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Introduction

Malnutrition, caused by vitamin A, iodine, and/or iron insuf-
ficiency, as well as zinc inadequacy, affects the human pop-
ulation including women and children in the world’s poorest 
communities however, pregnant women and children under 
five years are at a higher risk (Pritwani and Mathur 2015). 
Considerable progress has been made to reduce the extent 
of malnutrition, but the deficiencies continue to impinge on 
the health of women and children (Kennedy 2002). Several 
sustainable food production strategies and nutri-crop sys-
tems are being developed to manage nutritional security in 
developing countries (Singh and Mondal 2017). The four 
major staple crops that meet food security are rice, wheat, 
maize and barley, however biofortified crops such as mil-
lets are thought to significantly contribute to nutritional 
security (Kaur et al. 2019). Millets are mainly produced in 
the central regions of Africa and Asia. The global scenario 
of millet production at 28.4 million metric tons with India 
as the major producer (Fig. 1 A; FAOSTAT 2021). Millets 
belong to the family Poaceae and vary in shape, size and 
color. Several types of millets such as; kodo millet (Pas-
palum scrobiculatum L.), pearl millet (Cenchrus america-
nus L. Gaertn & Morrone), barnyard millet (Echinochloa 
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Abstract
Biofortification of staple food crops is an economical and practical way to mitigate micronutrient malnutrition as it predis-
poses humans to different health maladies. Despite the availability of various methods for biofortification, the biofortified 
crops, especially millets, could offer a great scope. Foxtail millet has adequate content of minerals, non-starchy polysac-
charides, vital amino acids, and proteins, and is regarded as one of the most important nutri-cereals. However, biofortified 
foxtail millet can potentially alleviate the micronutrient deficiency. Genetic modification to improve the micronutrient 
content through the available zinc and iron-regulated transporters in foxtail millet can be useful to fine tune the enrichment 
of micronutrients. The availability of well annotated foxtail millet genome sequence information can facilitate gene min-
ing, transcripts and proteins related to nutritional quality. Combining the insights gained from proteomics, transcriptomics, 
genomics, and metabolomics might help foxtail millet to become a model system. This article describes the different 
aspects of biofortification in foxtail millet as the biofortified crop for the present and future.
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esculenta (A. Braun) H. Scholz), finger millet (Eleusine 
coracana (L.), little millet (Panicum sumatrense Roth. ex 
Roem. & Schult.), proso millet (Panicum miliaceum L.), 
foxtail millet (Setaria italica (L.) P. Beauv) are indigenous 
to several countries (Neeraja et al. 2017; Garg et al. 2018; 
Kumar et al. 2018). Some of the major millets are grown in 
Asia and Africa (Fig. 1B-I).

Millets are rich in different nutrients, proteins, and vari-
ous minerals, and almost 80% of millet grains are used as 
food while 20% is utilized for feed and industry (Shivran 
2016; Kumar et al. 2018). Millets are considered as ideal 
nutrition for newborn children, lactating mothers, conva-
lescents and old. The grains dissipate sugar gradually into 
the circulatory system and are considered “sans gluten” 
(Arendt and Dal Bello 2008). There is a high demand for 
the millets due to rich protein and high fiber content which 
favored them as dietary nourishment for individuals with 
cardiovascular sicknesses and diabetes (Arendt and Dal 
Bello 2008). Flavonoids and phenolic acids in millets have 
an important function in scavenging free radicals caused by 
oxidative stress, which has a lowering influence on blood 
glucose levels (Kunyanga et al. 2012; Muthamilarasan et al. 
2016). Pearl millet has iron (Fe) and zinc (Zn) in the range 
of 5-11.2 and 3- 7.1 g/100 g, respectively (Kulp 2000; Hadi-
mani et al. 2001) with considerable amounts of bioactive 
substances such as phenols, carotenoids and phenolic acids 
(Kumar et al. 2018; Zhang et al. 2007). Finger millet has 
abundant polyphenols (Chandrasekara and Shahidi 2011; 
Devi et al. 2014), minerals such as calcium, magnesium, 
and potassium (Devi et al. 2014; Kumar et al. 2018) and 
elevated levels of amino acids such as lysine and methio-
nine, tryptophan (Bhatt et al. 2011). Barnyard millet has 

high rough fibre (13.6%) and Fe (186 mg/kg dry matter), 
while proso millet has the highest protein content  (12.5%) 
(Kumar et al. 2018). Barnyard millet grains have gamma-
aminobutyric acid (GABA) and -glucan, which act as cell 
reinforcing biochemicals which help lower blood lipid 
levels (Sharma et al. 2016). The dietary fibre level of little 
millet and kodo millet is high, while little millet has high 
magnesium concentration (1.1 g/kg dry matter).

