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Abstract
Trichomes are important epidermal structures that cover the surfaces of most terrestrial plants. Plants face various stresses due 
to their immobile nature, and trichomes play important roles in defense against environmental stressors including herbivores, 
strong light with high radiation, and ultraviolet light. To date, more than 100 genes are known to be involved in trichome 
development, including genes that regulate trichome initiation, differentiation, multidimensional cell growth, and branching. 
In the current review, we classify trichome development genes based on whether they are involved in trichome initiation, dif-
ferentiation, and branching. Most of these genes encode transcription factors that positively or negatively regulate trichome 
development. Given that trichomes play key roles in plant stress responses, we explore whether trichome development-
related genes also participate in other biological processes or responses, such as biotic and abiotic stress responses. Possible 
interactions of signaling pathways that function in trichome development and stress resistance were discussed. Elucidating 
the trichome development mechanism in model plants should shed light on the development of similar structures in other 
species and uncover key genes involved in these processes. Further characterizing these genes should facilitate the use of 
genetic engineering to improve stress resistance in crops.
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Introduction

Terrestrial plants are rooted in the soil, meaning they must 
adapt to their complex, changeable environments through-
out growth and development. Epidermal hair-like structures 
evolved during the transition of plants from the ocean to 
the land (Chopra et al. 2019). These structures, known as 
trichomes when found on the aerial organs of plants and root 
hairs when found underground (Doroshkov et al. 2019), are 
extensions of the epidermis (Fambrini and Pugliesi 2019) 
that play important roles in the interactions between plants 
and the environment (Zhou et al. 2018). The definition of tri-
chome refers to a epidermal and hairy outgrowth on a plant’s 
surface, as a prickle, is presented (Huchelmann et al. 2017).

Trichomes are present on the leaves, stems, inflorescence 
stems, and flowers of most terrestrial plants (Chopra et al. 
2019), functioning as the first line of defense against physi-
cal damage from biotic stress (such as insect herbivores, 
pathogenic fungi, and bacteria) and abiotic stress (e.g., 
reflecting light to protect plants from strong light) (Kariyat 
et al. 2018). Their size ranges from microns to centimeters: 
cotton (Gossypium herbaceum L.) trichomes can reach up to 
20 cm in length, while Arabidopsis thaliana trichomes are 
generally only a few millimeters long when mature (Wang 
et al. 2019b; Guan et al. 2008). Some trichomes, such as 
prickles in tomato (Solanum lycopersicum), have adjunct 
structures that function as biochemical factories to biosyn-
thesize a diverse array of specialized metabolites (Kang 
et al. 2014). For example, trichomes of Artemisia annua 
produce artemisinin, a sesquiterpenoid used as a well-known 
antimalarial drug (Singh et al. 2016). The raw materials used 
by the natural fiber and textile industry primarily come from 
the trichomatous fibers of the cotton seed coat (Rinehart 
et al. 1996). Polysaccharides, proteins, polyphenols, and 
terpenoids are synthesized in the trichomes of many plants, 
such as A. annua, hops, and mint, and can be used to manu-
facture drugs, fragrances, and natural pesticides (Lange and 
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Turner 2013). For example, the trichome of A. annua can 
produce artemisinin, which is a sesquiterpene antimalarial 
drug (Singh et al. 2016); the accumulation of toxic com-
pounds (primin, chlorogenic acid and rutin) in the trichome 
can improve the resistance to insects, microbes and herbi-
vores (Wagner et al. 2004).

Trichomes can be classified in many different ways, 
including by whether they secrete substances (such as acids 
and carbohydrates), their number of cells or branches, 
their shape, or their size. The first two categories are the 
most commonly used, particularly because the number of 
branches is related to the secretory functions of trichomes. 
There are evidences that species with more trichome 
branches seem generate fewer secretions. For example, the 
Arabidopsis trichomes, with 3–4 branches, do not secrete 
substances, but tobacco (Nicotiana tabacum) trichomes, 
with no branches, produce abundant secretions (Cui et al. 
2011). Figure 1 shows the general structures of secretory and 
non-secretory trichomes, with the former displaying secre-
tory pores and the latter possessing branches. Typical secre-
tory unbranched trichomes, like those observed in tobacco, 
are shown in Fig. 1a. Non-secretory trichomes, such as those 
in Arabidopsis, are shown in Fig. 1b; these trichomes func-
tion in defense against biotic and abiotic stresses (Yan et al. 
2012).

