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Abstract
Brassinosteroids (BRs) are widely used class of natural steroidal plant hormones. BRs take part in the regulation of growth 
and development of plants, maintaining BRs homeostasis, and allowing adaptation to environmental changes through the life 
cycle. They also play an important role in abiotic stress responses such as drought, salinity, high temperature, low temperature 
and heavy metal stresses. Through the signal transduction pathway, BRs interact with a variety of transcription factors via a 
series of phosphorylation cascades to regulate the expression of BR target genes. Thus, they regulate the various growth and 
development processes of plants. BRs crosstalk with different hormones to regulate plant physiology and development. This 
review primarily introduces the signaling pathways of BRs, their role in regulating plant growth and development, abiotic 
stresses, and their interaction with other plant hormones at the transcriptional and post-transcriptional levels. Our review of 
this topic will provide a complete reference for the study and utilization of BRs in the future.
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Introduction

Plant hormones are many molecules signals which produced 
by plants. These molecules can be transported to various 
locations throughout the plant, and they play an essential 
role in regulating plant growth and development (Lee et al. 
2019). Current research suggests that plant hormones may 
be the initiating factor for the expression of resistance genes. 
Adverse conditions change the balance of source hormones 
in plants, leading to changes in metabolic pathways, which 
may be the result of the activation and expression of resist-
ance genes (Wang 2010).

Brassinosteroids (BRs) are important plant hormones, 
which are involved in the regulation of plant growth and 
development, and in general, a certain concentration of BRs 

can increase crop yield, crop quality, and also play an impor-
tant role in improving crop stress resistance. Brassinolide, a 
plant growth-promoting steroid, was isolated from Brassica 
napus pollen in 1979 (Grove et al. 1979). In 1998, at the 13th 
Annual Meeting of International Plant Growth Substances, it 
was confirmed as the sixth class of plant hormones. The five 
classes previously known plant hormones are auxin (IAA), 
gibberellin (GA) and cytokinin (CTK), abscisic acid (ABA) 
and ethylene (ETH) (Clouse and Sasse 1998). To date, this 
class of phytohormones is represented by more than 70 com-
pounds, which have been isolated or detected from more 
than 100 plant species, from algae to angiosperms, reveal-
ing their ubiquitous distribution throughout the plant king-
dom (Zullo and Adam 2002). These steroidal compounds 
occur in free form and conjugated to sugars and fatty acids 
(Bajguz and Hayat 2009). They are structurally similar to 
animal and insect steroids (Sasse 2003) and are primarily 
distributed in most organs of plants, such as pollen, stem 
apex growth point and ungerminated seeds. BR perception 
occurs at membrane-localized receptors, and downstream 
cytosolic regulators transducer BR-mediated signals to the 
nucleus where they activate the transcription of BR-respon-
sive genes that drive cellular growth (Belkhadir and Jail-
lais 2015). They interact with other hormones to regulate 
adaptation to abiotic stresses, such as drought, temperature 
changes, and salinity. Exogenous application of BR to plants 
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can effectively promote plant growth and improve crop yield, 
and increase abiotic stresses tolerance of plants (Divi and 
Krishna 2009). Many detailed studies have been conducted 
on the involvement of BRs in plant growth and development 
and the expression of resistance genes under adverse condi-
tions. In this review, we introduce the signaling pathways 
of BRs, their role in regulating plant response to abiotic 
stresses, and their interaction with other plant hormones.

Brassinosteroids (BRs) signal transduction 
pathway

In the process of signal transduction (Fig. 1), BR receptor 
(BRASSINOSTEROID INSENSITIVE 1, BRI1), a recep-
tor kinase rich in leucine repeat sequence (Li and Chory 
1997), recognizes the BR signal through the extracellular 
domain. It induces phosphorylation at multiple sites (Wang 
et al. 2005). Activated BRI1 binds to the BRI1-associated 
receptor kinase (BAK1), to form a complex. Self-or-trans-
phosphorylation of the C terminal of BRI1 enhances the 

