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Abstract
The disease-resistant transgenic peanut cv ICG 13942 plants were developed by using Tcchitinase-I gene. Agrobacterium 
tumefaciens strain LBA4404 harboring the binary vector (pBinAR) contains the chitinase (Tcchitinase-I) gene and neomycin 
phosphotransferase resistance (nptII) gene. The transformed shoots were developed on selection medium (MMS + 0.5 mg/L 
IAA + 15 mg/L TDZ + 100 mg/L Kan + 250 mg/L Cefotaxime) from deembryonated cotyledon (DC) explants. Established 
plantlets were screened for the presence of Tcchitinase-I and nptII genes. Stable integration and expression of the transgenes 
 (T0) were confirmed by using PCR, RT-PCR and Southern blot analyses. The transformation frequency 63.34% was recorded. 
All the transformed  (T0) plants were found normal, flowered and set seeds. After selfing the  T0 plants, a Mendelian inher-
itance pattern (3:1) for the transgene in  T1 progeny is revealed.  T1 transgenic peanut plants were evaluated for resistance 
against Cercospora arachidicola, C. personatum and Puccinia arachidis by infection with the microspores using detached 
leaf assay. These  T1 plants have shown longer incubation, latent period and lower infection frequencies in comparison to 
non-transformed (WT) plants. The Tcchitinase-I gene expression in resistant transgenic plants was compared to that of a 
susceptible control. A significant negative correlation was recorded between chitinase activity and the frequency of infection 
to the three tested disease causing agents.
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Introduction

Peanut or groundnut (Arachis hypogaea L.) is an impor-
tant oilseed crop grown in the tropical and sub-tropical 
regions of the world. Due to various biotic stresses such 
as insect pests, bacterial and fungal diseases, the yield in 
peanut is decreased. Among the major fungal diseases, early 
leaf spot (ELS) (Cercospora arachidicola), late leaf spot 
(LLS) (Cercospora personatum) and rust caused by Puc-
cinia arachidis are more destructive (50–70%) in peanut 
(Subrahmanyam et al. 1984). Chitin is an important cell 
wall component of fungi and this is degraded by chitinases. 
Chitinases (E.C. 3.2.1.14) are poly (1,4-(N-acetyl-β-D)

glucosaminide))-glycanohydrolases. They directly hydro-
lyze fungal cell wall, chitin the substrate for the enzyme, 
and by this action fungal hyphallysis and inhibition of fun-
gal growth occur (Patil et al. 2000). Thus, plants use one 
of the many natural defense mechanisms to resist against 
pathogens and accumulate proteins (e.g., chitinases) active 
against disease causing organisms. Where this mechanism is 
too weak or appears too late to induce full protection against 
pathogen, engineering the expression of a defense protein 
can enhance the resistance to fungal diseases (Broglie et al. 
1991; Grison et al. 1996).

The use of fungicide to control the disease is often inef-
fective because the pathogen spreads rapidly under favorable 
conditions. The crop production heavily relies on chemicals 
for protection which is not viable as these chemicals provide 
ephemeral benefits often with adverse side effects (Kumar 
et al. 2008). The major destructive fungi, on the other hand, 
develop tolerance to most classes of fungicides and these can 
cause environmental pollution (Moham et al. 2003). In view 
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of this, genetic engineering with chitinase is a powerful tool 
to improve the fungal disease resistance in plants.

Genetic engineering technology plays a great role in 
transfer of gene(s) of interest for developing disease resist-
ance and improving quality and crop yield. By using this 
technology, the chitinase gene from different origins has 
been introduced into various crop plants for developing 
enhanced fungal resistance: tobacco (Zhu et al. 1994), rice 
(Lin et al. 1995), cucumber (Kishimoto et al. 2002), Ital-
ian ryegrass (Takahashi et al. 2005), cotton (Ganesan et al. 
2009), banana (Sreeramanan et al. 2009) and peanut (Chu 
et al. 2008, 2013).

Though enhanced fungal resistance has been developed 
in peanut by using tobacco chitinase (Rohini and Rao 2001), 
barley oxalate oxidase (Livingstone et al. 2005), mustard 
defensin (Anuradha et al. 2008) and tobacco β-1,3-glucanase 
(Sundaresha et al. 2009), there is no report on Tcchitinase-I 
gene in peanut cvs. Hence, in the present study, we have 
developed the transgenic peanut cv ICG 13942 plants by 
using deembryonated cotyledon (DC) explants through 
Agrobacterium-mediated genetic transformation by using 
Tcchitinase-I gene for resistance to leaf spot (ELS, LLS) 
and rust diseases.