Foxtail millet is reported to have been domesticated in 
China almost 8700 years ago and is regarded as one of the 
world’s oldest crops (Yang et al. 2012; Goron and Raizada 
2015). The most extensive collection of foxtail millet germ-
plasm, totaling 27,059 accessions is maintained at the Chi-
nese Academy of Agriculture Science (Diao and Jia 2017) 
followed by 14,000 foxtail millet germplasm accessions in 
gene banks of Japan, Korea, the United States of America, 
Russia, and in other countries, and 1542 foxtail millet germ-
plasm accessions are maintained at the International Crop 
Research Institute for Semi-Arid Tropics (ICRISAT) (Vinoth 
and Ravindhran 2017). The genetic diversity of foxtail mil-
let has been explored by using morphological and biochem-
ical indices (Van et al. 2008; Jia et al. 2009; Nirmalakumari 
and Vetriventhan 2010). The modern foxtail millet has a 
variability based on waxy and non-waxy grain type which is 
due to low amylase levels in the grain endosperm, impart-
ing a sticky texture to grain upon cooking (Van et al. 2008). 
Interestingly, such diversity is seen to set a coincidence of 
ethnological preferences with the geographical occurrence 
of these two groups of foxtail millet. For example, some 
local communities prefer waxy millet phenotype (Van et al. 
2008), while the non-waxy grain phenotype is more widely 
planted and grown in Africa and Eurasia (Kawase et al. 

Fig. 1   A. Global status of millet production (This is an original dia-
gram constructed by K. P. Ingle for this manuscript and data obtained 
from (FAOSTAT, 2021); B-I: Different millets grown in Asia and 

Africa (FAOSTAT, 2021) B, Sorghum C, Pearl millet D, Finger mil-
let E, Foxtail millet F, Little millet G, Kodo millet H, Proso millet I, 
Barnyard millet

 

1 3

26



Plant Growth Regulation (2023) 99:25–34

2005). To date, two complete reference genome sequence 
data have been generated in genotypes Yugu1 and Zhang Gu 
(Wang et al. 2012; Lata et al. 2013).

Foxtail millet has high content of minerals, non-starchy 
polysaccharides, vital amino acids, and proteins, and hence 
it is regarded as one of the world’s most important nutri-
cereals (Gowda et al. 2022). The main carbohydrate pres-
ent in foxtail millet is starch and it contributes up to 60% 
of dry weight. Amylose makes up 25% and amylopectin, 
up to 75%. The linear structure of amylose and the amylo-
pectin’s branched structure contribute to the millet’s unique 
nutritive quality. The major amino acids present in foxtail 
millet are methionine, valine and lysine. The grain composi-
tion of foxtail millet has high protein (14–16%), fat (5–8%) 
and minerals as compared to cereals (Thathola et al. 2011; 

Ravindran 1992). Further, digestible protein also has major-
ity of the essential amino acids compared to major cereal 
crops such as rice and wheat (Zhang et al. 2007). Nutritional 
superiority of foxtail millet grain is also shown by more edi-
ble fiber content (2.5 fold) and the bran has 9.4% crude oil 
containing 66.5% linoleic and 13.0% oleic acid (Liang et al. 
2010; Black et al. 2013).