activity of the receptor kinase, increases the affinity of BRI1 
to BAK1 (Nam and Li 2002) and induces a phosphorylation 
cascade (Wang et al. 2005, 2008). Their activation stimulates 
the separation of the BRI1 kinase inhibitor 1 (BKI1), which 
is detached from the complex of BRI1 and BKI1 (Wang 
and Chory 2006), and the detached BKI1 is phosphoryl-
ated, separated from the plasma membrane, and bound to 
14-3-3 protein (Bai et al. 2007; Jin and Dai 2014). After 
activation, BRI1 will transmit BR signal to the downstream 
of the two kinds of protein signaling kinases (BSKs) and 
constitutive differential growth protein 1 (CDG1) (Kim 
et al. 2011; Tang et al. 2008). When BRI1 phosphorylates 
BSKs and CDG1, BSU1 will subsequently be phosphoryl-
ated. BSU1 is a serine/threonine protein phosphatase with 
the N-terminal kelch-repeat domain, which leads to BIN2 
dephosphorylation. BIN2 is restrained by KIB1 (KIK SUP-
PRESSED IN BZR1-1D), which prevents the association 
of BINs with BZR1/BES1 and facilitates its ubiquitination 
(Zhu et al. 2017). BZR1/BES1 is rapidly dephosphorylated 
by PP2A (PHOSPHATASE 2A) and enters the nucleus. In 
cooperation with other transcription factors, BZR1/BES1 

Fig. 1  Model of the signaling pathway of brassinosteroids (BRs) 
in Arabidopsis. In the presence of BRs, BRI1 (BRASSINOSTER-
OID INSENSITIVE 1) senses BRs signal through its extracellular 
domain, BRI1 binds to the BAK1 (BRI1-ASSOCIATED RECEPTOR 
KINASE 1), to form a complex and their activation stimulates BKI1, 
the inhibitor of BRI1, which is dissociated from the BRI1/BKI1 com-
pounds, phosphorylated, separated from the plasma membrane, and 
bound to the 14-3-3 protein. After activation, BRI1 will transmit BRs 
signal to the downstream of the BSKs (BR-SIGNALING KINASE 1) 
and CDG1 (CONSTITUTIVE DIFFERENTIAL GROWTH 1). When 

BSKs and CDG1 are phosphorylated by BRI1, BSU1 (BRI1 SUP-
PRESSOR 1) will be subsequently phosphorylated. BSU1 is a ser-
ine/threonine protein phosphatase with the N-terminal kelch-repeat 
domain, which leads to BIN2 (BRASSINOSTEROID INSENSITIVE 
2) dephosphorylation. BIN2 is restrained by KIB1 (KINK SUP-
PRESSED IN BZR1-1D), which prevents the association of BINs 
with BZR1/BES1 and facilitates its ubiquitination. BZR1/BES1 is 
rapidly dephosphorylated by PP2A (PHOSPHATASE 2A) and enters 
the nucleus. In collaboration with other transcription factors, BZR1/
BES1 regulates the expression of BRs target genes
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regulates the expression of the BR target genes and closely 
regulates various growth and development processes in 
plants (Wei and Li 2011). Li et al. (2020b) found a bHLH 
transcription factor BES1 directly involved in regulating the 
expression of auxin signal components SHY2 and PIN7 in 
the transformation region of the root. In addition, BRs and 
CKs antagonistically regulate the development of root mer-
istem, which provides a theoretical basis for further research 
on the molecular mechanism of BRs involved in the regula-
tion of root development (Li et al. 2020b).