Trichomes can also be classified as single-celled or multi-
cellular, although they are usually instead grouped based on 
whether they are glandular or non-glandular, which have dif-
ferent functions in plant defense. Non-glandular trichomes 
are mainly used as mechanical barriers by plants to restrict 
the movement of herbivores and avoid damage by feeding 
(Murungi et al. 2016). Unlike non-glandular trichomes, 
glandular trichomes secrete phytochemicals that induce 
the expression of certain defense genes or secretions that 
directly target and disperse herbivores (Glas et al. 2012),such 
as EXPRESSION OF TERPENOIDS 1 (SLEOT1), which 
functions in terpene biosynthesis in tomato trichomes (Spy-
ropoulou et al. 2014; Schuurink and Tissier 2020).

The number of trichomes and their secretion ability affect 
plant resistance to biotic stress. Trichomes are also involved 
in plant resistance to some abiotic stresses; for example, 
plants often produce more trichomes when grown under 
high salt or drought-stress conditions (Yuan et al. 2019). Tri-
chomes can also reflect light to protect plants against dam-
age by ultraviolet radiation (Escobar-Bravo et al. 2019). The 
enhanced expression of trichome development-related genes 
also contributes to plant resistance to some stresses (Yuan 
et al. 2019). These facts prompted us to ask in this review: 
Is there a relationship between trichome development genes 
and stress resistance? As trichome development is well char-
acterized in the model plant Arabidopsis (Chang et al. 2019), 
we will primarily focus on whether the genes involved in 
trichome differentiation in this plant are also involved in 
stress resistance. The insights gained on this topic could aid 
efforts to improve stress resistance in a wide variety of crops, 
economic plant and forestry species.

Proposed model for trichome development 
of Arabidopsis

Trichome differentiation in Arabidopsis is triggered in 
individual cells which are considered as protodermal cells. 
Figure 2 shows a model of the roles of the genes (most of 
which encode transcription factors) known to participate in 
trichome development in Arabidopsis (Chang et al. 2019; 
Doroshkov et al. 2019), including the initiation, differentia-
tion, multidimensional cell growth, and branching of these 
epidermal structures. Transcription factors with both nega-
tive and positive effects on their target genes drive these 
processes (Wang et al. 2019a). Here, we provide a brief 
summary of the genes known to be involved in trichome 
development.

Trichome initiation

As shown in Fig. 2a, the positive regulators GLABRA1 
(GL1), GLABRA3 (GL3), ENHANCER OF GLABRA3 

Fig. 1   Structures of glandular (secretory) and non-glandular (non-
secretory) trichomes.  a Glandular trichomes are usually composed 
of multiple cells of different shapes and have secretory pores, such 
as those in Nicotiana tabacum; the blue circles represent secretory 
pores. b Non-glandular trichomes are generally single-cell structures, 
with one to five branches, such as those in Arabidopsis. (Color figure 
online)
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(EGL3), and TRANSPARENT TESTA GLABRA1 (TTG1) 
form a MYB-bHLH-WDR (MBW) activator complex to 
activate the expression of GL2/TTG2 and RBR/SIM, thereby 
promoting trichome initiation (Yang et al. 2013; Morohashi 
et al. 2007; Morohashi and Grotewold 2009; Payne et al. 
2000; Zhang et al. 2003). In general, TTG1 acts upstream of 
GL3 and GL1 to activate their expression (Payne et al. 2000). 
SENSITIVE TO ABA AND DROUGHT2 (SAD2) encodes an 
important beta-domain protein that regulates trichome devel-
opment in the same manner as GL1, GL2, and GL3 (Zheng 
et al. 2020). Competitive combination with GL3 occurred 
between MYB transcription factors CAPRICE (CPC), TRIP-
TYCHON (TRY), and GL1 to regulate trichome initiation 
(Schnittger et al. 1999; Wada et al. 1997; Kirik et al. 2001). 
The transcription factors TRY and CPC are negative regula-
tors of trichome initiation that compete with GL1 for binding 
to the bHLH protein GL3 or ENHANCER OF GLABRA3 

(EGL3), thereby altering the MBW complex so that cells 
cannot form trichomes (Fig. 2b).