Foxtail millet is extensively used as an energy source 
for the children, diabetic patients and pregnant and nurs-
ing women (Pasricha et al. 2021). Health benefits are repre-
sented by its effects in reducing serum lipids, blood glucose 
and glycosylated hemoglobin in patients with type 2 diabe-
tes (Thathola et al. 2011). The mineral content of foxtail mil-
let ranges from 1.7 to 4.3 g/100 g dry weight. The calcium, 
iron, phosphorus, and zinc concentrations in foxtail millet 
are 31, 3.5, 300 and 60.6 mg/100 g dry weight, respectively. 
Thiamine, niacin and riboflavin are present in foxtail mil-
let and their concentration is 0.60, 0.55, 1.65 mg/100 dry 
weight, respectively. A higher concentration of vitamins and 
minerals than other cereals makes foxtail millet an easy and 
cheap substitute to tackle nutritional adversity (Neeraja et 
al. 2017). Besides macro and micronutrients, foxtail millet 
possesses important phenolic acids, flavonoids, and tannins, 
known for their antioxidant, anti-mutagenic, antiviral, and 
anti-inflammatory effects (Neeraja et al. 2017). A detailed 
presentation of different phenolic compounds along with 
vitamins, macro and micronutrients is given in Fig. 2.

Micronutrients and biofortification

Micronutrients are mainly composed of vitamins and miner-
als and they are vital for human growth and development. 
It is estimated that malnutrition-associated mortality in chil-
dren accounts for 3.1 million deaths, of which 1.1 million 
are due to micronutrient deficiencies (Black et al. 2008; 
Brown et al. 2001). The percentage of population with 
selected micronutrient deficiencies is represented (Fig. 3). 
The deficiency of micronutrients results in serious illness, 

Fig. 3  Percentage of population 
with selected micronutrient defi-
ciencies. Adopted from Global 
Hunger Index -The Challenge of 
hidden hunger. (modified from 
(Lockyer et al. 2018))

 

Fig. 2  Diagrammatic representation of the nutritive value of foxtail 
millet. (This is an original diagram constructed by K. P. Ingle for this 
manuscript and data obtained from (Neeraja et al. 2017; Kumar et al. 
2018)
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Phytobiofortification and biotechnological 
interventions

Phytobiofortification is an innovative platform for delivering 
the nutrient density to improve the nutrition and livelihood 
of vulnerable population (Neeraja et al. 2017). Biofortifica-
tion is utilized to promote mineral transport from roots to 
tissues, as well as mineral mobilization from soils to roots 
and mineral absorption in the body (Pérez-Massot et al. 
2013). Different techniques of genetic engineering includ-
ing genetic transformation using Agrobacterium sp., par-
ticle gun, genome editing is now used for improving crop 
plants for various traits such as stress tolerance, yield, plant 
architecture and nutritional quality (Gantait et al. 2022). 
Genetic engineering approach for increasing the required 
micronutrients is facilitated by the expression of genes for 
the regulation of metal homeostasis and carrier proteins that 
serve to increase the micronutrient content, bioavailability 
and greater productivity (Garg et al. 2018). In this regard, 
the transgenic approach of using transporters has become a 
good option for the higher uptake of nutrients (Shewmaker 
et al. 1999; Pérez-Massot et al. 2013). Genetic modification 
of various crops to improve their micronutrient content has 
been reported by several researchers (Nadeem et al. 2018, 
2020). Genes for phytoene synthase (PSY), carotene desatu-
rase, and lycopene β-cyclase for nutrients, ferritin and nico-
tinamide synthase for minerals, egg whites for basic amino 
corrosive, and ∆6 desaturase for basic unsaturated fats are 
the available target candidates for biofortification research 
(Fig.  4) (Ravindran 1992). Successful examples include 
high unsaturated fat soybean, vitamin A fortified golden 
rice, iron and zinc content in pearl millet, high lysine maize, 
high provitamin A and high iron and provitamin A cassava 
(Bouis and Welch 2010; Jaiswal et al. 2022). Furthermore, 
research needs to be prioritized on inducing genetic vari-
ability for the higher synthesis of micronutrients, their tis-
sue redistribution and expanding biochemical pathways in 
palatable tissues (Yang et al. 2012; Garg et al. 2018).