Role of BRs in plant growth 
and development

BRs are a kind of steroid hormones that is widely pre-
sent in the plant kingdom. These steroids have a unique 
biological effect on growth and development in plants 
(Trevisan et al. 2020; Mao et al. 2017). In the study of 
leaf inclination in rice, the typical phenotype of the dwarf 
mutant d2 was that the upright leaf angle or left inclina-
tion, significantly reduced, and could be restored to its nor-
mal shape by exogenous BRs treatment (Hu et al. 2019). 
EBL (2,4-epibrassinolide) can also provide defense against 
various biotic and abiotic stresses as a type of brassinoster-
oids. EBL treatment of apricot fruit significantly inhibited 
the production rate of superoxide anion. It also reduced the 
content of malondialdehyde (MDA), the permeability of 
cell membranes, the incidence of disease, and significantly 
inhibited the expansion of the diameter of apricot fruit 
plaque (Shi et al. 2019). Transmission electron microscopy 
revealed that EBL treatment could maintain the structural 
integrity of organelles such as mitochondria and chloro-
plasts in apricot fruit during storage. EBL also plays an 
important role in response to heavy metal stress. Lead 
accumulation directly affects cell metabolism, leading to 
damage of the antioxidant enzyme defense system and free 
radical toxicity. Soares et al. (2020) found that the use of 
BRs reversed the effect of lead stress on seed germina-
tion and seedling growth of Brassica juncea (L.) Czern. & 
Coss. Especially  10−8 M EBL could increase the activity 
of superoxide dismutase (SOD), catalase (CAT), peroxi-
dase (POD) and other antioxidant enzymes, thus overcom-
ing the toxic effect of lead (Soares et al. 2020). Recently, 
scientists have made new advances about BRs in influenc-
ing plant growth and development. Zhang et al. (2020) 
used mass spectrometry analysis (LC/MS/MS), yeast 
hybrid (Y2H), double fluorescent complementary (BiFC), 
and the CRISPR/Cas9 experiments to provide more direct 
evidence for BAK1 mediated light signaling and improve 
the activity of catalase (CAT), which reduced the hydro-
gen peroxide  (H2O2) levels and inhibited the growth of 
plants (Zhang et al. 2020). Li et al. (2020a) found that the 

starch in stomata of wild-type plants degraded rapidly in 
light, while in stomata of BRs-deficient and insensitive 
mutants, starch was enriched in large quantities and could 
not be degraded in light, making stomata unable to open 
normally. It is concluded that BRs promote starch degra-
dation in guard cells and thereby promote stomatal open-
ing through its interdependence with  H2O2. This theory 
provides strong experimental support for the starch-sugar 
hypothesis (Li et al. 2020a). Wang et al. (2020a) found 
BRs play an important role in the process of etiolated 
seedlings in Arabidopsis thaliana, BRs mutant det2-1 (de-
etiolated2) relative to the wild type, containing excessive 
protochlorophyllide, the gain-of function mutant bzr1-1D 
(brassinazole-resistant 1-1D) suppressed the protochlo-
rophyllide accumulation of det2-1, thereby promoting 
greening of etiolated seedlings. However, BRs-deletion 
and BRs-insensitive mutants grew in darkness for 4–8 
days, and after exposure to light for 2 days, the green 
turning ability of seedlings was significantly lower than 
that of wild-type. Further analysis showed that BZR1, the 
Phytochrome-Interacting Factors 4 (PIF4) and GROWTH 
REGULATING FACTOR 7 (GRF7) coordinated the 
expression of genes encoding key enzymes in chlorophyll 
biosynthesis, and thus promoted the etiolated seedlings to 
become green (Wang et al. 2020a).

In plants, each hormone does not exist independently, and 
their role in plant growth and development cannot be viewed 
in isolation. BRs play an essential role in plant develop-
ment but not independently. A complex network of plant 
hormones is formed by BRs interacting with other plant hor-
mones to regulate the growth and development (Xu 2019). 
BRs control the biosynthesis of ETH mainly by regulating 
the enzyme activity necessary for the synthesis of ACS (ac-
synthase enzyme) and ACO (ac-oxidase enzyme) (Hansen 
et al. 2009). The high content of BRs can reduce the activ-
ity of the main transcription factor BZR1/BES1 in the BR 
signaling pathway, improve the stability of ACC and ACS, 
prevent degradation by 26S proteasome, and activate the 
biosynthesis of ETH. However, the lower content of BRs 
increased the activity of BZR1/BES1, promoted the binding 
of BZR1/BES1 with ACS and ACC (1-aminocyclopropane-
1-carboxylic acid) promoter regions, and prevented tran-
scription, thus inhibiting the biosynthesis activity of ETH 
(Peres et al. 2019). In addition, exogenously applied BRs can 
promote fruit ripening. In Solanum lycopersicum culture, 
BRs can raise lycopene levels and reduce chlorophyll levels. 
LePSY1 and LeGLK2 are key regulators of lycopene bio-
synthesis and chloroplast development, respectively. After 
BRs treatment, LePSY1 expression was significantly higher 
than that of the control group, while LeGLK2 expression 
was significantly lower than that of the control group. How-
ever, LePSY1 expression treated with BRZ (a brassinosteroid 
biosynthesis inhibitor) was slightly lower than that of the 
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control group, and LeGLK2 expression decreased somewhat 
(Zhu et al. 2015), which indicates that BRs are involved in 
ETH-mediated fruit ripening.

