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Abstract
Plant transporters are crucial for nutrient acquisition, cellular homeostasis, and stress responses. They mediate the exchange 
of chemicals and signals inside and outside the biomembrane in plants. Therefore, the study of plant transporters is critical to 
understanding the mechanisms of plant stress tolerance, moreover, transporters have potential applications in crop breeding 
for improved stress tolerance. Here we review recent findings about different transporters family (ABC, MATE, NRAMP, 
KUP, COPT/Ctr, NPF, NRT, PHT, YSL, ZIP, STP, etc.), including their roles in abiotic stress tolerance, and plant growth and 
yield. Moreover, we highlight the roles of transporters in plant responses to abiotic stresses such as drought, waterlogging, 
salt and alkali, heavy metal stress, and nutrient deficiency. To clarify the mechanisms underlying the roles of transporters 
in various stress responses, we integrate information about transporter activity in plants under stress and thus reveal a link 
between nutrient accumulation and stress tolerance. Finally, we list genes with potential applications in genetic improvement 
of resistrance genes, and summarize and discuss these transporters for benefiting the research community.
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Introduction

Abiotic stresses such as drought and waterlogging, soil 
salinization and alkalization, heavy metal toxicity, and 
nutrient deficiency restrict crop yields and biomass pro-
duction worldwide (Vahdati and Leslie 2013). Molecular 
biological studies have provided extensive evidence about 
the mechanisms of stress tolerance in plants, including the 
various signaling and transcription factors involved. Intrigu-
ingly. Transporters have vital roles in plant stress responses 
(Hirayama and Shinozaki 2010). Transporters are a class of 
membrane proteins that transport biomolecules across mem-
branes. Numerous transporters help plants move metabo-
lites, toxic pollutants, and nutrients during growth, and these 
transporters, especially nutritional transporters that transfer 
nutrients needed for plants growth are crucial for nutrient 
acquisition, development, cellular homeostasis, and stress 
responses (Bo et al. 2017). For example, carbohydrate trans-
porters improve tolerance to drought (Ma et al. 2019a) and 
waterlogging stress (Phukan et al. 2018) by adjusting car-
bohydrates content. Mineral nutrition transporters respond 
to nutrient deficiencies by regulating the Macro-elements 
and Micro-elements in the cytoplasm, vacuoles and extra-
cellular space (Li et al. 2019). Metal cation transporters can 
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adjust the ion balance in the cells to achieve the effect of 
anti-salt (Chai et al. 2020) and anti-metal toxicity (Veraes-
trella et al. 2017). Recently, there have been many research 
results showing that transporters are closely related to plant 
stress resistance, growth and development. In this review, 
we summarize our current understanding of the roles of dif-
ferent transporters in plant stress responses and examine the 
link between transporter activities, nutrient acquisition, and 
stress tolerance.

Transporters in abiotic stress tolerance

Drought tolerance

Drought stress is one of the most important factors restrict-
ing plant growth. Plants respond to drought stress by closing 
their stomata, causing downstream metabolic perturbations 
(i.e. increased activity in the photorespiration pathway) that 
increase reactive oxygen production (Fang and Xiong 2014). 
In addition, plant hormones such as abscisic acid (ABA) 
activate various stress responses and the plant initiates root 
development (Fang and Xiong 2014).

Functional studies have verified the roles of many trans-
porters in drought stress. For example, some sugar trans-
porters allow cells to accumulate sugar and this change in 
osmotic pressure increases drought tolerance. For instance, 
in micropropagated apple plants (Malus × domestica), 
increased sorbitol transporter gene (MdSOT3 and MdSOT5) 
activity improved drought tolerance (Li et al. 2012). Also in 
apple, the sucrose transporter MdSUT2.2 is phosphorylated 
by the protein kinase MdCIPK22, which regulates its tran-
scription activity under drought conditions, allowing cells 
to accumulate sugar and thus increasing drought tolerance 
(Ma et al. 2019a). Movement of sodium and potassium ions 
also helps alleviate drought stress by affecting the osmotic 
balance. For example, overexpressing the rice (Oryza sativa) 
high-affinity potassium transporter gene OsHAK1 enhanced 
drought tolerance and improved grain yield under drought 
conditions (Chen et al. 2017a).

The stress hormone abscisic acid (ABA) plays a key role 
in drought tolerance. When plants sense drought condi-
tions, ABA functions as a long-distance signal to transmit 
information from the roots to the above-ground tissues of 
the plants. The ABA signal increases drought tolerance 
by inducing stomata to close, maintaining water balance 
in cells, and increasing root permeability to water (Zhang 
et al. 2006). Loss-of-function Arabidopsis thaliana mutants 
of a plasma membrane ABA uptake transporter, ABCG40, 
showed reduced sensitivity to ABA and reduced resistance 
to drought stress (Kang et al. 2010). Overexpressing the cell 
membrane ABA transporter gene AtABCG25 enhanced plant 
drought tolerance (Kuromori et al. 2016).

