen attacks, and herbivory, silicon treatment increases the 
buildup of phytohormones (Kim et al. 2014). For example, 
rice administered with Si has exhibited tolerance to insect 
herbivores through the buildup of JA, but it also affects the 
wound-induced production of the JA protein (Ye et al. 2013).

Several studies indicated that Si regulated plant stress 
responses by modulating phytohormone homeostasis and 
boosting different signalling pathways (Brunings et al. 2009; 
Ghareeb et al. 2011). Si-treated plants accumulate plant phy-
tohormones in response to alter the pathogen’s attack (Kim 
et al. 2014). During infection of powdery mildew pathogen 
in Arabidopsis, Si increases the enzymes engaged in the SA 
pathway by the upregulation of the gene expression. Resist-
ant phenotypes demonstrate a substantial increase in the rate 
of SA production and the related defense genes compared to 
the controls, which indicates that Si plays an indispensable 
role in the defense mechanism along with the SA pathway 
(Vivancos et al. 2015). Resistance mechanism to powdery 
mildew pathogen (Erysiphe cichoracearum) infection was 
observed in Arabidopsis plants treated with Si by encourag-
ing the synthesis of SA, JA, and ET (Vivancos et al. 2015). 
Si induced resistance in tomato infected with Ralstonia 
solanacearum and rice infected with Magnaporthe oryzae 
by activating JA and ET signaling pathways (Ramamoorthy 
et al. 2002; Brunings et al. 2009; Ghareeb et al. 2011).

 i. SA pathway: SA biosynthesis involves two sets of 
genes: EDS1/PAD4 & EDS5/SID2, which are nec-
essary for SA biosynthesis (Shah 2003). Plants with 
higher Si (TaLsi) concentrations were more suscep-
tible to Golovinomyces cichoracearum infection in 
comparison to plants with lower amounts of Si (TaLsi) 
concentrations (Vivancos et al. 2015). Si injection 
suppressed the area under the disease progression 
curve (AUDPC) in PAD4 and SID2 mutant lines, 
indicating Si’s ability to boost Arabidopsis resistance 
to Golovinomyces cichoracearum is maintained in 
mutants engineered to absorb Si more efficiently (Viv-
ancos et al. 2015). The NPR1 (Nonexpresser of PR 
Genes1) regulatory protein promotes PR gene expres-
sion in response to SA, and numerous SA-inducible 
WRKY proteins, whose activity is enhanced by Si 
injection, positively regulate NPR1 (Li et al. 2004). 
In tomato plants, an infection with Ralstonia solan-
acearum stimulates the WRKY1 transcription factor, 
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which in turn activates defense genes, and Si increases 
their activity (Suresh et al. 2022). The level of endoge-
nous SA and consequent PRs expression has increased 
as a result of Si enhancing the expression of multiple 
defence genes, the activity of various transcription 
factors, and the upregulation of numerous signalling 
pathways (Kurabachew et al. 2013) (Fig. 4).

 ii. JA pathway: silicon facilitates increased JA-mediated 
defense mechanisms, such as increased production 
of enzymes and proteins involved in defense, as 
well as increased expression of transcription fac-
tors producing proteins engaged in JA signaling; by 
boosting JA-mediated defense mechanisms, JA also 
promotes enhanced leaf silicification and the devel-
opment of silica cells containing phytoliths (Ye 
et al. 2013). As part of the fine-tuning of the JA 
signaling system, ubiquitin protein ligase destroys 
the negative regulator of the JA signaling pathway, 
JAZ1 (Jasmonate ZIM-domain protein 1) domain 
(Thines et al. 2007) (Fig. 4). Current study suggests 
that the anti-feeding protein JA is essential for rice 
defense responses (Kim et al. 2014).