Specifically, trichomes are derived from rapidly divid-
ing protoepidermal cells at the bases of new leaves. After 
four rounds of endoreduplication, the trichomes mature 
and form two to four branches, depending on the plant 
species (Melaragno et al. 1993; Larkin et al. 2003). The 
induction of cell divisions during the early steps of glan-
dular trichome development requires not only transcrip-
tion factors, but also cell cycle regulators. Various pro-
teins regulate the cell cycle to induce trichome initiation, 
such as SIAMESE (SIM) and RETINOBLASTOMA-
RELATED (RBR), which regulate the expression of the 
cyclin-dependent kinase genes CCS52A1 and CCS52A2 
(Kasili et al. 2010; Desvoyes et al. 2014; Sun et al. 2013). 
SIM, a repressor of mitosis during the internal replicat-
ing cell cycle, is required to coordinate cell division and 

Fig. 2   Proposed model of trichome development. a Trichome initia-
tion and differentiation. GL1, GL3, EGL3, and TTG1 form a MYB-
BHLH-WDR (MBW) activation complex to activate the expression 
of GL2/TTG2 andRBR/SIM to promote the formation of trichomes. 
TT8/MED25/COL1, SAD2 and GIS2/ZFP8 play a positive role in 
the upstream of MBW complex, while JAZ and GAI negatively reg-
ulated the formation of MBW complex. After initiation, the down 
regulated genes CCS52A1/CCS52A2, FZR2, ZFP5, and ICK1/KRP1 
cooperatively control the differentiation of trichome. b  Repression 
of trichome formation. Simultaneously, TRY/CPC/ETC1/ETC2/

ETC3/TCL1/TCL2 are induced and rapidly move to the adjacent 
cells, which can competitively combine with GL3 and replace GL1 
to inhibit trichome initiation.  c  Arabidopsis trichomes undergo two 
consecutive branching events. Primary branching of trichomes is reg-
ulated by ZWI, STI, and BLT and secondary branching is promoted by 
SPY and GIS/SIM. The plant hormones cytokinins (CK) in blue cir-
cle, gibberellins (GA) in green, salicylic acid (SA) in purple and jas-
monic acid (JA) in orange play positive roles in regulating trichome 
development. → indicates promoting and   means inhibiting. 
Dotted lines represent no clear evidence of interaction
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differentiation during Arabidopsis trichome development 
(Walker et al. 2000). Overexpressing CYCD in trichomes 
led to the production of multicellular trichomes in wild-
type plants. Conversely, the multicellular trichome phe-
notype of the sim mutant was rescued when the cyclin-
dependent kinase (CDK) inhibitor gene ICK1/KRP1, 
which interacts with CYCD, was exogenously expressed 
in trichomes (Wang et al. 2020).

SIM and RBR expression is positively regulated by 
GL2 and TTG2 (Khosla et al. 2014) but negatively regu-
lated by TRY, CPC, ENHANCER OF TRY AND CPC1 
(ETC1), ETC2, ETC3, TRICHOMELESS1 (TCL1), and 
TCL2 (Payne et al. 2000; Chen and Schmidt 2015; Wang 
et al. 2007; Tian et al. 2017; Gan et al. 2011). NTM1-
LIKE8 (NTL8) negatively regulates trichome formation 
in Arabidopsis by directly activating the expression of 
TRY​ (Tian et al. 2017). MYB82 also interacts with GL3 
at one of its two exons, thereby regulating trichome devel-
opment (Liang et al. 2014). MYB75, MYB90, and GL1 
interact to inhibit trichome initiation (Teng et al. 2005; 
Mondal et al. 2018). TRICHOME-RELATED PROTEIN 
(TRP) is only produced in trichomes, where it binds to 
ZINC FINGER PROTEIN 5 (ZFP5) and inhibits its bind-
ing to the ZFP8 promoter region (Kim et al. 2018; Zhou 
et al. 2011). Thus, TRP and ZFP5 play opposite roles 
in regulating trichome initiation. FIZZY-RELATED2 
(FZR2) controls the induction of early endoreduplication, 
as FZR2 is necessary and sufficient for specific rounds of 
endoreduplication in Arabidopsis. The loss-of-function 
fzr2 mutants show reduced numbers of endoreduplication 
cycles in the trichome and reduced trichome branching 
(Larson-Rabin et al. 2009).