Controlling the movement of guard cells enhances 
drought tolerance in plants by decreasing water loss and 
many different transporters take part in this process, includ-
ing auxin, nitrate, and ABA transporters (Jarzyniak and 
Michal 2014). In Arabidopsis thaliana, the Major Facilitator 
Superfamily transporter ZINC-INDUCED FACILITATOR-
LIKE 1 (ZIFL1) affects polar auxin transport, but ZIFL1.3, 
a truncated form produced by alternative splicing, regulates 
stomatal closure to mediate drought tolerance (Remy et al. 
2013). The nitrate transporter AtNRT1.1 (CHL1) func-
tions in stomatal opening in Arabidopsis under drought 
stress (Guo et al. 2003). The Arabidopsis ABC transporter 
MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN5 
(AtMRP5) is an important component of guard cell function 
and water use (Klein et al. 2003). Mutation of AtMRP4, an 
ABC transporter, decreased stomatal opening and increased 
drought resistance in Arabidopsis (Klein et al. 2004). Arabi-
dopsis mutants of AtDTX50, a DTX/MATE (Multidrug and 
Toxic Compound Extrusion) family member and ABA efflux 
transporter, showed lower stomatal conductance and were 
more tolerant to drought stress than the wild type (Zhang 
et al. 2014). A mutant of AtABCG22, an Arabidopsis ABC 
transporter, had increased water loss and lower leaf tempera-
ture than the wild type due to effects on stomatal regulation 
(Kuromori et al. 2011). The ABC transporter AtABCB14 
regulates stomatal movement by affecting malate transport 
and increasing osmotic pressure in Arabidopsis (Lee et al. 
2008). Lastly, REDUCED CULM NUMBER 1/OsABCG5, 
a half-size ABC subfamily G protein, is indispensable for 
stomatal closure and reducing water loss in rice (Oryza 
sativa) (Matsuda et al. 2016).

Many stress-related transporters have been isolated by 
mutant analysis. Now, various “omics” techniques have been 
effectively used to search for anti-stress factors in plants and 
have uncovered the roles of various transporters in stress tol-
erance. For example, a whole-genome oligomer microarray 
analysis identified several transporter genes as significantly 
responsive to drought stress in rice (Oryza sativa) (Junli 
et al. 2007). A recent study used genome-wide sequencing 
data to find new transporter genes related to drought toler-
ance in Populus (Bai et al. 2019). Solexa sequencing and 
qRT-PCR identified various transporter genes that were 
highly expressed in drought-treated Paulownia fortunei 
leaves (Dong et al. 2014). The regulation of different trans-
porter genes also plays a role in the drought tolerance of 
Gossypium herbaceum, as revealed using microarray analy-
sis, pyrosequencing, and qRT-PCR of roots (Ranjan et al. 
2012). A putative ATP-binding cassette (ABC) transporter 
ATP-binding protein was identified by proteomic analysis 
of proteins extracted from Hippophae rhamnoides leaves 
(Xu et al. 2009). Nine rice ABC transporter genes that are 
significantly regulated by drought stress were discovered by 
analysis of anatomical data analysis and qRT-PCR (Nguyen 
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et al. 2014). With the development of sequencing technolo-
gies, omics approaches will find more and more new trans-
porters and improve our understanding of the mechanisms 
by which transporters respond to drought stress.

Waterlogging tolerance

Waterlogging induces hypoxia in plants. Anaerobic respira-
tion caused by waterlogging leads to excessive reduction 
of the photosynthetic electron transport chain and the for-
mation of reactive oxygen species (ROS) such as superox-
ide radicals and singlet oxygen (Blokhina et al. 2003). Ini-
tially, ROS and NO production can help adaptive responses 
such as formation of aerenchyma and adventitious roots, 
but excessive ROS cause severe oxidative damage under 
waterlogging stress (Planchet and Kaiser 2006; Steffens 
et al. 2012). Transporters also take part in the waterlogging 
stress response in plants. AtSWEET10, a SWEET trans-
porter, is involved in enhancing carbohydrate availability 
and waterlogging tolerance in Arabidopsis. AtSWEET10 
expression is activated by waterlogging due to the pres-
ence of a drought-responsive element (DRE) and a GCC 
box in the AtSWEET10 promoter. Heterologous expression 
assays showed that the AtSWEET10 DRE can be targeted by 
MaRAP2-4, a waterlogging-responsive ERF from Mentha 
arvenis (Phukan et al. 2018). ABC transporter subfamily 
G (ABCG) gene ABCG5 is highly expressed in seedling 
cotyledons, and under waterlogging condition, its activity 
is required to form the dense cuticle to resist waterlogging 
damage for the normal growth of plants (Lee et al. 2020).

Salt and alkali tolerance

Soil salinization and alkalization are major environmental 
hazards that limit plant growth and development. Expo-
sure to salt affects plant water relations, inducing responses 
similar to those of drought stress. Moreover, high salt cre-
ates ionic stress, in which excess ions (Na+) disrupt cellular 
metabolism. Alkali stress affects many metabolic and physi-
ological processes, such as photosynthesis, cell ionic bal-
ance, antioxidant systems, and osmotic absorption of water 
(Zhang and Mu 2010). In recent years, many genes related to 
salt stress have been discovered, and the molecular mecha-
nism of salt stress has been gradually elucidated (Yang and 
Guo 2018). In addition to the harm caused by water stress, 
soil salinization and alkalization also directly affect plant 
growth and development.