 iii. ET pathway: JERF3, TSRF1, and ACCO are marker 
genes linked with the ET signalling system. The tran-
scription factor JERF3 leads to the activation of the 
ET and JA signalling pathway, ACCO is responsible 
for ethylene production, and TSRF1 is known to be 
an ET-responsive transcription factor (Pirrello et al. 
2012). Si treatment upregulated the expression of 
JERF3, TSRF1, and ACCO genes in tomato plants 
infected with R. solanacearum, providing evidence 
that Si-induced resistance was mediated by ET and 
JA signalling pathways (Ghareeb et al. 2011). When 
a pathogen infects a cell, the ET and JA pathways 
are responsible in order to regulate the production of 
specific defence-related genes, such as PDF1.2 (Plant 
Defensin 1.2.) (Pieterse et al. 2009) (Fig. 4).

Silicon‑mediated expression of defense‑responsive genes

Several plant biologists reported that Si had a protective 
effect against environmental threats. Furthermore, Si-
mediated defense against powdery mildew and rice blast 
diseases has already been widely investigated. Extensive 

Table 1  Defence-related enzymes regulated by silicon in plant–pathogen interactions

Hosts Diseases Pathogen Defense-related enzymes References

Bean Anthracnose Colletotrichum lindemuthianum Superoxide dismutase, ascor-
bate peroxidase, glutathione 
reductase

Polanco et al. (2014)

Cucumber Crown and root rot Pythium spp. Chitinase, peroxidases, polyphenol 
oxidases

Chérif et al. (1994)

Powdery mildew Podosphaera xanthii Peroxidases, polyphenol oxidases, 
chitinases

Liang et al. (2005)

Melon Pink rot Trichothecium roseum Peroxidase Bi et al. (2006)
Powdery mildew Podosphaera xenthii Chitinases, superoxide dismutase, 

β-1,3-glucanase
Dallagnol et al. (2015)

Chinese cantaloupe Pink rot Trichothecium roseum Peroxidases, phenylalanine 
ammonia-lyase

Guo et al. (2007)

Pea Leaf spot Mycosphaerella pinodes Chitinase, β-1,3-glucanase Dann and Muir (2002)
Perennial ryegrass Gray leaf spot Magnaporthe oryzae Peroxidase, polyphenol oxidase Rahman et al. (2015)
Rice Blast Magnaporthe oryzae Glucanase, peroxidase, polyphenol 

oxidase, phenylalanine ammo-
nia-lyase, superoxide dismutase, 
catalase, ascorbate peroxidase. 
glutathione reductase, lipoxy-
genase

Rodrigues et al. (2004), Cai 
et al. (2008), Domiciano 
et al. (2015)

Brown spot Bipolaris oryzae Chitinase, peroxidase Dallagnol et al. (2011)
Sheath blight Rhizoctonia solani Phenylalanine ammonia-lyases, 

peroxidases, polyphenol oxi-
dases, chitinases

Schurt et al. (2014)

Soybean Target spot Corynespora cassiicola Chitinases, β-1–3-glucanases, phe-
nylalanine ammonia-lyases. per-
oxidases, polyphenol oxidases

Fortunato et al. (2015)

Wheat Blast Magnaporthe oryzae Chitinases, peroxidases Filha et al. (2011)
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research (Rodrigues et al. 2004) revealed that Si positively 
regulates genes related to the defense mechanism like CHS, 
PAL, PR1, POX, CHI, and β-1, 3-glucanases in response to 
the Magnaporthe grisea infection (Fig. 5). This is consistent 
with the findings of previous studies that have shown Si is 
an important factor in the defense mechanism. M. grisea can 
be prevented by supplementing rice with Si, which alters the 
expression profile of rice’s defensive genes (Brunings et al. 
2009). To alleviate the toxicity of heavy metals, Si treat-
ment in rice also stimulated the expression of genes involved 
in heavy metal transportation and detoxification (Brunings 
et al. 2009). As a whole, Si controls the genes that control 
important plant processes, especially in the presence of a 
stressful environment.