Materials and methods

Plant material

The mature seeds of peanut cv ICG 13942, obtained from 
the germplasm bank of ICRISAT, Patancheru, Hyderabad, 
Telangana, India were used. This variety is susceptible to 
leaf spot and rust fungal diseases.

Mature groundnut seeds of peanut cv ICG 13942 were 
washed under running tap water for 10–15 min followed by 
treating with liquid detergent Tween-20 (5%-v/v) for 5 min 
and it was repeated twice followed by rinsing in sterile dis-
tilled water thoroughly. Later the seeds were surface steri-
lized with 0.1% (w/v)  HgCl2 for 8 min followed by rinsing 
in sterilized distilled water for 3–4 times under aseptic con-
ditions and soaked for 24 h in sterile distilled water. These 
soaked seeds were dried on sterile tissue paper, dissected 
aseptically and removed the zygotic embryo. Now, these 
deembryonated cotyledons (DC) were cut longitudinally 
and precultured on shoot induction medium (SIM) con-
taining Modified Murashige and Skoog’s (1962) (MMS) 
medium + 0.5 mg/L IAA + 15 mg/L TDZ for 3 days.

Gene constructs

Agrobacterium tumefaciens strain LBA4404 harboring the 
binary plasmid pBinAR (13.7 Kb) was used for genetic 
transformation of groundnut cv ICG 13942. The binary 

vector pBinAR carrying Theobroma cacao chitinase-I 
(Tcchitinase-I) gene with a nptII selectable marker gene 
was used. The T-DNA portion of pBinAR having nos-nptII 
cassette in RB and 770 bp EcoRI/Hind III fragment con-
tains the CaMV 35S promoter, a partial pUC18 polylinker 
and the OCS terminator in LB and selectable marker gene 
(nptII) driven by the NOS promoter and PNOS terminator 
sequences, respectively. A 1.2Kb SmaI-XbaI fragement of 
T. cacao class I chitnase was taken out from pGH00.0126 
vector and cloned intocorresponding sites of binary vector 
pBinAR (Fig. 1).

Transformation procedure

The precultured DC (deembryonated cotyledon) explants 
were infected with A. tumefaciens LBA 4404 harboring 
binary vector pBinAR containing Tcchitinase-I gene and 
nptII as selectable marker gene and cocultivated on SIM 
(shoot induction medium) containing MMS (modified MS 
medium) + 0.5 mg/L IAA + 15 mg/L TDZ for 4 days. After 
cocultivation, these explants were shifted onto selection 
medium containing SIM + 100 mg/L Kan + 250 mg/L Cefo-
taxime. After 2 weeks of incubation, the explants with  KanR 
shoots were cultured on SIM + 50 mg/L Kan for further 
proliferation of microshoots. Subsequently, the shoots were 
elongated, rooted and established the plantlets by following 
our earlier study (Rajinikanth and Rama Swamy 2018). The 
putative transformants  (T0) were obtained within 4 months 
of culture initiation (Fig. 2a–e). The plants were regener-
ated from non-transformed explants and established in the 
greenhouse as control.  T0 transgenic plants were maintained 
in the greenhouse and seeds were harvested to obtain the  T1, 
 T2 generations. The transgenic plants in  T0,  T1and  T2 genera-
tions were analyzed using standard procedures.

PCR and RT‑PCR analysis of the transformants

The genomic DNA was isolated from randomly selected 
putative transgenic plants and one non-transformed plant 
(control) according earlier method (Sharma et al. 2000) and 

Fig. 1  Linear diagram of T-DNA portion of pBinAR-chitinase-I con-
struct
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subjected to PCR amplification using the Tcchitinase-I gene-
specific primers:(F)5′-GGA AAA TGG TTG CCA GAG TCA 
GTG C-3′, (R)5′-GCT ACA TTG AGT CCA CCG AGGGT-3′ 
and nptII gene-specific primers: (F) 5′-GCT TGG GTG 
GAG AGG GCT ATT-3′, (R) 5′-AGA ACT CGT CAA GAA 
GGCGA-3′. The PCR analysis for Tcchitinase-I gene was 
carried out by initial denaturation at 94 °C for 5 min fol-
lowed by 35 cycles of 94 °C for 1 min, 58 °C for 1.30 min 
and 72 °C for 2 min and final extension at 72 °C for 10 min 
and nptII gene was carried out by initial denaturation at 
94 °C for 5 min followed by 35 cycles of 94 °C for 1 min, 
54 °C for 1 min and 72 °C for 1.30 min and final extension 
at 72 °C for 10 min. The amplified products were subjected 
to electrophoresis on 1.2% agarose gel and visualized under 
gel documentation system, Biorad, USA (Fig. 3a, b). The 
randomly selected PCR-positive transgenic plants were 
used for RT-PCR analysis. Total RNA was isolated from 
leaf tissue of the putative transformants using the TRIzol 
reagent according to the manufacture’s protocol and RT-
PCR analysis of the putative transformants was carried out 
using the Thermoscript RT-PCR system for 35–40 cycles 
using Tcchitinase-I gene-specific primers for carrying out 
RT-PCR. One sample of RNA subjected directly to PCR 
without reverse transcription served as the negative control 
and plasmid DNA from pBinAR-chitinase-I served as the 
positive control. The amplified fragments were separated 
on 1.2% agarose gel, photographed under ultraviolet light 
(Fig. 3c).

