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Abstract
Potassium (K+) plays a crucial role in plant homeostasis, and its deficiency significantly impacts photosynthesis, triggering 
a decrease in growth and crop production. K+ starvation induced a significant reduction in the net photosynthetic rate, and 
the drop is associated with resistance of CO2 diffusion through stomatal conductance, mesophyll conductance, and lowered 
carboxylase activity of Rubisco, electron transport rate of PSII, and with many biochemical limitations. The complex inter-
action of all the above factors contributed to limiting photosynthesis under K+ starved conditions. Low chlorophyll content 
and poor chloroplast structure may also define photosynthetic processes and causes a decrease in crop growth and produc-
tivity under K+ starvation. Under abiotic stresses such as drought, waterlogging, temperature, salinity, and heavy metal, the 
application of exogenous K+ promotes plant tolerance by activating the antioxidant system, which limits the overproduction 
of reactive oxygen species (ROS), avoiding the associated oxidative damages where other signaling molecules such as nitric 
oxide (NO) and hydrogen sulfide (H2S) may involve. The review highlights the decisive role of exogenous and endogenous 
K+ in modulating diverse physiological and biochemical processes in a healthy and stressful environment. Furthermore, 
this review appraises the involvement of K+ with another signaling molecule in enhancing abiotic stress tolerance in plants. 
Therefore, this review provides a comprehensive update on the relevance of K+ in higher plants. Its exogenous application 
should be a potential tool, especially in crops under adverse environmental conditions.
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Introduction

Potassium is an essential macronutrient and the most abun-
dant cation in plant cells (Pettigrew 2008; Singh and Reddy 
2017). It is only found in its ionic form (K+) or in weak com-
plexes from which it can be easily exchanged (Marschner 
2012). 2.1–2.3% of the earth’s crust accounts for potassium; 
nonetheless, the fraction of soil K+ available to plants is 

only 0.1–0.2% (Britzke et al. 2012; Wedepohl 1995), and the 
availability of K+ from soil depends on edaphic and some 
other factors with the capability of plants to take up K+ 
(Chérel et al. 2014; Hasanuzzaman et al. 2018; Sardans and 
Peñuelas 2021). K+ uptake from root cells and its mobiliza-
tion into distinct cellular compartments and organs is facili-
tated by transporters and channels (Ve’ry et al. 2014; Wang 
and Wu 2015; Raddatz et al. 2020; Lhamo et al. 2021). K+ in 
plant cells is carried out by a variety of transporter proteins 
classified into several families with different structures and 
transport mechanisms, including channels families such as 
voltage-dependent shaker-like channels, the tandem-pore 
(TPK) and two-pore channels (TPC) (Hedrich 2012), and 
the carrier-like families KT/HAK/KUP (Nieves- Cordones 
et al. 2014a; Li et al. 2018) HKT uniporters and symport-
ers (Hamamoto et al. 2015), and cation-proton antiporters 
(CPA).

K+ participates in many physiological processes, viz., 
photosynthesis and respiration, enzyme activities, water 
relations, electrical neutralization, assimilate transport, 
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osmoregulation, turgor pressure, protein synthesis, ion 
homeostasis, anion-cation balance, energy transfer, and uti-
lization (Weng et al. 2007; Maathuis 2009; Zou et al. 2011; 
Houmani and Corpas 2016; Wang and Wu 2017; Ragel 
et al. 2019; Srivastava et al. 2020; Cui and Tcherkez 2021; 
Sardans and Peñuelas 2021; Houmani et al. 2022). Further-
more, K+ indirectly affects plant growth and development 
(Lu 2016c). All these events can be disrupted by K+ defi-
ciency which is a type of plant abiotic stress that induces 
a wide range of responses, including oxidative stress, and 
results in limited crop growth and productivity (Hafsi et al. 
2014; Waqas et al. 2021; Houmani et al. 2022; Johnson et al. 
2022). K+ starvation makes various responses at different 
stages, viz., morphological, physiological, biochemical, 
and molecular (Hafsi et al. 2014). K+ deficiency, also called 
potash deficiency, leads to decreased chlorophyll content, 
reducing photosynthetic activity and thus minimizing overall 
agricultural productivity (Hartt 1969; Pier and Berkowitz 
1987; Zhao et al. 2001). Visible symptoms of K+ deficiency 
take a long time for expression (Kanai et al. 2011); plant 
growth is reduced and ceases (Mengel and Kirkby 1987). 
The first noticeable symptom of K+ deficiency is mottled or 
marginal chlorosis which later develops into necrosis pri-
marily at the leaf tips, margins, and between veins. Still, in 
several monocotyledonous plants, these necrotic lesions first 
form at the leaf tips and margins and then extend towards the 
leaf base. These symptoms first appear on mature leaves at 
the bottom of a plant due to mobilization of K+ to younger 
leaves. Stems may be slender, weak, and abnormal short 
internodal regions of K+ deficient plants (Taiz et al. 2015). 
Photosynthesis is influenced by K+ deficiency in several 
ways and affects fruit quality and yield (Kumar et al. 2006; 
Shen et al. 2017; Zhang et al.  2017a, b).

K+ plays a prominent role in alleviating abiotic stresses, 
which may have associated with oxidative stress (Trono 
et al. 2015; Hasanuzzaman et al. 2018; Kumari et al. 2021; 
Houmani et al. 2022). Plants have evolved strategies to 
increase K+ uptake while maintaining ROS homeostasis 
in response to low K+ availability. Nicotinamide adenine 
dinucleotide phosphate oxidase RHD2/RbohC produces 
H2O2, a ROS that regulates K+ transporters, particularly the 
high-affinity potassium transporter HAK5, which is induced 
under these conditions. Thus, ROS plays an essential role in 
generating K+ starvation responses at the root level by regu-
lating the expression of the AtHAK5 gene, which encodes 
a high-affinity K+ transporter that is activated in response 
to low K+ supply (Kim et al. 2010). During the inadequate 
K+ response, the member of the type III peroxidase family 
RCI3 (rare cold-inducible gene 3) also contributes to ROS 
production (Kim et al. 2010). Furthermore, ROS directly 
activates the K+ channels AtGORK and AtSKOR, which 
are involved in K+ efflux from cells during stress (Demid-
chik et al. 2010; GarciaMata et al. 2010; Demidchik 2018). 