Maintaining the proper balance of sodium and potas-
sium is an effective strategy used by plants to survive salt 
stress (Ali et al. 2018). Indeed, transcriptomics approaches 
have identified various monovalent cation transporters that 
function in plant responses to salinity stress. The barley 
(Hordeum vulgare) sodium transporter and high-affinity 

potassium transporter HvHKT1;1 reduces Na+ accumula-
tion in shoots and regulates ion concentrations in root cells, 
thereby improving salt tolerance (Yong et al. 2018). The 
sodium transporter HKT1;2 plays important roles in main-
taining sodium/potassium homeostasis and salt tolerance in 
tomato (Solanum lycopersicum) (Noelia et al. 2017). The 
High-Affinity Potassium Transporter EpHKT1;2 in the halo-
phyte Eutrema parvula is a key contributor to the halophyte 
features of this plant and helps determine its tolerance to 
Na+ ion toxicity (Ali et al. 2018).

The SOS (salt overly sensitive) pathway is induced by 
high salt upregulates transporters such as the high-affinity 
potassium transporter AtHKT1;1 in Arabidopsis to regulate 
ion homeostasis and thus enhance plant salt tolerance (Oh 
et al. 2009). The Na+/H+ transporter SOS1 and the protein 
kinase SOS2 act with the plasma membrane transporter 
PUT3 and affect its regulatory activity, thereby maintain-
ing the balance of Na+ and K+ in the cell and affecting salt 
resistance in Arabidopsis (Chai et al. 2020).

Other transporters, including magnesium (Mg), ammo-
nium and sucrose transporters, also affect salt tolerance. For 
example, the Mg transporter OsMGT1 transports Mg2+ in 
the root maturation zone and enhances OsHKT1;5 activity 
to restrict Na+ accumulation and improve salt tolerance in 
rice (Zhi et al. 2017). Heterologous overexpression of the 
Puccinellia tenuiflora ammonium transporter PutAMT1;1 
in Arabidopsis thaliana can alleviate the ammonia toxicity 
induced by salt stress, thus improving the root salt tolerance 
in the later stage of seed germination (Bu et al. 2019). Over-
expressing the sucrose transporter gene MdSUT2.2 enhanced 
salt tolerance in a MdCIPK13 phosphorylation-dependent 
manner in transgenic apple (Ma et al. 2019b). OsLCT1, a 
low-affinity cation transporter, affects salinity tolerance in 
rice (Nio et al. 2018).

Transporters in multiple plant abiotic stress 
responses

Stresses often occur together (for example, drought and heat) 
and transporters take part in multiple plant stress responses. 
The barley silicon transporters HvLsi1 and HvLsi2 regulate 
Si accumulation of the shoots of barley plants under K defi-
ciency, thereby improving osmotic stress tolerance (Seyed 
et al. 2017). Overexpressing AtABCG36/AtPDR8, encod-
ing an ABC transporter, increased drought and salt-stress 
resistance in Arabidopsis (Kim et al. 2010). In the monocot 
sorghum (Sorghum bicolor), the auxin influx carriers Auxin 
resistant 1/like aux1 (AUX⁄ LAX) and the auxin efflux car-
riers Pin-formed (PIN) and P-glycoprotein (PGP) are auxin 
transporters that function in plant responses to ABA, salt, 
and drought stress (Shen et al. 2010). ProT2 is a proline 
transporter involved in water and salt stress responses in 
Arabidopsis (Rentsch et al. 1996). In cucumber (Cucumis 
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sativus), CsTST1 functions in responses to various abiotic 
stresses (cold, salt, and osmotic stress), and in response to 
the stress hormone ABA by affecting the distribution of car-
bohydrates (Huang et al. 2020).

Sucrose plays a key role in regulating guard cell move-
ment, which affects gas exchange and water loss (Antunes 
et al. 2017). Heterologous overexpression of a rice mono-
saccharide transporter gene OsMST6 may increase soluble 
sugar content and osmotic pressure in cells, and enhance the 
drought and salt tolerance in Arabidopsis (Monfared et al. 
2020). Heterologous overexpression of the Dianthus spiculi-
folius sugar transporter genes DsSWEET17 and DsSWEET12 
in Arabidopsis increased root length and fresh weight and 
enhanced salt, osmotic, and oxidative stress tolerance (Zhou 
et al. 2018a; Zhou et al. 2018b). OsSUT2, a sucrose trans-
porter identified in rice (Oryza sativa L. cv. Nipponbare), 
is essential for plant tolerance to drought and salinity stress 
(Ibraheem et al. 2011). Arabidopsis TONOPLAST MONO-
SACCHARIDE TRANSPORTER1 is required for cytosolic 
glucose homeostasis and plays an important role in stress 
responses (Wormit et al. 2006). Monosaccharide-facilitated 
diffusion transporters affect sugar accumulation in plant cells 
and help regulate osmotic pressure (Yamada et al. 2010). 
The sucrose transporters AtSUC2 and AtSUC4 play impor-
tant roles in abiotic stress tolerance in Arabidopsis via an 
ABA-dependent pathway (Gong et al. 2015). Many sulfate 
transporters take part in drought and salinity tolerance in 
Arabidopsis and Medicago truncatula (Gallardo et al. 2014). 
Using these transporters to enhance plant resistance to salt 
and alkali stress will be useful in plant genetics and breeding 
for crop improvement.