Southern blot analysis

30 µg of genomic DNA from the putatively transformed 
and non-transformed (control) plants was digested with the 
enzyme EcoRI to restrict the genomic DNA which cuts at 

restriction site within the plasmid DNA to determine the 
copy number of the Tcchitinase-I gene. The digested DNA 
was separated by electrophoresis through a 1% agarose gel 
and transferred onto a Nylon N + membrane (Amersham 
Biosciences, UK) according to the manufacturer’s instruc-
tions. The 1.2 kb Tcchitinase-I coding sequence fragment 
with a non-radioactively labeled (Alkphos Direct Labeling 
and Detection system of Amersham Biosciences) was used 
as a probe (Fig. 4).

Segregation analysis

Inheritance of the transgene was studied by using the PCR 
screening of Tcchitinase-I gene in  T1 and  T2 generations. 
PCR + ve and –ve plants were identified and chi-square test 
was performed to validate the data for 3:1 segregation.

Chitinase assay

A colorimetric assay was performed with the leaves of 
45-day-old transformed and non-transformed (WT) control 
peanut plants following the method of Mauch et al. (1984).

Detached leaf assay for ELS, LLS and rust diseases

Disease evaluation of the transgenic peanut plants for ELS, 
LLS and rust pathogens was conducted in  T1 generation 
plants by detached leaf assay technique as reported earlier.

When the plants  (T1) were 40 days old, the quadrifoli-
ate leaves from either second or third fully expanded leaf 
of 10 selected PCR + ve transgenic plants per event were 
excised from pulvinus region and arranged in randomized 
block design in plastic trays containing sterile river sand. 
The leaves were immediately dipped in distilled water and 

Fig. 2  Agrobacterium-mediated 
genetic transformation in 
deembryonated cotyledon 
(DC) explants of peanut cv 
ICG 13942 by using binary 
vector pBinAR. a Infected DC 
explants on SIM for cocultiva-
tion. b, c Induction of  KanR 
shoots on selection medium 
after 4 & 6 weeks of incubation, 
respectively. d In vitro rooting 
of elongated microshoots on 
RIM augmented with 1.0 mg/L 
NAA + 50 mg/L Kan. e  T0 
plants are shifted to plastic pots 
containing soil mix and main-
tained in the green house
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were taken for planting in plastic trays having dimensions 
39.5 cm × 29 cm × 7 cm. The trays were filled with a layer 
(approximately 1.5 cm thick) of sterile sand. The sand was 
kept moist with distilled water. Holes were made with the 
help of plastic droppers to place the leaves. In each hole, 
a leaf was planted and the lower portion of the rachis was 
covered with sand. Simultaneously, ten leaves of suscepti-
ble control plants were also planted in a separate tray. The 
Hoagland’s nutrition solution (Hoagland and Arnon 1950) 
was supplied to leaves, which provided the essential nutri-
ents. The trays were covered with clear polythene cover and 
incubated before inoculation for 24 h in a growth cham-
ber for acclimatization. The day and night temperature in 
the growth chamber was maintained at 23 °C with relative 
humidity of 60% and illuminated with white light. The 
leaves were allowed to get acclimatized for 24 h after trans-
ferring to plastic trays filled with sterile sand and then chal-
lenged with ELS, LLS and rust disease pathogens separately 
by using the method of Prasad et al. (2013).

The experimental trays were examined daily beginning 
6 days after inoculation (DAI) for incubation period (IP) and 
latent period (LP). After 28 days of inoculation, observations 
on lesions or pustules per leaf (LN, PN), percentage leaf area 
damaged (LAD%) and infection frequency (IF, defined as 
number of lesions or pustules/cm2 leaf area) were recorded.

Data analysis

The data collected on chitinase activity, ELS, LLS and rust 
infection were subjected to analysis of variance (ANOVA) 
where the mean values in each treatment was compared 
using LSD at the 5% level of significance (P = 0.05). The 
values were means of ten replicates per event. The correla-
tion analysis was done using Pearson correlation coefficient 
at 5% level of significance among the transgenics and non-
transformed control plants for infection frequency of three 
tested pathogens with chitinase activity.