Potassium starvation causes oxidative stress that increases 
antioxidant and NADPH-generating systems, thus allowing 
the halophytes to survive (Houmani et al. 2022). Thus, K+ 
emerged as a potential anti-stressor molecule due to its pro-
tective functions under different plant abiotic stress, viz., 
salt, drought, temperature, and heavy metal.

The present review focuses on the efficient role of K+ 
in improving chlorophyll content, net photosynthetic rate, 
chloroplast morphology, and ultrastructure. An attempt has 
been made to cover the contribution of K+ in increasing 
enzymatic antioxidant machinery such as catalase (CAT), 
peroxidase (POX), superoxide dismutase (SOD), ascorbate 
peroxidase (APX), and glutathione reductase (GR) in reduc-
ing ROS and MDA content and maintaining osmotic content. 
The current review also highlights the influential role of K+ 
in mitigating environmental stresses like salinity, drought, 
waterlogging, temperature, and heavy metal stress with the 
help of several signaling molecules. Considering the recent 
reviews focused on K+ transporters and channels (Santa-
María et al. 2018; Jegla et al. 2018; Ali et al. 2021; Lhamo 
et al. 2021; Dave et al. 2022), the present assessment will 
be focused on K+ deficiency and its effect on photosynthesis 
and ROS metabolism, and highlighting its possible connec-
tions with other signaling molecules such as NO and H2S.

Potassium in the rhizosphere

In the lithosphere, K+ is the fourth most abundant element; 
nonetheless, a low proportion is available for plants (Mengel 
and Kirkby 1982). Four distinct pools of K+ in soil: (i) ionic 
form in soil solution (0.1–0.2%); (ii) exchangeable or readily 
available (1–2%); (iii) non-exchangeable, slowly available 
or fixed (fixed in 2:1 clays 1–10%); and, (iv) unavailable or 
structural (96–99%) (Fig. 1) (Sparks 1987). The first two 
pools of K+ are reversible and known to meet the instan-
taneous demand of growing plants, while the last two are 
irreversible and known for the long-term supply of K+ to 
plants (Askegaard et al. 2003). When the availability of K+ 
is low in the soil, the ionic form is the source used by the 
roots to provide the needs of K+ for plant growth as well 
as its replenishment when the soil is deficient in K+ that is 
in equilibrium between the interchangeable and non-inter-
changeable (Hinsinger et al. 2021). Leaching is one of the 
factors responsible for the K+ depletion from the reversible 
pool; therefore, the application of K+ fertilizer will raise the 
K+ availability for plants (Sparks and Huang 1985; Mou-
hamad et al. 2016). A major portion of K+ in the soil is 
in mineral pools such as muscovite, biotite, or feldspars, 
which are released over a long time due to weathering or 
breaking down that refills the exchangeable and fixed pool 
(Römheld and Kirkby 2010; Mouhamad et al. 2016). The 
exchangeable or readily available K+ is the fraction of the K+ 
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that is surface-adsorbed on negatively charged sites of clay 
minerals and organic matter and in a rapid equilibrium to 
soil solution (Sardans and Peñuelas 2015). A minor amount 
of K+ is found in organic matter because it is not a compo-
nent of biomolecules, thus rapidly and simply leached from 
leaves because of its high solubility. Hence low fraction 
of K+ is directly available to plants (Wang et al. 2010a, b; 
Britzke et al. 2012). Non-exchangeable pool slowly released 
K+ from the wedge zones of weathered micas and vermicu-
lites when the level of soil solution and readily available K+ 
decrease by crop removal and leaching (Sparks et al. 1980; 
Sparks 2000; Mengel and Kirkby 2001). The sequence of 
availability of K+ for plant uptake and microorganisms is 
soil solution > readily available (exchangeable) > slowly 
available (fixed or non-exchangeable) > unavailable (miner-
als) (Sparks and Huang 1985; Sparks 1987, 2000) (Fig. 1).

K+ uptake and transportation 
within the plant

To facilitate the uptake and transportation of K+ to dif-
ferent cellular compartments, multiple K+ channels and 
transporters are found mainly in the cell membrane of plant 
root cells (Ashley et al. 2006; Coskun et al. 2014). Two 
discrete kinetic systems accomplished the task of K+ uptake 
via roots depending on affinity for K+ that switch accord-
ing to the availability of external K+ i.e. Soil (Epstein et al. 
1963): (i) High-affinity system (transporters) activated at 
the lower level of K+ concentration (< 0.2 mmol/L); and (ii) 

Low-affinity system (channels) activated at a higher level of 
external K+ concentration (> 0.3 mmol/L).

K+ channels comprise three different classes based on 
their structural characteristics: (i) Shaker-type channels 
(voltage-dependent); (ii) Two pore channels (TPC); and 
(iii) Cyclic nucleotide-gated channels (reviewed by Ashley 
et al. 2006). Shaker-type K+ channels are also classified as 
(i) Inward rectifying K+ channels, (ii) Outward-rectifying 
K+ channels, and (iii) Weakly rectifying channels (Lefoulon 
2021; Wang and Wu 2013).

K+ transporters include three distinct classes: (i) K+ 
uptake permease (KT/HAK/KUP); (ii) High-affinity K+ 
transporter (HKT); (iii) Cation-proton antiporter (CPA) 
families (Gierth and Mӓser 2007; Nieves-Cordones et al. 
2014; Ve’ry et al. 2014; Li et al. 2018). The first functionally 
characterized K+ channels in plants belongings to the Shaker 
family were the Arabidopsis K+ transporter 1 (AtAKT1) and 
the K+ channel 1 (AtKC1). They interact to form a hetero-
meric K+ channel that regulates the AtAKT1 activity, thus 
preventing K+ leakage under low K+ concentration in root 
cells (Reintanz et al. 2002; Duby et al. 2008; Geiger et al. 
2009; Honsbein et al. 2009; Wang et al. 2010a, b, 2016). 
Under low K+ concentration, two high K+ affinity root pro-
teins (AKT1and HAK5) mediate the sufficient K+ uptake 
to support plant growth (Pyo et al. 2010). The transcription 
level of the HAK gene was upregulated in low K+ content 
(Santa-Maria et al. 1997; Armengaud et al. 2004; Shin and 
Schachtman 2004; Gierth et al. 2005; Jung et al. 2009; Li 
et al. 2018), while AtKUP7 participated in K+ uptake in low 
to moderate external K+ content (~ 0.1 mmol/L) with the 
effect in translocation from root to shoot (Han et al. 2016).