Heavy metal stress

Heavy metal toxicity has become an increasingly serious 
problem due to human activity, which has increased soil 
heavy metals such as aluminum, cadmium, manganese, and 
cesium (Mohammed et al. 2011). Heavy metal hyperaccu-
mulation and tolerance are important protective mechanisms 
used by plants to sequester toxic metal ions and thus improve 
plant survival. In tobacco (Nicotiana tabacum), metal ions 
are isolated into vacuoles by using transporters and exchang-
ing with H+, and thus have roles in heavy metal hyperaccu-
mulation and tolerance (Veraestrella et al. 2017). Therefore, 
transporters play important roles in plant responses to heavy 
metal stress.

Aluminum detoxification

Aluminum (Al) toxicity inhibits root elongation and plant 
productivity in acidic soils. The release of organic acids 
from roots is an effective method used by plants to alleviate 
Al toxicity, a process primarily regulated by transporters 

(Park et al. 2017). STAR1 and STAR2 form a bacterial-type 
ABC transporter complex with UDP-glucose transport activ-
ity that is required for the detoxification of Al in rice (Huang 
et al. 2009). The expression of the ABC transporter-like gene 
ALUMINUM SENSITIVE3 (ALS3) increases under high Al 
concentrations (above the toxicity threshold) in buckwheat 
(Fagopyrum esculentum), and ALS3 might promote Al 
detoxification (Reynallorens et al. 2015).

MATE transporters take up iron by secreting primary 
metabolites such as citric acid into the xylem and rhizo-
sphere. Similarly, some MATE transporters are highly 
expressed in root tips and secrete citric acid to improve alu-
minum tolerance. The rice bean (Vigna umbellata) citrate 
transporters VuMATE2 and VuMATE1 function in tandem 
to induce citrate secretion, thereby enhancing Al resist-
ance (Liu et al. 2018b). The organic acids combine with 
metal ions to form stable, non-toxic complexes responsible 
for transport, redistribution, or reduction of metal toxicity 
(Upadhyay et al. 2019; Magalhaes et al. 2007). An insertion 
in the rice citrate efflux transporter gene OsFRDL4 increased 
its promoter activity and improved its expression, thereby 
enhancing Al tolerance (Yokosho et al. 2016). Heterolo-
gous overexpression of a Brachypodium distachyon MATE 
gene enhanced Al tolerance in Setaria viridis (Ribeiro et al. 
2017). Genome-wide analysis of MATE family genes in 
poplar (Populus) and soybean (Glycine max) confirmed their 
function in enhancing Al tolerance (Li et al. 2017b; Liu et al. 
2016a); their homologs play similar roles in bread wheat 
(Triticum aestivum L.) (Garciaoliveira et al. 2018).

Like citrate, malate can combine with Al to reduce its 
toxicity by facilitating its transport. Heterologous expression 
of the Brassica oleracea ALMT gene BoALMT1 increased 
malate secretion and H+ efflux, thereby enhancing Al tol-
erance in Xenopus oocytes and Arabidopsis (Zhang et al. 
2018b). Al retained in the root cell walls of plants is toxic, 
but this can be relieved by NIP1;2-induced accelerated Al-
malate transport (Wang et al. 2018a). Overexpressing the 
plasma membrane-located organic acid transporter gene 
CsALMT1 increased malate secretion and improved Al 
tolerance in Camelina sativa L. (Park et al. 2017). Over-
expressing Al-ACTIVATED MALATE TRANSPORTER9 
(Sl-ALMT9), which is regulated by Sl-WRKY42, promoted 
malate accumulation in tomato (Solanum lycopersicum) fruit 
and enhanced Al tolerance (Ye et al. 2017).

Other transporters, including those that transport Al3+ 
or other ions, also affect Al tolerance. The rice NRAMP 
(natural resistance and macrophage protein) Al transporter 
(NRAT1) enhanced Al resistance in transgenic Arabidopsis 
by transporting Al from the root cell wall to the root cell for 
sequestration in the vacuole (Li et al. 2014). The absence of 
ZmPGP1, encoding an auxin efflux carrier P-glycoprotein 
belonging to the ABC transporter family, led to the accu-
mulation of high levels of auxin and alleviated Al toxicity 
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in maize (Zhang et al. 2018c). Tobacco (Nicotiana tabacum 
L.) NtSUT1, a plasma membrane-localized sucrose/H+ sym-
porter, actively regulates sucrose uptake in the root apex, 
promotes root elongation, and enhances Al tolerance (Kariya 
et al. 2017). Heterologous overexpression of the Jerusalem 
artichoke (Helianthus tuberosus) NHX-type transporters 
HtNHX1 and HtNHX2 regulate K+/H+ fluxes and cell wall 
structure, thereby enhancing Al3+ tolerance in rice (Li et al. 
2020).

Cadmium detoxification

Cadmium (Cd) is a toxic heavy metal that affects plant 
growth and development due to its effects on plant nutri-
ent absorption and other physiological processes (Clarkson 
1996). Cd transporters play important roles in resistance to 
Cd toxicity. Genome-wide analysis of mulberry (Morus sp.) 
revealed four transporter families with Cd transport activ-
ity, including zinc-regulated transporters, iron-regulated 
transporter-like proteins (ZIPs), NRAMPs, the heavy metal 
ATPases (HMAs), and the metal tolerance or transporter 
proteins (MTPs) families; perhaps these transporters could 
be exploited for Cd phytoremediation (Fan et al. 2018). Neg-
ative regulation of Cd absorption via inhibiting the activity 
of the Fe2+ transporter IRT1 improved Cd tolerance of plants 
(Guan et al. 2019; Xu et al. 2018).