The homologous genes in other species also showed 
the similar functions. The conserved AP2 domain protein 
OsGL6 promotes leaf trichome initiation in rice (Oryza 
sativa L.) (Xie et  al. 2020). Conversely, OCL4 might 
inhibit trichome development. Expressing the maize 
gene OCL4 (encoding an HD-ZIP IV transcription factor 
involved in trichome differentiation) under the control 
of the GL2 promoter did not complement the abnormal 
trichome expansion of the Arabidopsis gl2-1 mutant but 
instead aggravated its phenotype (Vernoud et al. 2009). 
Overexpressing the cotton (Gossypium arboreum) 
annexin gene AnnGh3 in Arabidopsis resulted in signifi-
cant increases in trichome density and leaf length, sug-
gesting that AnnGh3 is involved in fiber cell initiation 
and elongation in cotton (Li et al. 2013). Rice contains 
two R3MYB transcription factor genes: Oryza sativa 
TRICHOMELESS1 (OsTCL1) and OsTCL2. Expressing 
OsTCL1 in Arabidopsis inhibited trichome formation and 
promoted root hair formation, and OsTCL1 interacted 
with GL3 in Arabidopsis protoplasts (Zheng et al. 2016).

Hormonal regulation of trichome differentiation

Following trichome initiation, many hormones and genes 
influence the differentiation of these structures (Fig. 2a), and 
different hormones interact with each other during this pro-
cess. Salicylic acid (SA) regulates the transcription of GL3, 
TTG1, and TRY​ (Traw and Bergelson 2003), while jasmonate 
(JA) regulates the formation of trichomes by promoting the 
degradation of ZIM domain JAZ proteins to prevent their 
interaction with GL1 and EGL3/GL3 (Wen et al. 2018; Guo 
et al. 2018). SPI inhibits JA biosynthesis (Hohl et al. 2017), 
whereas the transcription factors TRANSPARENT TESTA8 
(TT8), MED25, and CORONATINE INSENSITIVE 1 
(COI1) promote this process (Wen et al. 2018; Fornero et al. 
2017), and JA promotes the transcription of GL3, TTG1, and 
TRY​ (Wen et al. 2018; Qin et al. 2011) (Tian et al. 2016). 
GA directly promotes trichome development by increasing 
the transcription of GL1 (Tian et al. 2016). DELLA pro-
teins inhibit the GA signal transduction pathway, which is 
encoded by five genes: GIBBERELLIC ACID INSENSITIVE 
(GAI), REPRESSOR OF ga1-3 (RGA​), and three RGA-LIKE 
genes (RGL1, RGL2, and RGL3). DELLA proteins interact 
with the basic components of the WD-repeat/BHLH/MYB 
complex to modulate the synergistic effects of GA and JA 
signaling on trichome development (Fuentes et al. 2012). 
Cytokinin (CK) stimulates the expression of GL1, GL3, 
MYB23, EGL3, and SIM (Gan et al. 2007). ZFP6 integrates 
GA and CK signaling and acts as an upstream activator of 
ZFP5 expression (Khosla et al. 2014), which in turn upreg-
ulates the expression of GLABROUS INFLORESCENCE 
STEMS (GIS), GIS2, and ZFP8 (Fig. 2a) (An et al. 2012; 
Gan et al. 2007). In addition, GIS2 and ZFP8 can increase 
the transcription of GL1 and GL3, meaning that GIS acts 
upstream of the MBW complex and has the opposite effect 
of the repressor gene GAI (An et al. 2012; Gan et al. 2006; 
Zhang et al. 2018). Finally, TEMPRANILLO1 (TEM1) and 
TEM2 negatively regulate trichome formation by affecting 
the biosynthesis of GA and CK (Fig. 2b) (Gan et al. 2006).