Fig. 1   Interrelationship of 
various forms of soil K+ 
(modified from Sparks 1987) 
which includes (i) ionic form 
in soil solution (0.1–0.2%); (ii) 
exchangeable or readily avail-
able (1–2%); (iii) non-exchange-
able, slowly available or fixed 
(fixed in 2:1 clays 1–10%); and, 
(iv) unavailable or structural 
(96–99%)
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For long-distance transport, after K+ absorption into the 
root cells, K+ is transported to root stele tissues and then 
transported to shoots through xylem vessels. The Stelar K+ 
Outward Rectifier (SKOR) member of Shaker type outward 
rectifying K+ channel in stele tissues mediates K+ trans-
location from root parenchyma cells to xylem sap for K+ 
transport to shoots (Gaymard et al. 1998; Liu et al. 2006). 
On the other hand, stomatal movement depends on the K+ 
content in the guard cells; thus, the guard cells outward recti-
fying K+ channel (GORK) regulates K+ efflux via membrane 
depolarization to close the stomata (Ache et al. 2000; Becker 
et al. 2003; Adem et al. 2020), whereas KAT1 and KAT2 
inward channels allow the K+ influx via membrane hyperpo-
larization into the guard cell to open the stomata (Schacht-
man et al. 1992; Pilot et al. 2001; Hosey et al. 2003). The 
vacuole act as a reservoir of K+ ions in plant cells, and under 
K+ starvation, the ions translocate to the cytoplasm to sus-
tain the K+ content of the cytoplasm (Walker et al. 1996). To 
maintain homeostasis, K+ translocates between the vacuole 
and cytoplasm; the AtTPK1 channel found in the tonoplast 
facilitates the K+ transport necessary for several physiologi-
cal processes like stomatal movement and seed germina-
tion (Czempinski et al. 2002; Gobert et al. 2007). Moreover, 
tonoplast NHX transporters (AtNHX1 and AtNHX2) act as 
Na+(K+)/H+ antiporters and facilitate K+ uptake into the 
vacuole, thus maintaining the K+ vacuolar pool (Venema 
et al. 2002; Apse et al. 2003; Bassil et al. 2011; Barragan 
et al. 2012; Andres et al. 2014). Owing to its high mobile 
nature, K+ recirculates between roots and shoots through 
the xylem and phloem (Ahmad and Maathuis 2014). Plant 
tissues load the K+ to phloem with the availability of a suf-
ficient amount of ATP to reach a notable concentration, and 
K+ comes to the requiring organs with the flow of sap while 
it can also return to roots (Jeschke et al. 1985; Dreyer and 
Blatt 2009). AKT2 inward rectifying channel, another mem-
ber of the shaker family mainly found in the phloem of both 
leaves and roots (Deeken et al. 2000; Lacombe et al. 2000b) 
plays two significant roles in loading of K+ in source tissues 
and sink organs, respectively (Gajdanowicz et al. 2011). At 
the subcellular level, the K+ Efflux Antiporter (KEA) protein 
group participates in its homeostasis. In Arabidopsis, two 
KEA subgroups, KEA1-3, are associated with plastid, and 
KEA4-6 seems to be connected with the endomembrane sys-
tem (Tsujii et al. 2019; Wang et al. 2019; DeTar et al. 2021). 
The main K+ channels and transporters are given in Table 1.

Impact of potassium on photosynthesis

K+ affects photosynthesis at various levels and influences 
various physiological processes, plant metabolism, and 
osmotic adjustments (Severtson et al. 2016). Under differ-
ent levels of K+ photosynthetic capability (Bednarz et al. 

1998; Zhao et al. 2001; Basile et al. 2003; Weng et al. 2007; 
Gerardeaux et al. 2009), physiological and biochemical char-
acteristics of the plants are different (Chartzoulakis et al. 
2006). Effects of K+ starvation on the plant’s photosynthetic 
features are described in Fig. 2.

Chlorophyll

Chlorophyll (Chl) is a light-absorbing green pigment in the 
chloroplast that converts light to chemical energy in plants 
(Kalaji et al. 2017). Under K+ starvation, chlorophyll syn-
thesis is inhibited in Eucalyptus grandis (Battie-Laclau et al. 
2014). Leaf chlorosis is an early symptom of chlorophyll 
degradation due to oxidative stress of excessive production 
of ROS in K+ deficiency (Cakmak 2005; Lu et al. 2019). 
Lower chlorophyll content and Chl. a/b ratio is the stress 
symptoms of chloroplast (Jia et al. 2008), changes in mor-
phology and anatomy of chloroplast were associated with 
chlorophyll content and photosynthesis capability (Tian 
et al. 2008; Lu et al. 2019), chlorophyll composition change 
in low K+ stress affects the photosynthesis (Jia et al. 2008). 
Chlorophyll fluorescence gives accurate information about 
the condition of photosynthetic machinery and mainly of 
PSII (Sun et al. 2015). Potential quantum efficiency (Fv/
Fm), quantum yield of photosystem II (ΦPSII), photochemi-
cal quenching (qP), and electron transport rate (ETR) were 
markedly reduced under K+ deficiency in Zea mays L. (Qi 
et al. 2019). It has been reported in several studies that 
total chlorophyll concentration is reduced under K+ starva-
tion (Bednarz and Oosterhuis 1999; Zhao et al. 2001; Lu 
et al. 2016b), and the chlorophyll concentration are directly 
related to photosynthesis (Battie-Laclau et al. 2014). The 
effect of K+ starvation on chlorophyll is also presented in 
Table 2.