Abiotic stresses

Silicon regulates the response of plants to many abiotic 
stresses such as salinity, extreme temperature fluctua-
tions, metallic toxicity, drought and flood damage, as 
well as overexposure to nutrients and ultraviolet (UV) 
light. Recent research indicates that overexpressing the 
Lsi1 gene in Dular rice improves the plant’s proline con-
centration and tolerance to cold weather conditions. This 
enhancement is attributed to the maintenance of cellular 
osmotic balance and increased calcium deposition in the 
root tips (Xie et al. 2022). Silicon formed underneath 
the cuticular layer reduces water loss through cuticular 
transpiration and helps plants mitigate water stress during 
drought conditions. Additionally, Si decreases stomatal 

conductance in response to guard cell turgor loss brought 
on by Si deposition and altered cell wall characteristics 
(Zhu and Gong 2014). Si helps plants extract water from 
the soil (Savvas and Ntatsi 2015). Silicon helps to reduce 
salt stress by preventing the uptake of  Na+ and Cl. Si 
feeding enhances potassium uptake and permits the main-
tenance of K/Na, which directly stabilizes proton pump 
activity in salt-treated root tips (Xu et al. 2015). Si could 
affect the bioavailability of hazardous substances in soil 
contaminated with metals. Hydrolysis of soluble silicate 
results in the production of gelatinous metasilicic acid 
 (H2SiO3) which is heavy metal-retentive. The apoplast 
also produces hydroxyl-aluminium silicate, which aids 
in Al detoxification. Endodermis accumulation of heavy 
metals is enhanced by adding silicates to roots (Keller 
et al. 2015). In response to Si treatment, manganese (Mn) 
buildup at the shoot level was primarily found in the epi-
dermis. By interacting with phytohormones, polyamines, 
hydrogen sulphide, and nitric oxide, Si also ameliorates 
several abiotic stresses (Tripathi et al. 2021; Raza 2021; 
Sabagh et al. 2021). A study showed that the combined 
application of SA and Si improves physiological and 
biochemical mechanisms and photosynthetic efficiency 
in mustard seedlings, reducing lanthanum (La) toxic-
ity. This is achieved by suppressing  H2O2 and electro-
lytic leakage, increasing antioxidant enzyme activity and 
nutrient content and improving carbonic anhydrase and 
ribulose-1,5-bisphosphate carboxylase/oxygenase activ-
ity. The results also show an increase in glycine, betaine 
and cysteine accumulation (Siddiqui et al. 2022). The 

Fig. 4  Crosstalk between 
signalling pathways in the plant 
defence response regulated by 
Si. Salicylic acid (SA), jasmonic 
acid (JA), and ethylene (ET) all 
have effects on plant defence, 
and these effects, along with 
their interactions, are shown to 
modify the defensive response 
that is mediated by silica. T, 
negative effect; purple stars, 
positive effect; red, increased 
or up-regulated by Si supply. 
The networking of signalling 
pathways is modified from 
Pieterse et al. (2009). (Color 
figure online)
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crosstalk network enhances antioxidant defense, reduces 
oxidative damage, and enhances resistance to multiple 
abiotic stresses by applying Si treatment (Fig.  6). Si 
enhanced phytohormone synthesis and metabolism dur-
ing abiotic stress (Zhu and Gong 2014; Kim et al. 2016b). 
Abscisic Acid (ABA), JA, Gibberellic Acid (GA), ET, 
SA, Brassinosteroid (BR), and Indole acetic acid (IAA) 
are the predominant phytohormones induced by Si in 
response to abiotic stress (Arif et al. 2021). Si may there-
fore be crucial in generating an adapted plant response, 
although the particular chemical cues involved in adapta-
tive processes must yet be fully characterized.