Trichome branching

After their differentiation, some trichomes undergo two 
branching events (Fig. 2c): primary branching and second-
ary branching. ZWICHEL (ZWI) and STICHEL (STI) are 
thought to promote the primary branching of trichomes by 
directly interacting with BRANCHLESS TRICHOME (BLT), 
an important protein linking cell shape and endoreplication 
(Kasili et al. 2011; Reddy et al. 2004). ANGUSTIFOLIA 
(AN), FASS/TONNEAU2 (TON2), and SPIKE participate in 
trichome branching by regulating microtubule arrangement 
in plant tissue (Kim et al. 2002). Homeodomain glabrous 
(HDG) transcription factors including HOMEODOMAIN 
GLABROUS1 (HDG1), HDG11, and HDG12 function in 
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trichome branching by promoting cell differentiation (Hor-
stman et al. 2015). The 26 S proteasome subunit RPN1a 
also inhibits trichome branching in Arabidopsis by promot-
ing the transcription of ZFP6, ZFP5, GIS, GL1, GL2, GL3, 
TTG1, and MYB23, leading to increased FRC4 expression 
in trichomes (Yu et al. 2015). RPN1a might also function 
in the GA and CK signaling pathways to influence trichome 
development (Zhu 2016).

Many proteins play positive or negative roles in regu-
lating secondary branching in trichomes. TRY​ and NOK 
encode negative regulators of this process, as the loss of 
function of these genes leads to the generation of additional 
branch points (Lescot et al. 2002). GIS regulates trichome 
branching by regulating two different branching pathways 
in Arabidopsis: the negative regulatory factors that func-
tion upstream and downstream of SPINDLY (SPY) in the 
GA signaling pathway (Lescot et al. 2002). GIS also play an 
indirect role in regulating hairy cell division by interacting 
with SIM (Qin et al. 2011; Cui et al. 2014). The miR319-
regulated PROLIFERATING CELL FACTOR4 (TCP4) pro-
tein suppresses trichome branching by directly activating 
GIS transcription in Arabidopsis leaves (Vadde et al. 2018).

Trichome development genes 
that participate in stress resistance

Unfavorable environmental conditions, including biotic and 
abiotic stress, inhibit plant growth, development, and repro-
duction (Gong et al. 2020). Biotic stress responses in plants 
are induced by viruses and microorganisms, as well as the 
feeding of insects and other herbivores. By contrast, abiotic 
stresses include drought, salt, cold, heat, heavy metals, and 
ultraviolet rays (Shao et al. 2021). Here, we focus on the 
roles of trichome development genes in stress resistance.

Biotic stress resistance

Non-glandular structures can block the movement of herbiv-
orous arthropods on the plant surface or prevent the mouth 
parts of insects from reaching the plant surface, for exam-
ple, the tips of the trichomes hinder the movement of insect 
(Glas et al. 2012). Some glandular structures produce acyl 
sugars or polyphenols, which trap the insect in their secre-
tions, where it ingests toxins or suffocates to death (Kara-
manoli et al. 2012). Trichomes can hinder the movement 
and biting of insects (Sato et al. 2019), but they can also 
detect the physical signal of insect movement and act as 
a mechanoreceptor to induce a series of internal reactions 
such as JA and SA production (Glas et al. 2012; Cardoso 
2008). In Arabidopsis, trichomes detect insect movement 
as the buckling of the cell walls from the base to the branch 
tips, which induces cytoplasmic calcium oscillations and 

changes in extracellular pH that are transferred to neighbor-
ing cells (Reddy et al. 2004). In general, wild wheat has 
stronger stress defense abilities than the domesticated wheat 
(Tanno and Willcox 2006), while there are also evidences 
that some domesticated varieties may have stronger defense 
mechanisms against insects than wild wheat. Domesticated 
wheat employs two major mechanisms for insect defense: 
biosynthesis of the deterrent compounds benzoxazinoids, 
and trichome formation to provide a physical barrier against 
insect attack (Batyrshina et al. 2020).

The trichome-initiation gene GL1 plays a key role in the 
physical defense against herbivores, particularly leaf-gnaw-
ing insects. A negative correlation was detected between 
the total abundance of leaf-eating insects and the density of 
trichomes. The loss of function of GL1 significantly reduced 
plant resistance to herbivorous insects (Sato et al. 2019). 
In addition to this genetic regulator, JA, a key hormone 
involved in trichome differentiation, is essential for defense 
against biotic stress (Kennedy 2003). In general, injury 
and/or herbivore infestation activates the octadecanoic acid 
pathway, leading to increased levels of JA, which trigger 
the expression of defense genes (such as genes encoding 
protease inhibitors) and the accumulation of secondary 
metabolites involved in plant defense (such as terpenes) (Wei 
et al. 2019). In addition to regulating the defense response 
induced by herbivores, the production of many metabolites 
in trichomes is also subject to strict transcriptional control 
downstream of hormonal regulation, allowing for the tem-
porary regulation of plant volatile production (Huchelmann 
et al. 2017; Glas et al. 2012).