It has been observed that BRs and ABA present antago-
nistic effects. ABA decreased the activity of the BRs sign-
aling pathway by upregulation of BIN2 (BRASSINOS-
TEROID-INSENSITIVE 2), a negative regulator of the 
BRs signaling pathway. During plant growth and devel-
opment, BRs inhibited ABA action by down-regulating 
the expression of PP2C (PROTEIN PHOSPHATASE 2C) 
family (Zhang et al. 2009). PP2C is a positive regulator 
of ABA signaling. ABA can also inhibit the CK sign-
aling pathway by up-regulating the activity of CK oxi-
dases/ dehydrogenases, leading to the inactivation of CK 
(Nishiyama et al. 2011). Other experiments have shown 
that BR-CK cross-talk may lead to changes in the source/
sink relationship (Roitsch and Ehness 2000), increasing 
food yield, and enhancing tolerance to stress. CK up-reg-
ulates genes related to BR biosynthesis (DFW4) (Sahni 
et al. 2016; Li et al. 2018) and genes related to signaling 
pathways (BRI1, BAK1). BRs promote the biosynthesis of 

CK by up-regulating the activity of IPT (ISOPENTENYL-
TRANSFERASE). In a variety of bioassays representing 
diverse species, BRs have been shown to synergistically 
promote cell elongation when supplied with AUX (Man-
dava 1988). BRs has been shown to regulate the expression 
of PIN genes, which encode a vital component of auxin 
polar transport (Goda et al. 2004; Nemhauser et al. 2004; 
Nakamura et al. 2004). BRs and AUX signaling pathways 
converge at the level of transcriptional regulation of target 
genes with common regulatory elements: AUX regulates 
signal transduction via the ubiquitin ligase  SCFTIR1, AUX/
IAA protein is degraded by proteasome through interac-
tion with TIR1, and this relieves the repressive effects of 
AUX/IAAs on ARFs and resumes transcriptional regula-
tion (Halliday 2004) (Fig. 2).

Fig. 2  A putative interplay between brassinosteroids (BRs), abscisic 
acid (ABA), cytokinin (CK), auxin (AUX) and ETH biosynthesis. 
ABA decreased the activity of BRs signaling pathway by upregula-
tion of BIN2 (BRASSINOSTEROID-INSENSITIVE 2), a negative 
regulator of BRs signaling pathway. While during plant growth and 
development, BRs inhibited ABA action by down-regulating the 
expression of PP2C (PROTEIN PHOSPHATASE 2C) family, PP2C 
is a positive regulator of ABA signaling. CK up-regulates genes 
related to signaling pathways (BRI1, BAK1). And BRs promotes the 
biosynthesis of CK by up-regulating the activity of IPT (ISOPENTE-
NYLTRANSFERASES). In addition, BRs and AUX signaling path-

ways converge at the level of transcriptional regulation of target genes 
with common regulatory elements. The effect of BRs on ETH biosyn-
thesis is influenced by dose. The high content of BRs can reduce the 
activity of the main transcription factor BZR1/BES1 in the BRs sign-
aling pathway, improve the stability of ACC (1-aminocyclopropane-
1-carboxylic acid) and ACS (ACC synthase), prevent degradation by 
26S proteasome, and then activate the biosynthesis of ETH. How-
ever, the lower content of BRs increased the activity of BZR1/BES1, 
promoted the binding of BZR1/BES1 with ACS and ACC promoter 
regions, and prevented transcription, thus inhibiting the biosynthesis 
activity of ETH
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Application of brassinosteroid (BRs) in plant 
drought response