Table 1   General classification of plant K+ channels and transporters

K+channels

Shaker-type channels (voltage-dependent)
 Inward rectifying K+ channels
 Outward-rectifying K+ channels
 Weakly rectifying channels
Two pore channels (TPC)
Cyclic nucleotide-gated channels

K +transporters 

K+ uptake permease (KT/HAK/KUP)
High-affinity K+ transporter (HKT)
Cation-proton antiporter (CPA) family:
 CAP 1: Plasma membrane-bound NHX (sodium proton exchanger) 

and intracellular NHX
 CAP2: K+ Efflux Antiporter (KEA) and cation/H + exchanger (CHX) 

subfamilies
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Chloroplast morphology and ultrastructure

Stabilized morphology and structure of chloroplast contrib-
ute resistance to severe impacts of K+ deficiency stress (Jia 
et al. 2008; Shao et al. 2016), while changes in morphol-
ogy and structure are notably associated with chlorophyll 
content and photosynthetic capacity (Tian et al. 2008; Lu 
et al. 2019). K+ facilities the correct organization of grana 
and stroma lamellae; however, under K+ deficiency, the 
ultrastructure is disorganized, and the chloroplast lamella is 
lopsided, limp, and partly dispersed in the cytoplasm that, 
triggers a reduction in the number of grana and lamellae 
(Zhao et al. 2001; Jia et al. 2008). In maize, K deficiency 

causes a reduction in the number of chloroplasts, which take 
on an irregular shape, as the outer surface changes from 
long and oval to elliptical or almost round, thus reducing 
the length/width ratio. In the corn inbred line 90-21-3, the 
outer membrane and thylakoids remain the same; the plasto-
globule content increases and is swollen. On the other hand, 
in the inbred line D937, the ultrastructure of chloroplasts 
was severely damaged with irregular shape and significantly 
aggregated. At the same time, the swollen plastoglobules 
and lamellae structure were not typical and mainly scattered 
in the cytoplasm under K starvation (Qi et al. 2019). In the 
genotype of Ipomoea batatas, leaves showed big starch gran-
ules, broken and indistinguishable chloroplast membrane, 

Fig. 2   Summary of the main effects on photosynthesis trigger by K+ starvation. ↑increase and ↓decrease
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grana lamellae limped and distorted, and acute damage in 
chloroplast ultrastructure under K+ stress (Tang et al. 2015). 
In another similar study, the chloroplast blade swelled and 
acquired a ball shape within lots of starch granules under K+ 
deficiency (Wang et al. 2018). However, a slight difference 
in chloroplast morphology has been observed in Brassica 
napus (Hu et al. 2020). In Gossypium hirsutum leaves, poor 
chloroplast ultrastructure with large starch granules, more 
and expanded plastoglobuli, little grana, and the thylakoids 
propels towards periphery likely be the reason for low leaf 
PN under low K+ stress (Zhao et al. 2001).

Net photosynthetic rate

Net photosynthetic rate (PN) and photosynthetic plant area 
are the two vital features on which the photosynthetic plant 
capacity depends. For the enhancement of PN, researchers 
have been working to increase the potential of yield (Zhu 
et al. 2004; von Caemmerer et al. 2012; South et al. 2019) 
and higher PN related to higher biomass (Wang et al. 2012). 
According to several reports, a decline in the rate of pho-
tosynthesis is due to a reduction of chlorophyll content, 
hindrance in PSII activity, and electron transport (non-
stomatal) in K+ deficient plants such as Chinese hickory, 
cotton, almond tree, and lettuce (Basile et al. 2003; Jin et al. 
2011; Wang et al. 2012; Zhang et al. 2017a, b). Table 3 also 
includes the effects of potassium starvation on the PN.

Limitations in CO2 diffusion during photosynthesis

Three major resistances attributed to decrease net CO2 dur-
ing photosynthesis under K+ starvation are (i) reduced sto-
matal conductance, (ii) reduced mesophyll conductance, and 
(iii) biochemical limitations.

Stomatal conductance (gs)

In the stomatal opening, K+ influx in guard cells is a crucial 
light-dependent step (Shabala 2003; Inoue et al. 2020), influ-
encing stomatal conductance. It is well documented that the 
stomatal limitation is associated with K+ concentrations and 
the stomatal closure under K+ starvation and is often consid-
ered the main reason behind the reduction of net PN (Thiel 
and Wolf 1997; Römheld and Kirkby 2010). Restricted CO2 
diffusion through the stomata and mesophyll cells (stomatal 
conductance and mesophyll conductance) decreased the car-
boxylation ability, chlorophyll biosynthesis, and assimilate 
transport (Singh and Reddy 2017). Compared to mesophyll, 
the photosynthetic rate is generally limited due to stomatal 
conductance (gs) (Jin et al. 2011). Under K+ starvation, the 
decrease of gs coincided with the decline in T and Ci in 
soybean (Singh and Reddy 2017). Still, in Ipomoea batatas 
(Tang et al. 2015) and Eustoma grandiflorum (Chen et al. 
2018), the reduction of gs, PN, and Tr is accompanied by 
no significant change in Ci. However, a decrease in gs was 

Table 2   Impact of K+ starvation on chlorophyll

Plant species K+Concentration Impact References

Solanum lycopersicum 155, 232, 310 ppm with 25 µM Cd stress Reduced chlorophyll content index (CCI) Naciri et al. (2021)
Vitis vinifera cvs. K+deficient Decreased chlorophyll index, chlorophyll fluores-

cence, and electron transport
Rogiers et al. (2020)

Triticum aestivum L. 0.02 mM KCl Inhibited biosynthesis of Chl a and b upto 14.3–
20.0%, affected the total content of chlorophyll

Thornburg et al. (2020)

Zea mays L. K+deficient Reduced chlorophyll mainly Chl a Qi et al. (2019)
Zea mays L. K+ deprivation Reduced 74% chlorophyll Sitko et al. (2019)
Glycine max L. 0.02 mM (severe) and 0.5 mM (moder-

ate), eCO2− 800 µmol mol−1
Reduced 80% and ≈ 25% total chlorophyll at 

severe K+ deficiency and moderate K+ defi-
ciency with eCO2

Singh and Reddy (2018)

Zea mays L. 0.000, 0.625, 1.250, 2.500 mmol/L Alleviated Chl a, b, (a + b) Zhao et al. (2016)
Brassica juncea L. K+deficient Lowered amount of photosynthetic pigments 

(Chl a,b, and total Chlorophyll)
Ahmad et al. (2014)

Prunella vulgaris L. 0, 1.00, 6.00 and 40.00 mM KCl Lowest and highest chlorophyll content at 0 and 
6.00 mM, respectively, and again dropped at 
40.00 mM

Chen et al. (2013)

Carya cathayensis Sarg. 0, 0.4, 1.0, 2.0 and 5.0 mM K+ Decreased total chlorophyll content but increased 
Chl a/b ratio at 0 mM

Jin et al. (2011)

Oryza sativa 5 mg K+ L−1 Reduced 101% Chl a/b ratio and changed chloro-
phyll composition

Jia et al. (2008)

Zea mays L. K+deficient Increased time and rate of formation and conver-
sion of protochlorophyll and protochlorophyll 
to chlorophyll, respectively