UV and ozone resistance

UV-B increases the density of leaf trichomes to reflect 
excessive light and reduce transpiration (Escobar-Bravo 
et al. 2019), at least in part by inducing the expression of 
the trichome-initiation gene GL3 (Morohashi and Grotewold 
2009). Mutants with more trichomes than the wild type are 
more resistant to UV-B, while mutants with fewer trichomes 
are more sensitive to UV-B, indicating that trichomes play 
a key role in protecting plants against UV-B irradiation 
(Yan et al. 2012). Some plants accumulate UV-absorbing 
compounds in their trichomes, such as flavonols, which can 
protect the underlying photosynthetic tissue from damaging 
amounts of UV-A and UV-B irradiation (Agati and Tattini 
2010; Agati et al. 2012).

In addition, plants with lower glandular trichomes densi-
ties are more sensitive to ozone stress and more suscepti-
ble to ozone destruction than the wild type (Li et al. 2018). 
Glandular trichomes on the leaf surface are major factors 
in reducing ozone toxicity by acting as chemical barriers 
to neutralize ozone before it enters the leaf. Therefore, leaf 
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trichomes might be an important driving force for the spread 
of species in polluted environments (Lihavainen et al. 2017).

Salt and drought resistance

Plants have evolved several strategies to respond to envi-
ronmental changes (Zhu 2016). The drought and salt-stress 
responses share some common signal transduction mecha-
nisms; for example, in addition to ion toxicity, salt stress 
causes hyperosmotic stress, which is also observed in 
drought-stressed plants (Gong et al. 2020). Salt stress can 
also cause some secondary injuries, such as oxidative stress, 
which can destroy cellular components and affect the meta-
bolic functions of cells.

Many trichome development genes are responsive salt 
stress (Li et al. 2018). The Arabidopsis SPI gene encodes a 
WD40/BEACH domain protein involved in trichome devel-
opment, the deletion of which results in the formation of dis-
torted trichomes. SPI also participates in salt resistance by 
interacting with the P-body core component DECAPPING 
PROTEIN1 (DCP1) to maintain membrane integrity (Qin 
et al. 2011). The plant-specific homeodomain leucine zipper 
(HD-Zip) gene family plays a vital role in trichome develop-
ment and abiotic stress responses (Khosla et al. 2014; Zhang 
et al. 2019; Chen et al. 2016). In Arabidopsis, four HD-
ZIP-IV genes—GL2, MERISTEM LAYER1 (ML1), PROTO-
DERMAL FACTOR2 (PDF2), and ANTHOCYANINLESS2 
(ANL2) are involved in trichome development (Zhang et al. 
2016, 2019), the determination of floral organ characteris-
tics (Vernoud et al. 2009; Kamata et al. 2013), epidermal 
cell proliferation (Javelle et al. 2011), and root development 
and anthocyanin accumulation (Elhiti et al. 2009). HDG11 
and HDG12 are closely related feature-rich HD-ZIP-IVs that 
regulate trichome branching (Horstman et al. 2015). Most 
HD-ZIP-IV genes are induced by heat, cold, salt, drought, 
and the exogenous application of the plant hormones GA, 
6-benzylaminopurine, and SA, but are inhibited by abscisic 
acid (ABA) in N. tabacum (Elhiti et al. 2009) (Chew et al. 
2013). Salt stress alters the CG methylation level of GL2, 
leading to the production of more root hairs and fewer tri-
chomes than the control (Gan et al. 2006).

The MYB family, one of the largest transcription factor 
families in plants, includes several genes known to partici-
pate in trichome development and abiotic stress responses 
in Arabidopsis (Stracke et al. 2001; Li et al. 2019). Most 
MYB proteins belong to the R2R3-MYB subfamily (Kranz 
et al. 1998; Kirik et al. 2001; Stracke et al. 2001; Chen and 
Schmidt 2015), many of which are involved in regulating 
abiotic stress responses; for example, MYC2 and MYB2 
actively regulate the expression of ABA-dependent genes 
under drought and salt stress (Abe et al. 2003). The tri-
chome-initiation gene GL1 is also a MYB family member. 
The loss of function of GL1 affects trichome development, 