Crosstalk between silicon and other plant signaling 
molecules

ROS Reactive oxygen species (ROS) signalling molecules 
play a role in various biological processes that influence the 
health of living organisms. ROS formation in plant cells can 

be induced by abiotic stresses such as salinity, cold, heat, 
dehydration etc. Even a minute change in the ROS balance 
in plants can trigger a cell response (Khan et al. 2021). At 
high concentrations, ROS destroy biomolecules, resulting 
in oxidative stress, whereas at low to moderate concentra-
tions, they act as signalling molecules. It should be empha-
sized that despite the fact that ROS induce cell death, their 
production is a crucial stage in conferring stress resistance. 
Stress-induced ROS activation reactions must have a quick 
initiation, followed by a rapid cessation when the stress is 
no longer present (Huang et  al. 2019). An efficient anti-
oxidative mechanism is engaged in order to regulate the 
ROS equilibrium within a cell. Such non-enzymatic antioxi-
dants encompass ascorbic acid, phenolics, carotenoids, glu-
tathione, and tocopherols. Enzymatic antioxidants include 
ROS-scavenging enzymes such as SOD, CAT, APX, glu-
tathione S-transferases (GSTs), thioredoxins, and peroxire-
doxins (Huang et al. 2019).

Fig. 5  Schematic illustration of Si-mediated regulation of vital genes 
associated with defence and phytohormones upon biotic stress. Rcht2 
chitinase; Prla PR-1; Lox lipoxygenase; PAL phenylalanine ammonia-
lyase; CAD cinnamyl alcohol dehydrogenase; CHS chalcone syn-
thase; PGIP polygalactouranase inhibitor protein; PA phosphatase 
associated to defence; PR-1 pathogenesis-related protein; ERF eth-

ylene response factor; JERF jasmonate and ethylene-responsive fac-
tor 3; TSRF Tomato stress-responsive factor; ACCO 1-aminocyclo-
propane-1-carboxylate oxidase; FD-1 ferredoxin-I; POD peroxidase; 
WRKY II WRKY group II transcription factor; SA salicylic acid; JA 
jasmonic acid
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Salinity stress: salt stress is caused by the buildup of 
ROS (Farouk et al. 2020). Exogenous Si boosts SOD activ-
ity while decreasing CAT and APX activity in borage plants 
during salinity (Torabi et al. 2015). CAT, peroxidase, and 
polyphenol peroxidase levels are decreased in rice plants 
under salt stress when Si is applied to the leaves (Kim et al. 
2014). In the presence of Si, several other investigations 
have found that salt stress regulates the activity of several 
enzymes, including SOD, GPX, APX, GR, and CAT. Hasa-
nuzzaman et al. (2018) reported that Si modulated the anti-
oxidant system to reduce the negative effects of salt stress 
in soybean.

Drought stress: the excessive formation of ROS in plants 
under drought stress is detrimental to growth, but Si treat-
ment dramatically reduces this effect by activating antioxi-
dant mechanisms (Gong et al. 2005). Due to the increased 
activity of the antioxidant defence system, ROS-induced 

oxidative damage on Triticum aestivum plant growth was 
reduced by Si treatment (Gong et al. 2008). By altering anti-
oxidant enzyme activity, proline and chlorophyll metabo-
lism, redox homeostasis and nutrient intake from the soil, Si 
slowed premature leaf senescence inflicted by drought and 
salt stress (Alamri et al. 2020). The antioxidant defences 
of tomato plants are activated during drought stress by Si, 
which enhances SOD and CAT activity and water uptake in 
tomato plants (Shi et al. 2014).