Lawanson et al. (1977)
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accompanied by the increase of Ci in maize (Qi et al. 2019), 
cotton (Zhao et al. 2001) constant or enhanced Ci in hickory 
seedlings which might be caused by high mesophyll limita-
tions or low capability of the CO2 fixation cycle, rather than 
to stomatal resistance (Jin et al. 2011). Similar findings had 
been seen in Prunus dulcis, Gossypium hirsutum L. where 
stomatal conductance was not the main reason for low PN, 
and it was reduced via biochemical limitations, little Chl 
content, poor chloroplast ultrastructure, and restricted sac-
charide translocation under potassium starvation (Zhao et al. 
2001; Basile et al. 2003). The Ji22 genotype of Ipomoea 
batatas L. plants under K+ deficiency showed a low level of 
PN, E, gs, and terrible damage to chloroplast ultrastructure 
in leaf, suggesting that this genotype faced both photoinhibi-
tion and stomatal limitations (Wang et al. 2018). In contrast, 
an enhancement in the stomatal conductance under moderate 
K+ deficiency in a well-irrigated and water-stressed con-
dition may be attributable to dehydration mainly in water-
stressed plants, which ultimately leads to impairment of sto-
matal closure regulation in Olea europaea L. (Arquero et al. 
2006). In mild K+ deficiency, stomatal conductance was the 
main factor contributing to net photosynthesis change. As 
the K + deficit became more severe biochemical limitations 
also contributed to stomatal regulations in the cotton (Gos-
sypium hirsutum L., cv. Deltapine) plant (Bednarz et al. 
1998). There is no significant change in transpiration rate 
and stomatal conductance with a decrease in chlorophyll 
content and enhanced anthocyanin pigment under K+ dep-
rivation in maize plants. Mg deficiency strongly limits the 
photosynthetic and transpiration rates, stomatal conduct-
ance, photosystem II (PSII) performance, chlorophyll, and 
flavonol content with concomitantly enhanced anthocyanin 
content. Furthermore, Ca2+ deficiency also alleviated the 
rate of photosynthesis and transpiration, stomatal conduct-
ance, and PSII activity, whereas the pigment content was 
not considerably different compared with the control (Sitko 
et al. 2019). The primary cause of lower photosynthesis in 
K+ starved plants is a subject of debate due to contrasting 
observations between the plant species.

Mesophyll conductance (gm)

CO2 dissolves in the cell walls apoplastic water after diffu-
sion via mesophyll cells’ leaf internal air space. Once the 
CO2 enters the liquid phase, it is found either as dissolved 
CO2 or HCO3 and further diffuses via the pores of the cell 
wall, the plasma membrane, the cytosol, the chloroplast 
envelope and finally reaches the chloroplast stroma, where 
enzymatic CO2 fixation took place (Tränkner et al. 2018). 
Moreover, it is reported that under low K+ liquid-phase path-
ways, conductance decreased by reducing the chloroplast 
exposed surface area per unit leaf area (Sc/S) and enhancing 
the resistance of the cytoplasm, thus enhancing the distance 

between the chloroplast and cell wall and between the adja-
cent chloroplasts (Lu et al. 2016a, b, c).

Mesophyll diffusion conductance to CO2 is the main pho-
tosynthetic trait. The limitation to photosynthesis impeded 
by gm is significant, and under certain conditions like salin-
ity, temperature, nutrients, light, water and tree length and 
size, leaf structure and aging, cell wall thickness, and chlo-
roplast distribution can be the most significant photosyn-
thetic limitation (Niinemets et al. 2009a; Han 2011; White-
head et al. 2011; Zhu et al. 2011; Flexas et al. 2012). Quick 
response to a change of environmental factors might be regu-
lated by another factor like aquaporin conductance (Flexas 
et al. 2012). In K+ starved plants, besides gs, reduced leaf 
mesophyll cell conductance (gm) obstructed the diffusion of 
CO2 to the chloroplasts (Jin et al. 2011; Battie-Laclau et al. 
2014). An alleviated gm (elevated Lm) might be an outcome 
of the decline of intercellular air space due to the accumula-
tion of photosynthate, decreased carbonic anhydrase activity, 
and aquaporin channel conductance due to limit CO2 dif-
fusion through mesophyll cells (Cakmak et al. 1994; Zhao 
et al. 2001; Battie-Laclau et al. 2014; Lu et al. 2016a). It 
was noted that during photosynthesis, inhibition of net CO2 
assimilation (AN) resulted due to reduction in CO2 meso-
phyll conductance (gm) neither by maximum quantum use 
efficiency (Fv/Fm) nor by in vivo Rubisco activity under K+ 
starvation. The reduced gm might be due to variations in 
the leaf anatomy of Helianthus annuus L. under K+ starva-
tion (Jakli et al. 2017). Leaf area decreased before reduced 
photosynthetic rates under K+ starvation, and changes in 
S/W value before Sc/S and Dchl−chl value were the significant 
reason for the uneven decline in leaf area and photosyn-
thetic rate in Brassica napus plant (Hu et al. 2020). Due 
to photosynthesis resistance, cucumber leaves were less 
affected under K+ starvation than rice, wheat, and rapeseed 
leaves. All species averaged 50.5% and 53.4% of mesophyll 
conductance accounted for photosynthetic limiting factors 
under moderate K+ and low K+ conditions, respectively. An 
increase in leaf hydraulic resistance and RL (ΔRx and ΔRox, 
the relative growth of xylem and outside-xylem hydraulic 
resistance, respectively) simultaneously with the rise in K+ 
deficiency were found to be a significant contributor to pho-
tosynthetic limitations, and K+ maintained the leaf photo-
synthesis and hydraulic conductance through modifications 
of leaf anatomy (Lu et al. 2019).