but the phenotype of the gl1 mutant was restored by over-
expressing MYB82 (Liang et al. 2014), which interacts with 
GL3. CPC and related genes (such as CPC-LIKE MYB 3 
[CPL3]) encode MYBs, many of which regulate epider-
mal cell differentiation (Wada et al. 1997). TTG2 functions 
redundantly with GL2 in regulating trichome growth. TTG2 
encodes a WRKY transcription factor that acts downstream 
of TTG1 and GL1. Therefore, TTG2 and GL2 can comple-
ment each other’s activity to regulate the development of 
downstream targets and trichomes when plants are con-
fronted by sudden environmental changes or foreign inva-
sion (Johnson et al. 2002). OsSPL10, an SBP-box gene, 
negatively regulates salt tolerance but positively regulates 
trichome formation in rice (Lan et al. 2019).

The ABA signaling pathway is a core pathway in the 
drought and salt-stress responses, in addition to playing a 
role in JA signaling and regulating the ethylene response 
pathway (Kazan 2015). The discovery of the ABA pathway 
and the associated receptors was one of the most important 
advances in the study of stress signals in the past decades 
(Fujii and Zhu 2009). The trichome development genes SPI, 
GAI, RGA​, RGL1, and RGL2 respond to ABA, linking tri-
chome patterning to the prevailing drought and salt condi-
tions (Shi et al. 2017).

There is substantial evidence that Arabidopsis plants with 
more trichomes have higher salt tolerance than other plants 
(Yuan et al. 2019; Beyrne et al. 2019; Zhou et al. 2018). 
The mechanisms for the initiation of trichomes and root hair 
development share the same genes but with the opposite 
functions, such as TTG1, TRY​, and CPC (Kirik et al. 2004; 
Wang et al. 2010; Ishida et al. 2008); thus, some factors 
that play positive roles in trichome formation may inhibit 
root hair development. Fewer root hairs are always observed 
in mutants with higher numbers of trichomes (Yuan et al. 
2019), perhaps due to the decreased accumulation of Na+ 
under salt-stress conditions.

Conclusions and perspectives

Trichomes are epidermal hairs that cover the aerial parts of 
most terrestrial plants. The formation of trichomes requires 
the cooperation of a series of genes (Fig. 2), which regu-
late trichome initiation, differentiation, branching, and 
morphology (Chang et al. 2019). Many of these genes are 
also involved in plant responses to biotic and abiotic stress. 
Table 1 provides a summary of the genes known to partici-
pate in both trichome development and stress responses.

Of course, some plants do not produce trichomes and 
instead have a smooth, hairless epidermis. These plants have 
all evolved alternative structures in the epidermis, such as 
salt glands and salt bladders, which are thought to employ 
a similar mechanism to trichomes (Yuan et al. 2016). Salt 
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glands and trichomes share many similarities; for example, 
they are the first structures to differentiate during epidermis 
formation and are therefore detected earlier than stomata. 
During salt gland development in the halophyte Limonium 
bicolor, many genes typically associated with the initiation 
of trichome development are expressed, such as GL1, TTG​
, GL3, TRY​, and CPC (Leng et al. 2018). The heterologous 
overexpression of L. bicolor genes related to salt gland 
development significantly complemented the phenotype of 
an Arabidopsis mutant lacking trichomes and improved salt 
resistance in the transgenic lines (Yuan et al. 2019). Given 

that many trichome differentiation genes also participate in 
stress resistance, these genes might also be related to the 
differentiation of other epidermal structures. Therefore, 
the current review provides candidate resistance genes that 
could be used to study the relationship between the origin 
and evolution of trichomes and salt glands.

We also noticed that trichome-initiation genes such as 
TTG1, GL3, and GL2 always repress root hair determina-
tion, (Yang et al. 2013; Morohashi et al. 2007; Morohashi 
and Grotewold 2009; Payne et  al. 2000; Zhang et  al. 
2003), as mutants of these genes are deficient in trichome 