Drought stress is one of the main adverse factors affecting 
plant growth and metabolism (Todaka et al. 2015; Liu et al. 
2012; Song and Wang 2015; Niether et  al. 2020). It can 
destroy the enzyme system, lead to stomatal closure, reduce 
water content, decrease seed germination potential, and sig-
nificantly diminish the length of roots and stems (Guo et al. 
2018b; You et al. 2019). Severe drought stress will lead to 
plant death. Studies have shown that the application of exog-
enous substances can improve the growth conditions of plants 
to some extent (Liu and Chan 2015). The use of BRs can 
alleviate the damage caused by drought stress (Wang et al. 
2019c). EBR processing has been shown to enhance the 
survival rate of Brassica napus and Solanum lycopersicum 
seedlings under drought condition. BR application can also 
increase the expression of related genes induced by drought 
stress (Kagale et al. 2007). Superoxide dismutase (SOD) is 
the primary active antioxidant substance in plant cells, which 
can convert  O2

− into  H2O2 (Liu et al. 2017) and produce a 
defense response. Under drought conditions, BRs can improve 
soybean photosynthetic efficiency, cell water potential, soluble 
sugar, proline content, SOD activity, and reduce MDA con-
tent and leaf electrical permeability to promote plant growth 
(Zhang et al. 2008). Osmotic stress caused by drought can 
also obstruct the normal absorption of water by plant cells 
and affects the physiological functions of plants. Studies have 
shown that after treatment with BRs, water content and water 
potential increased, improving the viability of plants under 
low water potential (Yuan et al. 2010). These results have also 
been observed in sugar-beet plants under drought stress. A 
reduction of taproot weight was related to the degree of stress 
for the beets. After treatment with BRs, the application of BRs 
completely compensated for the decrease in biomass caused by 
mild drought stress. Increased biomass can lead to increased 
acid invertase activity in young leaves. This increase in acid 
invertase activity may provide more assimilative materials for 
plants (Schilling et al. 1991). EBR could increase the survival 
rate of Arabidopsis thaliana and Brassica napus seedlings sub-
jected to drought stress (Krishna 2003), and significantly alle-
viated water stress and increased the RWC and PN of Solanum 
lycopersicum seedlings. EBR application also significantly 
increased ABA concentration and the activities of antioxidant 
enzymes, while it decreased the contents of  H2O2 and MDA 
in tomato seedlings (Schilling et al. 1991).

Effect of brassinosteroid (BRs) on plant salt 
resistance

At present, more than 800 million hectares of land in the 
world is affected by salt, accounting for approximately 6% 
of the world’s total land area (Munns 2005). Salinization is 
an important abiotic stress factor that severely affects crop 
production in many places, especially in arid and semi-arid 
regions. Salt stress can lead to many detrimental outcomes 
for plant and ecosystem health and function. Salt stress 
can affect plant growth in many aspects, such as photo-
synthesis (Feng et al. 2014; Kalaji et al. 2016; Sui et al. 
2015; Li et al. 2012b; Zhang et al. 2010; Yan et al. 2013), 
rapid accumulation of reactive oxygen species (Wang 
et al. 2019b), stomatal conductance (Gs), intercellular 
 CO2 concentration (Ci) (Sui and Han 2014), seed germi-
nation rate (Song et al. 2017; Zhou et al. 2016; Guo et al. 
2012, 2015, 2018a; Wang et al. 2015a; Xu et al. 2016; 
Liu et al. 2018; Zhang et al. 2015), cell membrane perme-
ability (Li et al. 2012a; Song et al. 2016), biomolecular 
macromolecules, ion toxicity (Han et al. 2010; Feng et al. 
2015; Zhao et al. 2010), and even osmotic stress (Tang 
et al. 2015). In particular, excessive salt concentration will 
reduce the water available in plants, cause cell dehydra-
tion, and threaten plant survival (Nxele et al. 2017). The 
application of hormones is an effective way to improve 
salt stress (Nimir et al. 2014). BRs play a significant role 
in plant salt response (Tanveer et al. 2018). BRs can be 
exogenously applied via at least three different techniques: 
seed treatment, root treatment, and foliar spray. Seed treat-
ment and foliar spray are the most common of these meth-
ods (Ashraf et al. 2010). As an essential compatible sol-
ute, proline is involved in maintaining REDOX balance, 
ROS detoxification, and protecting protein structure (Han 
et al. 2014). It was established that BRs could promote the 
accumulation of proline and thus improve the activity of 
antioxidant enzymes by using chickpeas and mung beans 
as model organisms (Hayat et al. 2010).