Biochemical limitations

The biochemical limitations significantly limit photosynthe-
sis besides stomatal conductance and mesophyll conduct-
ance. However, there is considerable discussion on either 
K+ starvation inhibits photosynthesis directly by reducing 
leaf chlorophyll content, obstructing photochemical energy 
conversion or biochemical processes, or inhibiting CO2 
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diffusion from the atmosphere to the site of carbon assimi-
lation in chloroplasts (Jakli et al. 2017). Rubisco is the pri-
mary limiting factor of photosynthesis in rice and tobacco 
leaves (Yang et al. 2004: Weng et al. 2007; Hu et al. 2021). 
In Carya cathayensis, the maximum carboxylation rate of 
Rubisco (Vc, max) and maximum rate of electron transport 
(Jmax) were the most sensitive factors (Jin et al. 2011). In 
Raphanus sativa, K+ starvation reduces the photosynthetic 
rate by disturbing the balance of H+ influx into the thylakoid 
lumen, thus increasing the acidification that leads to trig-
gering the downregulation mechanism, which detaches the 
LHCII to Photosystem II (PSII) and an increase in energy 
dissipation, yet without preventing the PQH2 oxidation at 
the Cyt b6f complex (Kusaka et al. 2021). Similar results 
were also found in Glycine max under K+ starvation, the 
maximal fluorescence (Fm), the maximum quantum effi-
ciency of PSII photochemistry (Fv/Fm), actual photochemi-
cal efficiency of PSII (ΦPSII), photochemical quenching 
(qP), and electron transport rate of PSII (ETR) were consid-
erably decreased with Rubisco with minimal fluorescence 
(Wang et al. 2015).

The relative contribution of all these three limiting 
factors under K+ starvation has been explained in the 
photosynthetic process. It is concluded that the complex 
interaction of all these factors contributed to limiting photo-
synthesis. Table 4 illustrates some of these limiting factors 
under K+ starvation.

H2O2 contents and antioxidant system

In chloroplast thylakoid, PSI and PSII reaction centers are 
the primary site of reactive oxygen species (ROS) (Asada 
2006; Kohli et al. 2019). Several types of stresses trig-
ger the generation of ROS, like nutrient deficiency, high 
light, high or low temperature, salinity, drought, and path-
ogen attack (Tripathy and Oelmuller 2012). Due to abi-
otic stress, stomatal closure limits the CO2 uptake, which 
induces the production of H2O2 during photorespiration by 
the peroxisomal glycolate oxidase (Leterrier et al. 2016; 
Corpas et al. 2020) or singlet oxygen by the reduced pho-
tosynthetic electron transport chain (Apel and Hirt 2004; 
Noctor et al. 2014). If the production of H2O2 is prolonged, 
this will trigger oxidative stress, which is accompanied by 
altering the cellular redox homeostasis. ROS accumulation 
disrupts the functioning of the cell and induces the oxida-
tive damage of membrane, lipids, nucleic acid, proteins, 
and inhibition of enzymes (Mittler 2002; Shahbaz et al. 
2008; Ashraf 2009; Akram et al. 2012; Perveen et al. 2010, 
2011, 2012). Some evidence indicates that H2O2 might 
function as a signaling molecule under K+ deficiency 
(Hernández et al. 2012). Abiotic and biotic stresses are 
accompanied by the generation of H2O2 consequence of Ta
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the dismutation of superoxide radicals (O2
•−) generated 

by the NADPH oxidase, also known as respiratory burst 
oxidase homolog (RBOH), which is considered to be the 
most crucial enzyme responsible for this oxidative burst 
(Mittler et al. 2004; Sagi and Fluhr 2006; Chapman et al. 
2019). Deprivation of K+ in Arabidopsis enhanced ROS 
accumulation at distinct regions of roots just behind the 
elongation zone that is active in K+ uptake and transloca-
tion (Shin and Schachtman 2004). Gene RCI3, a member 
of the type III peroxidase family, is upregulated under K+ 
starvation and engaged in ROS production, which affects 
the regulation of AtHAK5 expression in Arabidopsis roots 
(Kim et al. 2010). To combat oxidative stress, plants have 
developed a defense system associated with a notice-
able increase in ROS metabolizing enzymes like super-
oxide dismutase (SOD), catalase (CAT), and enzymes of 
the ascorbate-glutathione cycles (Mittler 2002; Cakmak 
2005; Ashraf 2009; Ahmad et al. 2014; Kohli et al. 2019; 
Houmani et al. 2022). Many reports suggest that under K+ 
starvation, the more vital photosynthetic ability is linked 
to higher antioxidant enzymes (Chen et al. 2008; Jia et al. 
2008).

In Gossypium hirsutum L., higher H2O2 and ascorbic 
acid (ASC) activity were observed, which brought about 
higher malondialdehyde (MDA) content despite the ele-
vated activity of H2O2-scavenging enzymes like catalase 
and peroxidase. However, low dehydroascorbate reductase 
activity and higher ASC content were attributed to lower 
ascorbate peroxidase (APX) activity in K + starvation, lead-
ing to premature leaf senescence marked by chlorophyll 
degradation and negative chlorophyll fluorescence (Hu et al. 
2016). In Brassica juncea plants, initiation of ROS leads to 
oxidative stress and an increase in antioxidant enzymes like 
SOD, CAT, APX, and glutathione reductase (GR) under 
potassium deficiency (Ahmad et al. 2014). Similarly, Hout-
tuynia cordata plant showed H2O2 accumulation inducing 
oxidative stress with a concomitant increase of the activity 
of antioxidant enzymes like CAT and peroxidase to palliate 
the oxidative damages (Xu et al. 2011) under the deficiency 
of K+.

Involvement of K+ to abiotic stress tolerance 
and its potential relationship with signal 
molecules such as NO and H2S

It was noted that K+ plays a vital role as an anti-stress agent 
against different abiotic stresses (Anschütz et al. 2014; Jia 
et al. 2018; Perelman et al. 2022), such as drought, tempera-
ture, salinity, waterlogging, and heavy metal. Furthermore, 
new evidence supports the correlation between K content 
with signaling molecules such as NO and H2S (Zhao et al. 
2018; Oliferuk et al. 2020; Lana et al. 2021).

Drought stress

Besides growth and productivity, K+ was also involved in 
maintaining cell turgidity, osmotic adjustment, stomatal reg-
ulation, aquaporin channel conductivity, cell membrane sta-
bility, and detoxification of ROS under drought stress (Wang 
et al. 2013; Hasanuzzaman et al. 2018; Sehar et al. 2021). 
Low K+ alleviated the plant tolerance to drought stress and 
K+ absorption (Wang et al. 2013). Reports showed that the 
K+ application reduces drought stress consequences, specifi-
cally in Hibiscus rosa-sinensis (Egilla et al. 2005; Bahrami-
Rad and Hajiboland 2017) concluded that applying K+ under 
water-stressed and K+ starved conditions on Nicotiana rus-
tica L. induced dehydration avoidance and tolerance by aug-
menting stomatal resistance and also by the accumulation of 
organic osmolytes and proline mainly in the young leaves.