Bioinformatics and high-throughput sequencing iden-
tified 84 differentially expressed ABC genes in Brassica 
napus that are responsive to Cd (Zhang et al. 2018d). Het-
erologous overexpression of the Miscanthus sacchariflorus 
yellow stripe-like transporter gene MsYSL1 in Arabidop-
sis enhanced plant resistance to Cd by mediating the real-
location of metal ions (Chen et al. 2018). AtABCC3, an 
ABC-type transporter whose expression is induced by Cd 
exposure, increases phytochelatin-mediated Cd tolerance 
in coordination with AtABCC1/AtABCC2 (Brunetti et al. 
2015). Arabidopsis OLIGOPEPTIDE TRANSPORTER3, 
a phloem-specific iron transporter, facilitates iron recircu-
lation from mature to developing tissues (Zhai et al. 2014). 
NRT1.8, a member of the nitrate transporter (NRT1) family, 
removes nitrate from xylem vessels and improves Cd2+ toler-
ance in Arabidopsis (Li et al. 2010). In rice, OsABCG36, 
a G-type ATP-binding cassette transporter, does not affect 
the accumulation of Cd in shoots, but it exports Cd or Cd 
conjugates from root cells to increase plant resistance to this 
heavy metal (Fu et al. 2019).

Manganese detoxification

Manganese (Mn) is an important cofactor for many anti-
oxidant defense enzymes that take part in the disposal of 
superoxide radicals, a function that is critical for plant 
survival. However, high concentrations of Mn in acidic or 

insufficiently drained soil are toxic to plants. NRAMP2, a 
divalent metal transporter of the NRAMP family, is criti-
cal for plant photosynthesis and cellular redox homeosta-
sis in Arabidopsis (Alejandro et al. 2017). NRAMP2 plays 
an important role in remobilization of Mn in the Golgi to 
facilitate root growth under Mn-deficient conditions (Gao 
et al. 2017). HAK/K+ uptake (KUP)/K+ transporters (KTs) 
also play important roles in responses to K+ deficiency and 
abiotic stress in pear seedling rootstock (Yan et al. 2018).
The tonoplast-localized transporter MTP8.2 (Mn-CDF 
metal tolerance protein) enhances plant tolerance to Mn 
along with MTP8.1 by sequestering Mn in plant vacuoles of 
root and shoot (Takemoto et al. 2017). The membrane pro-
tein CHLOROPLAST MANGANESE TRANSPORTER1 
(CMT1) plays important roles in maintaining Mn homeosta-
sis in Arabidopsis chloroplasts (Eisenhut et al. 2018). NH4

+ 
downregulates the expression of the Mn influx transporter 
gene OsNRAMP5 through rhizosphere acidification, thereby 
improving manganese detoxification in rice (Hu et al. 2019).

Cesium detoxification

The release of cesium into the environment has led to seri-
ous environmental concerns, because it can be taken up by 
crops and affect crop production. Knocking out of OsHAK1, 
encoding a potassium transporter, reduced cesium levels in 
rice without affecting potassium absorption or crop yields 
(Rai et al. 2017). K+ UPTAKE PERMEASE (KUP) family 
proteins significantly reduce the accumulation of cesium in 
Arabidopsis; these KUP transporters play complementary 
rather than redundant roles in this process (Adams et al. 
2019).

Resistance to many types of heavy metal stress

Metal transporters play critical roles in maintaining metal 
homeostasis and reducing metal toxicity. TpNRAMP5, a 
metal transporter isolated from dwarf Polish wheat (Triti-
cum polonicum L.), enhances the accumulation of Cd, Co, 
and Mn but not Zn or Fe (Peng et al. 2018). Heterologous 
expression of SnYSL3, encoding a YSL transporter from 
Solanum nigrum, led to the formation of a range of metal-
nicotianamine complexes to improve metal stress resistance 
in Arabidopsis, especially resistance to Cd and Fe (Feng 
et al. 2017b). NcZNT1, a Zn transporter from Noccaea caer-
ulescens, enhanced Zn and Cd tolerance when expressed in 
Arabidopsis (Lin et al. 2016). Many regulators affect the 
expression of transporter genes, such as the post-transcrip-
tional regulation of BnNRAMP1b, a vital Cd, Zn, and Mn 
transporter, by miR167 (Meng et al. 2017). The uptake of 
heavy metals in rice involves pH-dependent metal transport-
ers such as OsNRAMP5, which affect Cd and Mn resist-
ance in rice (Zhang et al. 2019b). As heavy metal pollution 
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in soils around the world becomes more and more serious, 
plants with high tolerance to heavy metals will be more 
adaptable to the environment and have a higher survival rate, 
so study and utilization of metal transporters will become 
more and more important. Plants hyperaccumulating heavy 
metals also have potential uses in bioremediation of heavy 
metal pollution.

The roles of transporters in surviving nutrient 
deficiency

Plants require 17 essential elements and 14 minerals for 
growth, and these are only obtained through absorption from 
the environment, especially the soil (Nath and Tuteja 2016). 
The evolution of roots improved the adaptability of plants to 
the terrestrial environment and helped plants absorb nutri-
ents from the soil. The absorption and utilization of soil 
nutrients are critical for plant growth and yield (Shahzad 
et al. 2018). Moreover, understanding nutrient transport has 
key implications for biofortification efforts to improve the 
nutrition of plant-based foods. Nutrient receptors and trans-
porters play important roles in nutrient uptake and signaling 
(Nath and Tuteja 2016).