In addition, to determine the roles of BR in stress toler-
ance, SlBRI1-, SlBAK1- and SlDWARF-silenced Solanum 
lycopersicum plants were challenged with salt stress. The 
Solanum lycopersicum were treated with 200 mM NaCl 
for 3 weeks and found that the plants grown under salt 
stress and pretreated with BRs presented better growth 
phenotype than plants pretreated with water alone (Zhu 
et al. 2016). Therefore, BRs could enhance the tolerance 
of Solanum lycopersicum seedlings with high salinity. In 
rice, pre-soaking seeds with NaCl and BRs (EBL or HBL) 
can alleviate the inhibition of salt on seed germination 
and seedling growth (Anuradha and Rao 2001). In barley 
plants grown under salt stress, it was determined that the 
application of BRs could significantly reduce salt-induced 
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damage to nuclei and chloroplasts through the rooting 
medium (Kulaeva et al. 1991). By applying EBL to the 
leaves of two wheat varieties with different salt tolerance, 
Shahbaz and his colleagues (2008) found that the anti-
oxidant systems of both types were affected. The activ-
ity of SOD, CAT and POD all increased under salt stress 
(Shahbaz et al. 2008). BRs play an important role in the 
regulation of salt tolerance in plants, but not in all cases. 
Liu et al. (2020) found that EBL (24-epibrassinolide) can 
promote putrescine (Put) transformation to triamine sper-
midine (Spd) and tetraamine spermine (Spm), so as to 
significantly improve the germination rate of rape seeds 
under salt stress. When the salt concentration is lower than 
150 mM, the demand for BRs decreases and the same EBL 
concentration may be in an excessive state. Under this 
condition, EBL will promote the oxidative metabolism of 
Put and produce a large amount of  H2O2, thus reducing 
the germination rate under salt stress. They defined this 
phenomenon as hormonal stress-level-dependent biphasic 
effects (SLDB). Therefore, the study put forward a new 
view that appropriately raise the level of BR or enhance 
BR signalling to improve plant salt resistance, either 
excessive or insufficient BR will have an adverse effect on 
the plant’s salt tolerance (Liu et al. 2020).

Effects of brassinosteroid (BRs) on plant 
temperature response

Temperature is one of the leading environmental factors 
affecting plant growth. When plants are exposed to non-
freezing temperatures below 12 °C for a period of time, 
and beyond the critical period, a physiological dysfunction 
known as “low- temperature damage” will occur (Seydpour 
and Sayyari 2015). Low-temperature stress usually leads 
to changes in plant morphology, physiology, biochemical 
metabolism, and cell structure (Krishna et al. 2017; Ma et al. 
2018). Low-temperature stress can decrease plant growth, 
lead to photo-inhibition (Sui 2015; Zhuang et al. 2019). 
Sub-optimal temperatures can also cause leaf necrosis, dis-
coloration, abnormal plant maturation, lipid cell membrane 
destruction (Cheng et al. 2014), blocked thylakoid electron 
transfer, increased MDA content, and increased relative 
conductivity (Chen et al. 2013). The accumulation of MDA 
can reflect the degree of cell membrane damage to a certain 
extent, and its accumulation rate can reflect the scavenging 
ability of free radicals of plants. Under adverse conditions, 
reactive oxygen species (ROS) will be produced in large 
quantities, breaking the balance and accumulating to a harm-
ful degree, which will cause serious damage to the growth 
and development of plants. Plants have enzymes that can 
remove reactive oxygen species and free radicals (Li et al. 
2010), such as SOD and POD. When applying BRs to KJD6 