Foxtail millet and biofortification

The potential for biofortification of foxtail millet is 
immense and it can be achieved through conventional 
breeding, genetic modification and agronomic approaches 
for increasing the nutrient level in the grains or by increas-
ing the availability of the nutrients by decreasing the 
anti-nutrient content (Bouis and Welch 2010; Vinoth and 
Ravindhran 2017). Agronomic methods that apply various 
minerals as fertilizers are not regarded economical as they 
require additional costs and management. In foxtail millet, 
Liang et al. (2020) evaluated the foliar spraying of sodium 

weakened immune system, malnutrition and underdevel-
opment. This problem has been identified as a serious and 
increasing problem in both developing and underdeveloped 
countries. One of the key causes impacting children, pre-
menopausal women, and adults in low- and middle-income 
nations is iron deficiency anemia (Brown et al. 2001). Iron, 
folate and vitamin B12 deficiency results in anemia while 
there is also coassociation of the deficiency with other ail-
ments such as lower learning ability, memory and neuro-
psychological behavior among children (Bailey et al. 2015). 
Iron also plays a crucial function in hemoglobin, myoglo-
bin, enzymes, and cytochromes and is necessary for oxy-
gen transport and cellular respiration (Bailey et al. 2015). 
Unlike iron, zinc does not experience a decline in blood 
levels in the event of a severe defficiency. Children often 
have a severe type of zinc deficiency. The diets of people in 
South Asia, South East Asia, and Africa appear to contain 
relatively little zinc (Bailey et al. 2015; Lockyer et al. 2018). 
As zinc interacts with 925 proteins in humans, the symp-
toms of zinc deficiency may be multiple and indiscriminate, 
which makes it extremely difficult to diagnose in humans. 
Deficiency of Vitamin A is associated with childhood mor-
tality and morbidity in the developing nations, particularly 
in Africa and Southeast Asia (Hodge and Taylor 2022).

Supplementation and fortification are relatively the sus-
tainable approaches that can tackle the problem of micronu-
trient deficiency. Short-term and long-term strategies have 
been identified considering the importance and relevance 
of micronutrient deficiency worldwide (Ruel and Levin 
2001). The “Short term strategies” involve the addition of 
additional food or nutrients in the form of capsules, pills, or 
syrups to a high-risk population. Considerable success has 
been made by using the vitamin A and zinc supplementa-
tion methods to manage micronutrient deficiencies (Black 
et al. 2008). One of the success stories includes the vita-
min A Global Initiative by the World Health Organization in 
1998, leading to the prevention of an estimated 1.25 million 
deaths in 40 countries (Ruel and Levin 2001). The long-term 
strategies include food-based strategies to enable increased 
intake and bioavailability of micronutrients which can be 
accomplished through boosting the production, availability, 
and consumption of micronutrient-rich foods, as well as the 
bioavailability of micronutrients in the diet, trace mineral 
and vitamin concentrations, and absorption boosters. Cur-
rently, the options to improve nutritional conditions include, 
dietary diversification, which is referred to as consuming 
a variety of foods such as fruits, vegetables and livestock 
products rich in micronutrients can tackle the micronutrient 
deficiency (Mannar and Sankar 2004).
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of gene complexes (Reddy and Vijayaraghavan 1995). In 
this regard, phenotypic correlations are important for ini-
tial characterization by trait identification (Jia et al. 2009). 
Molecular and morphological markers have been used to 
identify genetic variability for nutritional traits in foxtail 
millet (Trivedi et al. 2018). Microsatellites, known as sim-
ple sequence repeats or SSRs, are responsible for maintain-
ing their high number of polymorphism and high variation 
levels. Molecular evaluation of 30 foxtail millet accessions, 
led to exploring of untapped genetic diversity of foxtail 
millet in the Himalayan region for variability in nutritional 
traits such as dietary fiber, starch, protein and amino acid 
content. In the Indian context, there are also new biofor-
tified varieties (SiA 3088: 129 ppm, SiA 3142 & TNAU-
186) developed for high iron (> 129ppm) which have shown 
promise for use in the HarvestPlus program (Singh 2017). 
High iron foxtail millet varieties can find greater utility in 
the biofortification programs for alleviating iron deficiency 
among the preschool children, non- pregnant, non-lactating 
women of reproductive age (Andersson et al. 2017).