Thermal stress: during periods of thermal stress, Si has 
been discovered to be a ROS homeostasis regulator (cold 
and heat stress). Exogenous Si promotes antioxidants such 
as APX, SOD, GSH-Px, GSH (Glutathione), MDHAR 
(monodehydroascorbate reductase), GR, and AsA that 
reduce ROS as well as lipid peroxidation in cucumbers 
under chilling stress conditions (15/8  °C, day/night) 
(Liu et al. 2009). SOD, APX, and GPX activities were 

Fig. 6  Crosstalk network of Si with various phytohormones in 
response to oxidative stress in plants exposed to various abiotic 
stresses. Si and other signaling molecules such as BR, SA, GA, H2S, 
PRO, and NO activate antioxidant defence systems synergistically in 
response to abiotic stimuli such as salt, heat, and heavy metals. Si can 
also affect endogenous phytohormones such as ABA, SA, JA, Cyto-
kinin (CK), and GA in plants subjected to diverse abiotic stressors 
and activates antioxidant defenses. Thus, active antioxidant systems 

restrict ROS formation, decrease oxidative stress and enhance plant 
tolerance to abiotic stressors (Zhu and Gong 2014; Kim et al. 2016a). 
Arrow with a thunder indicates an increase in the specific molecule; 
dotted arrow with an end line indicates decrease in the specific mole-
cule; arrow with a knob end indicates no specific changes in the mol-
ecules; double-sided arrowhead indicates interaction between Si and 
the other signaling molecules
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enhanced in Salvia splendens treated with Si at 35 °C, but 
CAT activities were reduced (Soundararajan et al. 2014). 
The detoxification of ROS by enhanced anti-oxidative 
system action was demonstrated in another investiga-
tion to reduce cold stress in maize when Si was used as 
a treatment. Si treatment in heat-stressed tomato plants 
boosted the expression of SlCAT , SlAPX, and SlPOD genes 
(Alberto Moldes et al. 2013; Sahebi et al. 2017).

UV stress: protecting plants from UV radiation stress 
can also be achieved through Si’s ability to regulate the 
plant’s physiological and biochemical processes. Si and 
Si nanoparticles (SiNPs) have been shown to dramatically 
alleviate UV-B radiation damage in wheat by modulat-
ing oxidative stress (Tripathi et al. 2017). Si application 
reduced POD and CAT activities in soybean seedlings 
exposed to UV-B exposure (Shen et al. 2010).

Heavy metal stress: as an additional element, rice plants 
under heavy metal stress can regulate their metal transport, 
preventing damage as indicated by decreased MDA activ-
ity (Kim et al. 2016a). As a result of lower POD activ-
ity, manganese toxicity in cucumbers can be alleviated by 
adding silicates (Dragišić Maksimović et al. 2012). After 
applying SiNP with chromium (Cr) to pea seedlings, stress 
tolerance phenotypes were noticed.

Polyamines Polyamines are essential regulators in plants 
against abiotic stressors and in maintaining normal metab-
olism, growth, and survival in adverse situations. Polyam-
ine-rich plants are better able to withstand environmental 
stressors (Gupta et al. 2013). To make abiotic stress resist-
ance, polyamine biosynthesis and Si accumulation work 
in concert in Sorghum bicolor to improve salinity stress 
tolerance while delaying leaf senescence (Gupta et  al. 
2013). Antioxidant defenses are regulated by Si, stimulat-
ing the synthesis and storage of endogenous polyamines 
such as spermine, spermidine, and putrescine to mediate 
salt tolerance (Wang and Munshi 2015). Si can reduce abi-
otic stress by boosting polyamine and ethylene metabo-
lism (Manivannan and Ahn 2017). According to a recent 
study (Yin et al. 2019), the application of Si-mediated salt 
tolerance in cucumber was linked to the balance between 
polyamines and ethylene synthesis, increasing polyamine 
levels in favour of low ethylene production and, conse-
quently, reducing  Na+ buildup. Si also improves  Na+/
K+ homeostasis by regulating polyamine levels in salt-
stressed cucumber seedlings (increasing putrescine and 
spermidine) (Wang and Munshi 2015). Si-induced poly-
amine synthesis alleviates abiotic stress and increases 
plant vitality and yield.