In maize, the overexpression of inwardly rectifying K+ 
channel 1 (AKT1) facilities the root K+ uptake but, at the 
same time, mediates the homeostasis of H2O2 and NO, 
mediating its drought stress tolerance (Feng et al. 2020). 
More recently, it has proposed a cascade of events associated 
with the loss of function of chloroplast KEA1 and KEA2 
in Arabidopsis, which triggered an increased tolerance to 
drought stress. Thus, the K+ imbalance in the chloroplasts of 
this kea1kea2 mutant causes impairment in chloroplast func-
tions, including photosynthesis and photorespiration path-
ways associated with an imbalance of ROS and NO metabo-
lism affects stomatal movement causing a higher drought 
stress resilience (Sánchez-McSweeney et al. 2021) unex-
pectedly. Thus, this new evidence supports the biochemi-
cal crosstalk of K+ with NO metabolism and other plant 
gasotransmitters such as H2S and CO (Zhang et al. 2018; 
Lana et al. 2021). It should be considered that these signal-
ing molecules participate in a wide range of physiological 
processes and respond to environmental stresses (Mukher-
jee and Corpas 2020; Mishra et al. 2021) that would sup-
port the benefits exerted by K+ when it is applied as exog-
enous. Thus, in tomato seedlings, the exogenous application 
of K+ in coordination with endogenous H2S can regulate 
H+-ATPase activity, antioxidant system, sugar metabolism, 
and redox homeostasis that promote drought tolerance stress 
(Siddiqui et al. 2021).

Waterlogging stress

Waterlogging is one of the significant abiotic stresses that 
influence plant growth and yield worldwide (Sasidharan 
et al. 2018). Waterlogging causes inhibition of soil aeration 
and limits the supply of oxygen (hypoxia or anoxia) to roots 
(Amin et al. 2015). A lesser amount of oxygen impeded the 
respiration process in roots and resulted in a shortage of 
energy required for nutrient uptake (Boru et al. 2003). In 
waterlogged conditions, a combined supply of K+ (foliar and 
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soil) not only improved growth, photosynthetic pigments, 
and photosynthetic capacity but also mitigated the negative 
influence of waterlogging in Gossypium hirsutum L. (Ashraf 
et al. 2011). Stomatal closure during early senescence is 
attributed to alleviating PN, and during the late senescence 
stage, low CO2 assimilation accounted for a low PN. The 
supply of K+ improved the post-anthesis photosynthesis and 
yield by maintaining the stomatal openings and CO2 carbox-
ylation capacity by dissipating excess excitation energy, thus 
reducing the risk of photo-damage in winter wheat at the 
stem elongation stage under waterlogging conditions (Gao 
et al. 2021). Recovering root development and yield loss 
under waterlogged conditions by the combined supply of K+ 
and N in Vigna radiata L. was observed (Amin et al. 2015).

Temperature stress

Extreme high and low-temperature stress influenced plant 
growth and development at the whole-plant level, tissue, 
and cell level, and even at the subcellular level. Direct and 
indirect injuries due to high and low temperatures reduced 
the yield (Waraich et al. 2012), inhibited metabolic reac-
tions, and influenced the osmotic and oxidative stresses 
(Airaki et al. 2012; Wang et al. 2013). Proper plant nutrient 
management is one of the master strategies for temperature 
stress tolerance, and K+ plays a significant role in elevating 
temperature stress tolerance (Hasanuzzaman et al. 2018). 
Under chilling and freezing stress, the plant faces dehydra-
tion due to the loss of apoplastic water. The application of 
K+ under chilling and freezing stress alleviates the freezing-
induced cellular dehydration and adjusts the osmotic poten-
tial of plant species (Wang et al. 2013). In low K+ plants, 
chilling and frost might damage the photosynthetic activi-
ties and increase ROS production by reducing the antioxi-
dant activities, thus causing a reduction in plant growth and 
yield. Exogenous application of high KNO3 enhanced the 
antioxidant activities and secondary metabolite transcripts, 
protecting ROS overproduction and increasing chilling stress 
tolerance in Panax ginseng (Devi et al. 2012). K+ fertili-
zation augmented the frost tolerance as noted by lowering 
electrolyte leakage mainly in young leaves of Albizia pluri-
juga, Cedrela dugesii, and Ceiba aesculifolia (Gómez-Ruiz 
et al. 2016).

High temperature contributed directly to protein dena-
turation and aggregation, lipid membrane damage, enzymes 
inactivation of chloroplast and mitochondria, protein syn-
thesis limitation and degradation, and loss of membrane 
integrity (Waraich et al. 2012). It also enhanced the leaf 
senescence and negatively influenced the production of pho-
tosynthates, thus reducing the yield (Rahman et al. 2005). 
In wheat, applying potassium orthophosphate contributed 
to enhanced yield and quality under heat stress conditions 
(Rahman et al. 2014). In plants, exogenous application of 

K+ might be helpful to the reduced negative influence of 
heat stress (Waraich et al. 2012). Upregulation of antioxidant 
enzymes like SOD, POX, CAT, AsA, phenolics, and MDA 
enhanced heat stress tolerance in cotton (Sarwar et al. 2019).

Salinity stress

Salinity and K+ starvation are two significant environmen-
tal constraints of fields for many crops that generally occur 
concomitantly and result in loss of plant growth and produc-
tivity (Hafsi et al. 2017). Salt stress impedes plant growth, 
and K+ deficiency further augments the effects of salinity 
stress on photosynthetic activity. However, it also displays 
a mechanism of protecting photosynthetic apparatus by non-
photochemical quenching and antioxidant activity. Higher 
accumulation of phenolic compounds under both stresses 
might be related to antioxidative defense in Sulla carnosa 
seedlings (Hafsi et al. 2017). In another study, a significant 
reduction in biomass production under both stresses was 
noted, and salinity stress impacted more on shoots than roots 
while potassium starvation the vice versa.