selenite (Na2SeO3), which led to a 9.8-fold rise in seleno-
methionine and selenocysteine with a concurrent increase 
in potassium and iron content. The findings suggest that 
foxtail millet has Se-inducible proteins that may prove valu-
able in Se-enriched millets. Nanoscale biofortification and 
supplementation with numerous micronutrients are advised 
for biofortifying Se in millets (Schiavon et al. 2020). If the 
desirable trait is not available in the germplasm, genetic 
modification technology is used to introduce desirable traits 
from different plant or non-plant sources. The advantages of 
this method are that multiple genes of interest can be incor-
porated and targeted expression in tissues can be achieved 
(Vinoth and Ravindhran 2017). More recently, engineering 
of membrane bound nutrient transporters has been viewed 
to play a key role in the biofortification of crops (Krishna et 
al. 2022).

Foxtail millet has desirable attributes of drought toler-
ance, pest resistance and the crop are enriched with micro 
and macronutrients. The development of a successful 
core collection depends on the proper sampling of phe-
notypic associations which are linked to the co-adaption 

Fig. 4  Application of different 
gene resources for biofortification 
using transgenic approach. [This 
figure is constructed by K. P. 
Ingle for this manuscript and data 
obtained and modified(Hirschi 
2009)]
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and achieved higher transformation efficiency of 9%. How-
ever, the development of chimera transgenic plants is a 
shortcoming of employing shoot apices (Ceasar et al. 2017). 
In recent reports, a simple and robust agrobacterium-medi-
ated transformation method developed in foxtail millet with 
27% transformation efficiency (Sood et al. 2020), that may 
speed up forward and reverse genetic investigations in fox-
tail millet.

The transgenic approaches for vitamin production in 
plants have been made possible through metabolic engi-
neering. Golden rice is an example that has been genetically 
engineered to produce provitamin A (Paine et al. 2005). In 
order to permit commercial production of genetically modi-
fied (GM) crops, regulatory challenges are being solved 
utilizing scientific data. GM millets with increased vitamin 
levels can offer good scope for biofortification (Vinoth and 
Ravindhran 2017). Further, the application of CRISPR/Cas9 
mutagenesis in foxtail millet modified the phytoene desatu-
rase (PDS) gene was accomplished using protoplast trans-
fection in foxtail millet (Lin et al. 2018). In a recent study, 
Liang et al. (2022) have developed single gene and multi-
gene knockouts and single base substitution by CRISPR/
Cas9 method in Setaria italica and isolated a herbicide 
mutant by cytosine base editing to target the SiALS (aceto-
lactate synthase) gene. Further utilization of genome editing 
tools like CRISPR/Cas could help to improve nutrients in 
foxtail and other millets (Ceasar 2022). This method could 
be further utilized for editing the target genes to improve 
crop nutritional quality.

Genomics

With the rapid advancement of genome sequencing in 
recent years, the majority of crops now have high resolution 
genetic linkage maps and genomic sequencing information 
(Varshney et al. 2021). Furthermore, the sequencing data 
enables the mapping of sequence variation related to traits 
of interest, as well as the creation of molecular tools for 
crop improvement using genomics. Recently, genome-wide 
association studies have been applied for understanding 
the genetic regulation of natural variation in foxtail millet 
for certain agronomic features (Zhang et al. 2012; Jia et al. 
2013). Marker-assisted selection has helped to speed up the 
conventional breeding process. Genotyping diverse foxtail 
millet germplasm using high throughput resequencing will 
make it easier to develop novel genetic markers to map 
important traits. The population genetics of diverse foxtail 
millet germplasm has been studied using SNPs and SSRs 
(Jia et al. 2013; Wang et al. 2012). A foxtail millet haplo-
type map has been built based on 0.85 million SNPs discov-
ered in 916 cultivar genomes throughout the world, as well 