Nitric oxide Environmental stress triggers a wide range of 
metabolic processes to release the ubiquitous plant-sign-
aling chemical nitric oxide (NO) (Xia et al. 2015; Prakash 

et al. 2019; Rather et al. 2020). Due to the coupling of Si 
with sodium nitroprusside (NO source), Cd tolerance and 
biomass increased, as well as the antioxidant defense sys-
tem of wheat seedlings (Singh et al. 2020). According to the 
researchers, exposure to Si may also enhance plant defenses 
by improving endogenous NO synthesis. Si works with NO 
to enhance plant growth and increase resilience to stress 
(Ahmad et al. 2021). The combined addition of Si and NO 
lowered heavy metal absorption in Brassica juncea while 
raising oxidative stress tolerance by enhancing plant length, 
shoot/root dry mass, chlorophyll and carotenoid content, 
and antioxidant activity and ROS accumulation (Ahmad 
et al. 2021).

Silicon interaction with  hydrogen sulfide  (H2S) and  cal‑
cium  (Ca2+) Hydrogen sulphide  (H2S) and calcium  (Ca2+) 
influence signalling cascades in silicon. Si protects pepper 
plants from boron toxicity through the buildup of endog-
enous  H2S (Kaya et  al. 2020a). Furthermore, endogenous 
 H2S modulates Si-mediated Cd tolerance with NO in pepper 
plants (Kaya et al. 2020b). Maintaining plasma membrane 
permeability and increasing Ca and K levels in shoots are 
achieved by administering Si to maize seedlings, resulting in 
improved water stress tolerance (Kaya et al. 2006).  Ca2+ and 
silica have also been shown to alleviate the oxidative stress 
produced by Cd poisoning in rice seedlings (Srivastava et al. 
2015). The stress tolerance of other heavy metals, such as 
aluminium, boron, chrome, copper, and zinc, has improved 
dramatically when Si is applied (Tripathi et al. 2012).

Conclusion and future challenges for silicon 
in plant biology

Exogenous (foliar or root) Si supplementation encourages 
and facilitates plant development, particularly under stress. 
Si deposition in the plant influences cellular processes such 
as development, stomatal control, nutrient absorption, metal 
detoxification, and the plant’s resilience to abiotic and biotic 
stressors. The existence of multiple transporters involved 
in the intake, transportation, and translocation of Si from 
root to shoot emphasizes the purpose of Si to plant growth. 
A complex interplay among phytohormones, ROS, other 
signaling molecules such as NO, calcium and transcriptional 
factors, and antioxidant systems, is established when stress 
is present. As a result, the plants can withstand possible 
biotic challenges better by Si-mediated regulation of signal-
ling pathways (e.g., ET; SA; JA). Although specific effects 
of Si on plant metabolism and gene expression have been 
demonstrated, the mechanisms by which Si affects plant 
growth and development are still uncertain. While the stud-
ies in this manuscript illustrate our present understanding of 
the absorption, transport, deposition, and signaling of Si in 
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plants, there are still many issues, some of which are basic, 
that went unanswered. For example, we do not know or have 
a limited understanding regarding how Si is loaded into the 
xylem or the identity of the transporter that pumps Si to 
plant cells, and we do not know, on a fundamental level, 
how Si provides plants with such a wide range of advan-
tages. To date, no data indicates that Si plays an active part 
in any biochemical or metabolic pathway that might define 
the advantages of Si supplementation for plants. Similarly, 
we have insufficient knowledge of the optimal amounts of 
Si required for optimal plant growth at each developmental 
stage. Hundreds of researchers have found that applying Si 
to poor Si-accumulator species has favorable impacts, which 
is difficult to explain given our current understanding. Other 
unsolved problems include the role of Si in interactions with 
signaling molecules under normal and stress conditions, its 
impact on the intake of nutrients, its influence on the photo-
synthetic machinery, and its involvement in the integration 
of phytohormones. Numerous disciplines, including agricul-
ture, industrial uses, and ecology, will benefit from a deeper 
knowledge of the biology of Si.
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