Moreover, the impact of salinity stress on photosyn-
thetic machinery was further enhanced by the deficiency 
of K+ with the resistance in CO2 photo assimilation. Still, 
it provided an understanding of protecting PSII photo-
damage and dissipation excess energy in Hordeum vulgare 
(Degl’Innocenti et  al. 2009). Oxidative stress is one of 
the consequences of salinity stress, and the application of 
K+ under salinity stress alleviated the ROS production by 
decreasing the NADPH oxidases activity; however, under 
low K+ supply in bean root cells, the movement of NADPH 
oxidases was up to eightfold higher in plants compared to 
K+ sufficient plants (Cakmak 2005). Net uptake rates and 
translocation of K+ were reduced under salinity stress, while 
the impact of salinity stress was enhanced with low K+ con-
centration in Zea mays L. (Botella et al. 1997). Under salin-
ity stress, plants usually reorganize Na+ and K+ contents 
accompanied by NO accumulation. In Arabidopsis thaliana 
mutants, it has been demonstrated that NO negatively modu-
lates the K+ channel AKT1, responsible for K+ uptake, by 
regulating the biosynthesis of vitamin B6 (Xia et al. 2014). 
Recently, it has been shown that the overexpression of the 
K+, Na+/H+ antiporter NHX4 in tomato plants improved the 
salinity tolerance and increased the yield and quality of its 
fruits (Maach et al. 2020).

Furthermore, in Malus hupehensis seedlings, the pre-
treatment with H2S palliates salinity and alkaline stress by 
regulating the Na+/K+ homeostasis because it decreases the 
root Na+ content, whereas it increases K+ content. This was 
accompanied by an increase in the activity of antioxidant 
enzymes, including CAT, POX, and SOD which mitigate 
oxidative stress (Li et al. 2020). On the other hand, in poplar 
plants under salinity stress, it has been found that exogenous 
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H2S regulates K+/Na+ homeostasis in roots through the posi-
tive control of the H+-ATPases (Zhao et al. 2018). Table 5 
provides some representative examples of the beneficial 
effects triggered by the exogenous application of K+ and 
how it can mitigate salinity-induced damages (Kumari et al. 
2021).

Heavy metal stress

Heavy metal and metalloid stress in the soil is one of the 
major impediments to the successful establishment and cul-
tivation of crops (Yasin et al. 2018). Metal stress causes 
a reduction in growth, fruit formation, and development 
of fruit trees (Worthington 2001; Foyer and Noctor 2005; 
Lombardi and Sebastiani 2005), and disturbs the biochemi-
cal processes, including photosynthetic activity and level of 
gas exchange, proline production, and K+ nutrition (Lysenko 
et al. 2015; Song et al. 2015). However, the K+ application 
benefits plant tolerance to different metal stresses (Dhiman 
et al. 2022). Prunus persica seedlings treated with exog-
enous K+ (10 mM) not only improved the status of endog-
enous K+ but also showed a positive response in alleviating 
the reduction of zinc-induced photosynthesis and antioxidant 
defense systems. K+ application was found to upregulate 
the transcript level of K+ uptake genes (KUP) engaged in 
K+ acquisition, transport, and homeostasis leading to the 
protection of photosynthesis and the antioxidative defense 
system (Song et al. 2015).

Moreover, combining K+ and Ca2+ enhanced the antioxi-
dant enzyme activity in Cd stressed faba bean (Vicia faba L.) 
seedlings, leading to enhanced plant growth and productivity 
(Siddiqui et al. 2012). Similarly, in Gladiolus grandiflora 
L., a combination of K+ and Si mitigate the Cd stress and 
enhances the protein and proline accumulation and uptake 
of mineral nutrients (Ca, Mg, Mn, S, and K) and quantity of 
total phenolics and flavonoids (Zaheer et al. 2018). Similar 

results were also observed in Gladiolus grandiflora L. under 
Cd stress by the application of K only (Yasin et al. 2018). 
An increase in growth, photosynthesis, and nutrient uptake, 
as well as a reduction in cadmium toxicity, was observed in 
soybean (Shamsi et al. 2010; Liu et al. 2013) reported that 
deficiency of K+ enhanced the antioxidant system, which 
protects the toxicity of Cd in rice seedlings.

Conclusions and future perspectives

K+ is an essential macronutrient involved in both physi-
ological and biochemical processes. K+ starvation is a criti-
cal nutritional issue that negatively affects plant growth and 
yield. This review gives a better understanding of K+ pres-
ence in the rhizosphere and its uptake by roots via several 
kinds of transporter and channels. It is well documented 
that K+ plays a significant role in photosynthesis, chloro-
phyll content, and chloroplast ultrastructure. Furthermore, 
K+ starvation decreased photosynthesis by limiting CO2 
diffusion into and through leaves (gs, gm, and biochemi-
cal processes). Stomatal resistance, mesophyll resistance, 
and biochemical limitations are the major factors for the 
decrease in photosynthesis. Recent investigations also 
show that K+ promotes antioxidant defense machinery 
and osmolyte content, which reduces the oxidative stress 
produced by ROS and MDA, which further helps attenuate 
abiotic stress.

K+ is an essential macronutrient, and its starvation 
reduces several physiological and biochemical processes, 
such as photosynthesis, chlorophyll content, and chloroplast 
ultrastructure. Furthermore, unraveling the contribution of 
K+ in modulating genes involved in photosynthesis need to 
be explored. More studies are required on the genes and 
signaling molecule that alters plants’ metabolic and cellular 
responses during stress.

Table 5   Impact of application of K+ under salinity stress and K+ starvation

Plant species Effect of exogenous K + application References

Glycine max L. Application of 2.5% Potassium sulfate positively influenced antioxidant activity, flavonoid, 
carotenoid, and chlorophyll contents in contrast to potassium chloride. However, the effect 
was not remarkable compared to fertilizer unsprayed plants thus could not mitigate the 
negative impact of salinity stress

Adhikari et al. (2020)

Triticum aestivum L. Alleviated harmful influences of salinity stress and enhanced K+ content, photosynthetic 
pigments, photosynthetic efficiency, antioxidant activity (enzymatic and non-enzymatic), 
and decreased Na+ content under salinity stress

Rady and Mohamed (2018)

Arachis hypogaea L. Increased salinity tolerance with regard to water status, biomass production, osmotic adjust-
ment, and maintained ionic balance by excluding Na+ as a master strategy of enhancing 
tolerance.

Chakraborty et al. (2016)

Helianthus annuus L. Enhanced growth and yield, photosynthetic capacity, water use efficiency, and relative water 
contents

Akram and Ashraf (2011)

Helianthus annuus L. Increased growth and yield, root K+, Leaf K+, K+/Na+ ratio Akram et al. (2007)
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