Nutrient transporters of foxtail millet

Plants are endowed with several metal transporters, which 
play a crucial role in the uptake of metal ions to main-
tain metal homeostasis. One of the essential nutrients, 
nitrate, is transported by the high-affinity transport system 
(NRT2.1) and NRT1.1. In foxtail millet, both SiNRT1.11 
and SiNRT1.12 are up regulated under conditions of nitro-
gen limitation (Ceasar et al. 2017; Nadeem et al. 2020), and 
up regulation of SiPHT1.1, SiPHT1.2, and SiPHT1.4 has 
been observed in roots for better inorganic phosphate (Pi) 
uptake (Ceasar et al. 2017; Alagarasan et al. 2017). Also, 
downregulation of SiPHT1;2 affected the Pi uptake in 
foxtail millet seedlings (Ceasar et al. 2017). The zinc and 
iron-regulated transporter-like Proteins (ZIP) are majorly 
involved in the acquisition of zinc and iron (Krishna et al. 
2022). In rice, OsZIP4, OsZIP5 and OsZIP8 are function-
ally validated as zinc transporters, whereas in foxtail millet, 
SiZIP genes have been shown to be Zn and or Fe transport-
ers engaged in divalent metal ion absorption, transport, and 
storage (Ortiz et al. 1998). These studies suggest the cru-
cial role of transporters, including the ZIP genes and their 
regulation in foxtail millet may be useful for enriching the 
micronutrients content. Membrane transporters for Zn / Fe 
which are associated with grain filling have been shown to 
be good candidates for genetic improvement (Krishna et al. 
2022; Ramegowda et al. 2013) achieved higher Zn accumu-
lation in finger millet grain through the transfer of rice zinc 
transporter OsZIP1. In wheat, a vacuolar iron transporter 
gene (TaVIT2) under the control of endosperm-specific pro-
moter led to 2-fold higher iron in the grain (Connorton et al. 
2017; Boonyaves et al. 2017) reported increased iron levels 
in grain (10.46 µg/g dry weight) by transgenic expression of 
a metal transporter, nicotianamine synthase. In rice, knock-
out of zinc transporter OsZIP9 in rice showed reduced Zn 
levels in grain and other tissues suggesting crucial role of 
the gene in Zn uptake (Yang et al. 2020).

Transgenic foxtail millet

Nutritional quality of foxtail millet can also be improved via 
genetic engineering (Ceasar and Ignacimuthu 2009). The 
first agrobacterium-mediated foxtail millet transformation 
was developed by Liu et al. (2005). This method yielded a 
6.6% transformation frequency. Until recently, all published 
reports on foxtail millet have relied on the transgenic meth-
ods of Wang et al. (2011) or Liu et al. (2005). Furthermore, 
both these methods employed undeveloped inflorescence as 
beginning explants and have a poor transformation efficacy 
(5.5%). In a novel finding, Ceasar et al. (2017) studied the 
possibility of employing shoot apices for transformation 
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these proteins include 16 conserved amino acids known as 
the “DWD box” (Angers et al. 2006; Hua et al. 2011). The 
FT-NIR has been used to assess the protein, amino acid, car-
bohydrate, and lipid contents of the foxtail millet (Chen et al. 
2013). Using computational methods, 16 prolamin encod-
ing genes known as setarins were recently characterized 
in foxtail millet and it has been shown that setarin genes’ 
sequence alignment with other grains and millets indicated 
the least similarity, suggesting uniqueness in increased pro-
tein quality (Muthamilarasan and Prasad 2016). The authors 
also overexpressed setarin genes in growing spikes for func-
tional verification in seed protein accumulation (Muthami-
larasan and Prasad 2016). Such functional genomics studies 
might pave way for the development of high protein foxtail 
millet cultivars.

Metabolomics

Metabolites are hypothesised to serve as a connection 
between the genome and the phenotype of the organism, 
and the metabolomic studies provide a metabolic atlas of the 
plant’s physiological status (Chen et al. 2016). A metabolite 
study in millet and rice revealed species-specific accumula-
tion of secondary metabolites such as flavonoids (Li et al. 
2018). The Ultra Performance Liquid Chromatography-
Electrospray Ionization-Tandem Mass Spectrometry equip-
ment was used to identify 116 flavonoid metabolites in 
foxtail millet, of which 33 flavonoid metabolites were found 
to be substantially different between high and low eating 
quality types. These findings demonstrate the diversity in 
flavonoid accumulation in foxtail millet for breeding for 
high-flavonoid foxtail millet varieties (Zhang et al. 2021). 
An LC-MS-based metabolic profile study revealed varia-
tions in metabolite accumulation among 150 foxtail millet 
accessions from India and China. Cyanidin 3-O-glucoside 
and quercetin O-acetylhexside were found at 43.55 Mb on 
chromosome 5 and 26.9  Mb on chromosome 7, respec-
tively, based on the mGWAS study, and two Lc genes were 
identified as candidate genes. This is the first study to use 
mGWAS in foxtail millet, making way for more research 
into exploring metabolomic diversity, especially for nutri-
tionally relevant flavonoids (Wei et al. 2021).