Phosphate deficiency

Phosphorus (P) is an essential nutrient for plant growth and 
development, functioning as a core component of nucleic 
acids and a key element in energy transfer (Peret et al. 2014); 
inorganic phosphate (Pi) from the soil is the only source of 
phosphorus for plants. The remodeling of root system archi-
tecture (RSA) is influenced by Pi deficiency, which is impor-
tant for plant growth (Vance et al. 2003). In Arabidopsis, an 
ABC transporter complex composed of ALS3 and AtSTAR1 
cooperates with LOW PHOSPHATE ROOT1/2 (LPR1/2) to 
regulate Pi-deficiency responses and the active remodeling 
of RSA by modulating Fe homeostasis (Dong et al. 2017).

The phosphate transporter 1 (PHT1) transporter family 
plays a major role in the uptake of phosphate from soils 
in plants (Nussaume et al. 2011). Heterologous expression 
experiments have been used to examine transporter function 
and establish a foundation for improving P uptake in crops, 
thereby reducing the need for fertilizer. For example, the 
rice myeloblastosis (MYB) transcription factor OsMYB5P 
triggers the expression of AtPht1;3 to improve phosphate 
acquisition and regulate shoot development and RSA (Yang 
et  al. 2018b). The Pteris vittata phosphate transporter 
PvPht1;2 enhances phosphorus accumulation without induc-
ing the uptake of the toxic element arsenic when expressed 
in tobacco (Cao et al. 2018). Heterologous overexpression of 
the rice Pi transporter gene OsPT8 increased Pi concentra-
tions and selenium accumulation in tobacco, paving the way 
for breeding selenium-enriched plants (Song et al. 2017).

Plants increase Pi uptake via symbiosis with mycorrhi-
zal fungi, which receive fixed carbon from the plant in a 
mutually beneficial symbiotic relationship that improves 
the nutrient absorption capacity of the plants and allevi-
ates abiotic stress. Mycorrhizal fungi induce expression of 
some Pi transporters to improve the Pi level of the host plant, 
and induce some transporters to maintain the mycorrhizal 
fungus–plant symbiotic relationship (Maclean et al. 2017). 
In maize, mycorrhiza formation induces the expression of 
the Pi transporter gene ZmPt9 to enhance plant Pi uptake 
(Liu et al. 2018a). The expression of the Pi transporter gene 
HcPT2 from the mushroom-forming fungus Hebeloma 
cylindrosporum is induced by the host plant and enhances 
the accumulation of Pi in both the mycelium and host plant 
(Becquer et al. 2018).

AtNPF (nitrate transporter 1/peptide transporter family) 
7.3/AtNRT1.5 is a nitrate transporter that plays an important 
role in regulating the response to phosphorus deficiency in 
Arabidopsis (Cui et al. 2019). An ABC transporter complex 
formed by ALS3 and NAP3 plays a critical role in the sugar-
dependent response of Arabidopsis to phosphate deficiency 
(Belal et al. 2015). Remodeling of RSA is an effective way 
to enhance plant tolerance of phosphate (Pi) deficiency, 
which can be improved by increasing the level of the ABC 
transporter complex encoded by ALS3, LOW PHOSPHATE 
ROOT1 (LPR1), and LPR2 (Dong et al. 2017). The PHT 
family protein PHT5 in the vacuolar membrane regulates 
cytoplasmic Pi homeostasis to enhance plant growth under 
Pi deficiency (Lin et al. 2018; Liu et al. 2016b). Finally, 
VACUOLAR PHOSPHATE TRANSPORTER1 (VPT1) 
functions in vacuolar Pi storage and Pi adaptation in Arabi-
dopsis (Liu et al. 2015).

Iron deficiency

Iron (Fe) is an important micronutrient for plant growth 
and essential metabolic processes. Fe is involved in plant 
photosynthesis, respiration, nitrogen fixation, plant hor-
mone and DNA biosynthesis (Briat 2005), and Fe trans-
porters are very important in regulating iron homeostasis 
to adapt to different plant growth requirements and to cope 
with environmental changes (Conte and Walker 2011). 
The NRAMP family is also involved in iron transport. In 
the case of iron deficiency, AtNRAMP3 regulates metal 
transport in the vacuole, resulting in the accumulation of 
Mn, Zn, and Fe in Arabidopsis (Thomine et al. 2003). The 
proton-coupled metal ion transporter AtNRAMP6 may be 
involved in the transport of Fe2+ from the Golgi/trans-
Golgi network to the cytoplasm, contributing to the home-
ostasis and reuse of Fe2+; and mutation of AtNRAMP6 
inhibits lateral root growth under iron-deficient condi-
tions in Arabidopsis (Li et al. 2019). The iron transporter 
OsIRT1 can effectively take up Fe from the soil under 
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iron deficiency conditions in rice (Bughio et al. 2002). 
Heterologously expressed HvYS1 (a barley yellow stripe 1 
Fe transporter) increased Fe uptake, Fe translocation from 
root to shoot, and Fe accumulation in rice seeds (Banakar 
et al. 2016). Increasing iron transport in endosperm by 
overexpressing the vacuolar iron transporter gene TaVIT2 
improved iron homeostasis in wheat tissue (Connorton 
et al. 2017).