and KY131 at the rice booting stage, it was found that BRs 
could significantly improve SOD and POD activity, increase 
soluble sugar, soluble protein content, and reduce MDA 
content. Thus, low-temperature stress was alleviated. Grain 
number and seed setting rate were also mediated. The 1000-
grain weight per panicle was increased, which maintained 
grain yield (Wang et al. 2020b). Thus, the application of BRs 
is an effective way to alleviate the plant cold stress response. 
Photosynthesis is the primary process of plant growth and 
organic matter accumulation. Low-temperatures often cause 
severe damage to the ultrastructure of chloroplasts by pro-
ducing the following structural changes: chloroplast expan-
sion, thylakoid decomposition, and a decrease in the number 
and volume of starch grains. Meanwhile, osmiophilic par-
ticles increase, forming the outer network vesicles, and the 
inner and outer membrane separation is visible (Yang et al. 
2017; Li et al. 2016). Yang et al. (2013) showed that after 
24-h treatment at low temperature, the inner and outer chlo-
roplast membranes were almost completely separated in WT 
and the structure was distorted (Yang et al. 2013). Chla, chlb 
and chla + b contents were significantly decreased. Sun et al. 
(2019b) showed that under low-temperature conditions, the 
SPAD (Chlorophyll meter) value of the two selected maize 
varieties increased after spraying three different mass con-
centrations (T1, T2 and T3) of BRs (Sun et al. 2019b). With 
the increase of spraying concentration, the SPAD value of 
seedlings increased first and then decreased. In addition, 
MDA content and relative conductivity decreased.

High-temperature stress can also cause severe damage 
to physiological metabolism and growth and development 
of plants (Zhuang et al. 2020; Sun et al. 2019a; Wang et al. 
2010, 2015b, 2019a). Heat damage to plants includes direct 
damage and indirect damage. Direct damage mainly mani-
fests in protein denaturation, while indirect damage includes 
blocked photosynthesis of leaves, metabolic starvation, 
accumulation of toxic substances such as ethanol acetalde-
hyde, accelerated protein degradation, and reduced biologi-
cal activity of nucleic acid (Zhang et al. 2018). Using heat-
sensitive rice IR36 as the material, Chen et al. (2019) found 
that under the condition of 40 °C, the application of EBL 
could increase the expression of sucrose transporter genes 
OsSUT1, OsSUT2 and OsSUT4 in young ears, and reduce 
the content of superoxide anion, thus reducing the damage 
to the cell membrane (Chen et al. 2019).

Conclusions and opinions

As sessile living beings, plants have developed complex 
mechanisms during their evolution, with phytohormones 
playing crucial regulatory roles. These plant hormones are 
widely distributed in a variety of plants and are involved 
in the regulation of plant growth and the development of 
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various stages. Currently, BRs have attracted increas-
ing attention from phytologists and are believed to play a 
critical role in the growth and development of plants and 
stress alleviation. It is generally thought that BRs conduct a 
phosphorylation cascade reaction with transcription factors 
through the signal transduction pathway, transmitting BR-
mediated signals to the nucleus, activating the transcription 
of BR-responsive genes in the nucleus, and thus driving cell 
growth. In addition, a large number of studies have shown 
that BRs can crosstalk with ABA, ETH and other plant hor-
mones to jointly regulate various abiotic stresses. However, 
the mechanism of its biosynthesis has not been sufficiently 
studied; at present, the technology used to synthesize BRs 
artificially is very limited. Therefore, with the development 
of biotechnology, the production of cheap and efficient BRs 
will likely become a hot research topic.
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