Table 1   Trichome development genes related to stress resistance

Gene Role in 
trichome 
development

Role in stress resistance References Species

GL1 Initiation Jasmonic acid-mediated signaling pathway Morohashi and Grotewold (2009) Arabidopsis thaliana
GL3 Initiation Jasmonic acid-mediated signaling pathway Yoshida et al. (2009) Arabidopsis thaliana
MED25 Initiation Jasmonic acid-mediated signaling pathway Fornero et al. (2017) Arabidopsis thaliana
MYB75 Initiation Jasmonic acid-mediated signaling pathway, 

removal of superoxide radicals
Teng et al. (2005) Arabidopsis thaliana

MYB90 Initiation Response to salt stress Mondal et al. (2018) Arabidopsis thaliana
NTL8 Initiation Response to salt stress, negative regulation of 

gibberellin-mediated signaling pathway
Tian et al. (2017) Arabidopsis thaliana

OsSPL10 Initiation Response to salt stress Lan et al. (2019) Oryza sativa L.
COI1 Differentiation Jasmonic acid-mediated

signaling pathway
Bomer et al. (2018) Arabidopsis thaliana

GAI Differentiation Response to salt stress, abscisic acid, eth-
ylene, jasmonic acid-mediated signaling 
pathway, negative regulation of gibberellin-
mediated signaling pathway

Fuentes et al. (2012), Wild et al. (2012), Qi 
et al. (2014)

Arabidopsis thaliana

GIS Differentiation Gibberellin-mediated signaling pathway Gan et al. (2006), An et al. (2012), Sun et al. 
(2013)

Arabidopsis thaliana

GIS2 Differentiation Gibberellin-mediated signaling pathway, 
response to cytokinin

Sun et al. (2013), Gan et al. (2007) Arabidopsis thaliana

RGA​ Differentiation Response to salt stress, abscisic acid, ethyl-
ene, jasmonic acid-mediated signaling path-
way, negative regulation of epidermal hair 
morphology, hypertonic salinity response, 
gibberellin-mediated signaling pathway

Silverstone et al. (1998, 2001), Wild et al. 
(2012)

Arabidopsis thaliana

RGL1 Differentiation Response to salt stress, abscisic acid, ethyl-
ene, jasmonic acid-mediated signaling path-
way, negative regulation of epidermal hair 
morphology, hypertonic salinity response, 
gibberellin-mediated signaling pathway

Silverstone et al. (1998, 2001), Wild et al. 
(2012)

Arabidopsis thaliana

RGL2 Differentiation Response to salt stress, abscisic acid, ethyl-
ene, jasmonic acid-mediated signaling path-
way, negative regulation of epidermal hair 
morphology, hypertonic salinity response, 
gibberellin-mediated signaling pathway

Wild et al. (2012), Silverstone et al. (2001), 
Yang et al. (2020)

Arabidopsis thaliana

SPI Differentiation Response to salt stress, abscisic acid Qin et al. (2011), Cui et al. (2014) Arabidopsis thaliana
TT8 Differentiation Jasmonic acid-mediated signaling pathway Wen et al. (2018) Arabidopsis thaliana
ZFP5 Differentiation Gibberellin-mediated signaling pathway, 

cytokinin-activated signaling pathway
Kim et al. (2018) Arabidopsis thaliana

ZFP6 Differentiation Gibberellin-mediated signaling pathway, 
cytokinin-activated signaling pathway

Zhou et al. (2013) Arabidopsis thaliana
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differentiation and show enhanced root hair initiation. There-
fore, a regulatory mechanism must exist that determines the 
different functions of these genes in different developmental 
directions depending on the plant region, such as the aerial 
or underground parts of the plant. How the same gene par-
ticipates in opposite developmental processes in different 
parts of the same plant is another interesting question to 
address in the future.

Little is known about origin and evolution of plant tri-
chomes, except for the structures and functions of the under-
lying gene regulatory networks described by Doroshkov 
et al. (2019). It is still challenging to describe how the roles 
of trichome-related genes have evolved over time. Trichomes 
do not exist in all plants; however, current evidence indicates 
that homologs of trichome development-related genes func-
tion in similar epidermal structures. These homologs share 
the same conserved, function-specific domains that enable 
the induction of different structures and enhance stress 
resistance. Further analysis of the roles of genes involved in 
both trichome development and stress resistance may there-
fore shed light on the differentiation of similar structures. 
The mechanisms by which trichome development genes par-
ticipate in stress-response pathways (such as the salt-stress 
response) are still largely unknown; thus, more research is 
needed to study the roles of key genes in stress-response 
signaling pathways and in regulating the development of 
other epidermal structures.
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