Potassium deficiency

Potassium (K+) is a major nutrient that plays important 
roles in plant responses to osmotic stress and basic plant 
metabolism. Potassium is involved in photosynthesis, pro-
tein synthesis, osmotic pressure regulation, stomatal move-
ment, enzyme activity activation, and other physiological 
activities in plants; it plays an especially important role in 
plant stress tolerance (Leigh and Jones 1984). Potassium 
transporters are responsible for the uptake and transport of 
K+. OsHAK1 (Chen et al. 2015) and OsHAK5 (Yang et al. 
2014) are important high-affinity K+ (HAK) transporters 
that are activated under K+ deficiency conditions. Heter-
ologous expression of ApKUP3, a high-affinity K+ trans-
porter gene from Alternanthera philoxeroides, increased 
K+ accumulation and enhanced drought tolerance in rice 
(Song et al. 2014). The K+ transporter GhKT2 partici-
pates in K+ acquisition, transport, and distribution in cot-
ton (Gossypium hirsutum) (Wang et al. 2018b). GhHAK5a, 
a high-affinity potassium transporter in cotton, is impor-
tant for K+ absorption by roots in plants under potassium 
deficiency (Wang et al. 2019b). In maize, ZmHAK5 and 
ZmHAK1 regulate the dynamic balance of K+ under low 
K+ conditions, affecting the absorption and distribution 
of K+, and improving K+ utilization efficiency (Qin et al. 
2019).

Magnesium deficiency

Magnesium (Mg) is an essential mineral element for 
plant growth and development. CorA/MRS2/MGT-type 
Mg2+ transporters are very important in maintaining Mg 
homeostasis. For instance, AtMGT6 (Mao et al. 2014) and 
AtMGT7 (Gebert et al. 2009) are critical for maintaining 
normal physiological activities in Arabidopsis under low 
Mg conditions. ZmMGT10 is specifically expressed in maize 
roots, and increased Mg2+ uptake via roots to enhance plant 
tolerance under magnesium deficiency conditions (Li et al. 
2017a). ZmMGT12 is a Mg2+ transporter that functions in 
Mg transport to chloroplasts in maize (Li et al. 2018a). The 
Mg transporter gene OsMGT1 is required for resistance to 
magnesium deficiency in rice (Zhang et al. 2019a).

Copper deficiency

Copper (Cu) takes part in a variety of physiological pro-
cesses in plants, making this micronutrient important for 
plant growth and development. Cu deficiency affects plant 
fertility. The main symptoms are vegetative and reproduc-
tive growth disorders, young leaf deformity, and insufficient 
water transport (Burkhead et al. 2009). The reported Cu 
transporters are mainly from the COPT/Ctr protein fam-
ily. Cu might be co-transported by COPT2, COPT3, and 
COPT4 with COPT6. COPT7 can act alone in different tis-
sues to regulate Cu homeostasis in rice (Yuan et al. 2011). 
Cu deficiency can induce the expression of the transporter 
genes COPT2 (in roots) and HMA1 (in leaves), causing Cu 
to migrate and circulate among leaves in Brassica napus 
(Billard et al. 2014). Other transporters also regulate Cu 
homeostasis, Zn transporters ZIP2 and ZIP4 can transport 
Cu2+ in Arabidopsis, and ZIP2 expression is significantly 
increased under low copper conditions (Puig et al. 2010). 
OsYSL16, a member of the yellow-stripe like (YSL) family 
and a Cu-nicotianamine (Cu-NA) transporter, is important 
for Cu redistribution under Cu-limited conditions in rice 
(Zhang et al. 2018a).

Zinc deficiency

Zinc (Zn) is an essential micronutrient for plant growth and 
development. In addition to promoting Zn absorption by 
arbuscular mycorrhizal fungi, Zn transporters are involved 
in Zn deficiency tolerance in plants (Khatun et al. 2018). 
The ZIP transporter family plays an important role in the 
transport of Zn. Zn deficiency can induce OsZIP6 expres-
sion in roots and leaves of rice (Kavitha et al. 2015). Under 
zinc-deficiency conditions, group F TabZIP transcription 
factors bind to ZDREs (Zn-deficiency-response elements) of 
TaZIP promoters to enhance TaZIP expression and maintain 
Zn homeostasis in wheat (Evens et al. 2017). SaZIP4 from 
Sedum alfredii plays critical roles in Zn accumulation, as 
demonstrated in transgenic Arabidopsis (Yang et al. 2018a). 
The tonoplast-localized transporter OsHMA3 transports Zn 
to and from the vacuole to help rice plants cope with Zn 
toxicity or the lack of Zn (Cai et al. 2019).

The roles of transporters in plant growth and yield

Transporters are responsible of the absorption of nutrients 
and regulate plant growth and development. Manipulating 
the expression of OsAAP3, encoding an amino acid trans-
porter, increased tiller formation and grain yield in rice (Lu 
et al. 2018). The tomato tonoplast dicarboxylate transporter 
(SITDT) helps remobilize malate and citrate in the vacuoles 
of fruit cells, which is important for their flavor and organo-
leptic quality of the fruit (Liu et al. 2017b).In grape (Vitis 
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vinifera cv. Malbec) ripening stage, ABA and GA3 increase 
the expression of sugar transporter genes VvHT2, VvHT3 
and VvHT6 in berries to promote berry ripening (Murcia 
et al. 2018). The Arabidopsis jasmonate transporter AtJAT1/
AtABCG16 controls the distribution of the phytohormone 
jasmonate and regulates plant growth and stress responses 
(Li et al. 2017c). The maize MATE transporter Big embryo 1 
is required for the production of intermediates or products of 
the CYP78A pathway and regulates lateral organ initiation 
in plants (Suzuki et al. 2015). Transporters also link malate 
transport and mineral nutrition. Overexpressing OsALMT4, 
encoding an ALMT, affected the efflux and compartmenta-
tion of malate and increased Mn toxicity symptoms in rice 
(Liu et al. 2017a). Overexpressing OsNRT2.3b, encoding a 
nitrate transporter, promoted Pi uptake and translocation and 
increased grain yield in rice (Feng et al. 2017a).