Conclusions and future perspectives

Micronutrient deficiency is considered to have a profound 
effect on global health. In this regard, millets are excep-
tionally nutritious crops that can be exploited extensively 
in the regions of Asia and Africa to overcome the nutri-
ent deficiency. Biofortification is a highly sustainable and 

as 512 quantitative trait loci (QTL) (Jia et al. 2013). For 
effective crop breeding using marker-assisted selection, it is 
critical to identify important QTLs (Wang et al. 2017). Also, 
the identification of markers such as SNPs and InDels, asso-
ciated with nutritional factors will interpret information on 
possible genes driving these variables. Because millets have 
good cross-genera transferability, use of molecular breeding 
or genetic engineering to introduce nutrient-linked genes 
into other cereals may become feasible. Transcriptome data 
on changes in gene expression of storage compound associ-
ated genes (Jayaraman et al. 2008) can be looked into for the 
selection of genes of pathways involved in the biosynthesis 
of nutritional compounds for calcium accumulation.

The foxtail millet was the first millet crop to have its 
whole genome sequenced, and it has the smallest genome 
(423–510 Mb), serving as a paradigm for C4 crop species. 
Also, the disclosure of draft genome sequences of Yugu1 and 
Zhang gu, cultivars of foxtail millets has progressed studies 
for its further improvement (Bennetzen et al. 2012; Zhang et 
al. 2012). Shi-Li-Xiang, a foxtail millet waxy landrace, was 
resequenced utilizing Solexa sequencing technology and 
the Genome Analyzer II to investigate the nucleotide altera-
tions spanning agronomic trait-related genes. InDels, SVs 
and SNPs were discovered using alignment with reference 
genomes. Re-sequencing yielded novel markers that aided 
in the genome mapping of starch synthase, which encodes 
the GBSS 1 peptide. The GBSS 1 gene was sequenced and 
transposable elements were discovered, confirming its waxy 
nature (Bai et al. 2013). Advances in genome editing and 
use of programmable site-specific nucleases can be useful 
to genetically alter non-waxy elite cultivars into desirable 
waxy types (Vinoth and Ravindhran 2017) and will accel-
erate improvement of biofortified foxtail millet and other 
millets.

Proteomics

Information on the composition and quality characteris-
tics of foxtail millet must be evaluated in order to gener-
ate value-added and functional protein in foods. The seeds 
of foxtail millet have health-promoting effects due to their 
exceptional protein composition, which has important 
amino acids in abundance. In foxtail seeds, setarins make 
up roughly 60% of the total protein composition, with less 
disulfide cross-linked proteins than other crops. Protein 
fractionation methods can help researchers learn more about 
the nature of foxtail millet proteins (Sachdev et al. 2021). 
WD40 proteins have been discovered to play an important 
role in protein-protein interactions by acting as scaffolding 
molecules and therefore aiding the proteins’ optimal perfor-
mance. (Mishra et al. 2014). Within the WD40 repetitions, 
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cost-effective way to mitigate micronutrient deficiency. 
However, more evidence will have to be generated on the 
impact of different strategies on health, morbidity, mortality, 
adverse effects, composition, use and delivery. The relation-
ship between bioavailability, absorption of micronutrients 
and outcome requires urgent focus for long-term solutions 
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in foxtail can be useful to fine tune metabolic pathways to 
achieve high flavonoids accumulating foxtail millet geno-
types for biofortification purpose. The availability of highly 
efficient genome editing systems with single, multiple 
genes associated with nutritional quality should contribute 
to fostering biofortification research in foxtail millet. Fur-
thermore, biofortified millets offer a great scope in creating 
low-cost, protein-rich functional food items for improved 
nutritional security.
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