Nitrogen (N) is a key factor in plant growth and root 
extension. Upregulating a nitrate transporter gene improved 
nitrogen status and plant growth in winter wheat (Triticum 
aestivum L.) (Jiang et al. 2017). The nitrate transporter 
CsNRT2.1 improves nitrate uptake, root length, and lateral 
root number in cucumber (Li et al. 2018b). A hexose trans-
port protein (HT), CSHT11, plays an important role in the 
development of pollens and pollen tubes in cucumber (Wen 

et al. 2020). The ABCC3-type transporter affects seed yield 
and quality in chickpea (Cicer arietinum) by regulating the 
transport of glutathione conjugates (Basu et al. 2019). The 
nodule-localized Pi transporter GmPT7 enhances nitrogen 
fixation and seed yield in soybean (Chen et al. 2019).

The tonoplast-localized sugar transporter CITST2, whose 
expression is regulated by the WRKY transcription factor 
SUSIWM1, is involved in sugar uptake and accumulation 
in the flesh cells of watermelon (Citrullus lanatus) fruit 
(Ren et al. 2018). Expressing the human UDP-galactose 
transporter gene hUGT1 increased the lignin content and 
hardness of leaves and stems in tobacco (Abedi et al. 2018). 
Genome-wide identification, expression, and functional 
analyses demonstrated that the sugar transporter (STP) 
gene family is involved in early tuber growth and mono-
saccharide distribution in cassava (Manihot esculenta) (Liu 
et al. 2018c). Sucrose transporters also function in cotton 
fiber elongation, which can be activated by suppressing 
the expression of the putative sterol carrier protein gene 
GhSCP2D (Zhang et al. 2017).

Pollen development is key for high yields of grain/seed 
and fruit crops. The tapetum plays an important role in 
pollen development. The ABCG/WBC-type ABC trans-
porters play a crucial role in the transport of sporopollenin 

Fig. 1   Transporters transport substances under abiotic stress. Under different abiotic stresses, transporters transport different substances to 
achieve ion balance or regulate the expression of stress response genes, so as to deal with the damage caused by stresses in plants
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precursors for exine formation on the pollen surface (Choi 
et al. 2011). The ABC transporter AcABCG38 plays impor-
tant role in pollen development in pineapple (Ananas como-
sus), suggesting it could be used to improve pineapple pro-
duction (Chen et al. 2017b).

Arbuscular mycorrhizal (AM) symbiosis is important 
for plant growth and defense due to the exchange of sig-
nals exchange between plant roots and AM fungi. Finally, 
the N-acetylglucosamine (GlcNAc) transporter NOPE1 
stimulates fungal pathogenesis, increases the expres-
sion of virulence genes, and functions in AM symbiosis 
(Nadal et al. 2017). Destroying the activity of the amino 
acid transporter OsLHT1 inhibits the growth and repro-
duction of rice (Wang et al. 2019a). By using transporters 
that improve plant growth and yield, future research can 
produce higher yields and improve quality.

Summary and conclusions

In this review, we provided an overview of the roles of 
transporters in plants under stress conditions. We summa-
rized these transporters in Table S1, S2 and S3 and drawn 
a figure about the transporters transport substances under 
a variety of environmental stresses (Fig. 1). In conclu-
sion, when plants are subjected to different external pres-
sures, transporters will take different measures to protect 
the plants. Under salt stress, Na+ efflux by the role of the 
transporters in plasma membrane, and the transporters 
on the vacuole membrane and the vesicle membrane will 
cause Na+ to flow into them, thereby reducing the Na+ 
concentration in the cytoplasm and avoiding the cells from 
being poisoned by salt ions (Yang and Guo 2018). The 
transporters maintains the necessary material balance in 
the plant cells to response to stresses. Heavy metal stress 
triggers the transporters to store excess heavy metals in 
the vacuole, and nutrient deficiency causes transporters 
to transport nutrients in vacuole to cytoplasm. Similarly, 
under stress, plants will induce transporters to transport 
signal molecules, which will allow the expression of some 
stress-resistant genes to deal with adverse environments 
(Fig. 1). Transporters manage the acquisition of essential 
macro- and micronutrients while also play essential roles 
in preventing damage from environmental conditions such 
as high salt and heavy metals. Transporter families such 
as ABC transporters, which function in various parts of 
the plant, are involved in plant growth and development 
and the physiological and biochemical reactions required 
for stress resistance (Do et al. 2018). Transporters also 
interact with multiple metabolic pathways or regulate key 
genes to enhance stress resistance in plants. Therefore, the 
exploration of transporters is important for understanding 

plant stress resistance and plant growth, and for crop 
improvement.
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