Results

Genetic transformation of peanut with Tcchitinase‑I 
gene

Agrobacterium tumefaciens-mediated genetic transforma-
tion was carried out by using the binary vector pBinAR-
Tcchitinase-I with DC explants of groundnut cv ICG 
13942. A total of 38 primary transformants  (T0) were 
regenerated from 60 precultured DC explants following 
cocultivation with A. tumefaciens harboring the binary 
vector pBinAR-Tcchitinase-I with 63.34% of transforma-
tion efficiency. The regenerated plants  (KanR) exhibited 
normal growth under greenhouse conditions and produced 
morphologically normal flowers and pods that contained 
viable seeds (Fig. 2a–e).

Molecular analysis of transgenics

Integration and expression of transgenes

The insertion of the Tcchitinase-I gene into the peanut 
through Agrobacterium gene transformation was ini-
tially screened by PCR analysis. The presence of 1200 bp 
region of the Tcchitinase-I gene was detected in 12 of the 
38 transgenic plants produced with the binary plasmid 
pBinAR:Tcchitinase-I with the transformation efficiency 
is 63.34% (Fig. 3a). Randomly selected transformants of 
5 of the 38 transgenic plants also showed amplification 
of 750 bp fragment of the nptII gene (Fig. 3b). Expres-
sion of the introduced gene was analyzed by RT-PCR 
from the randomly selected 6  T1 and  T2 PCR-positive 
plants. The expected 1200 bp amplified fragment corre-
sponding to the Tcchitinase-I gene was detected in all the 
plants that were selected for analysis (Fig. 3c). Randomly 
selected PCR- and RT-PCR-positive events were analyzed 
by Southern blot hybridization for copy number (EcoRI 
digested DNA) using 1.2 Kb fragment as probe (Fig. 4). 
The Southern analysis indicated the presence of three cop-
ies of the transgene in event number TC-1, TC-7, TC-12, 
TC-14, TC-18 (Lanes 3–7), while the event TC-20 (Lane 
1) showed two copies of the transgene and event TC-9 
(Lane 2) showed single copy of the transgene, whereas 
no transgene insertion was detected in non-transformed 
control plant DNA (Lane C). The segregation pattern of 
PCR tested transgenic plants and their progeny showed the 
Mendelian ratio (3:1 ratio) at p = 0.05 in all the events in 
 T1 and  T2 progenies.

Fig. 3  Molecular analysis of the transformed peanut cv ICG 13942 
plants. a PCR amplification of genomic DNA showing amplification 
of a 1200 bp fragment of the Tcchitinase-I gene, Lanes: 1–12: carry 
genomic DNA from  T0 putative transformants. b PCR amplification 
of genomic DNA showing amplification of a 750 bp fragment of the 
nptII gene, Lanes: 1–5: carry genomic DNA from  T0 putative trans-
formants. c RT-PCR of the cDNA showing amplification of a 1200 bp 
fragment of the Tcchitinase-I gene, Lanes: 1–6: carry cDNA from  T0 
putative transformants. M: molecular size marker (1  Kb ladder), B: 
blank, C: non-transformed control plant DNA (-ve control-WT), P: 
plasmid pBinAR (+ ve control)

◂
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Chitinase activity in the transgenic plants

The chitinase activity varied among the transgenic events 
expressing Tcchitinase-I gene, where 6.5-fold increase in the 

chitinase activity (0.29–1.30  Umg−1 protein) was recorded 
as compared to the non-transformed control plants (0.20 
 Umg−1 protein) (Fig. 5). Of the 20  T1 transgenic events 
tested, 6 transgenic events (TC-1, TC-6, TC-14, TC-15 and 

Fig. 4  Southern blot analysis of 
the genomic DNA from leaves 
of transgenics obtained through 
Agrobacterium-mediated 
genetic transformation. The 
genomic DNA of peanut trans-
genics was digested with EcoR1 
to check the copy number of 
the integrated gene. Lanes: 1: 
carry EcoRI-restricted genomic 
DNA from event TC-20 showed 
two copy numbers, 2: carry 
EcoRI-restricted genomic DNA 
from event TC-9 showed one 
copy number, 3–7: carry EcoRI-
restricted genomic DNA from 
events TC-1, TC-7, TC-12, 
TC-14, TC-18 showed three 
copy numbers, respectively, C: 
EcoRI-restricted genomic DNA 
from control plants, P: EcoRI-
restricted plasmid pBinAR: 
Tcchitinase-I, M: molecular 
weight marker
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TC-18) had significantly higher chitinase activity than the 
rest, which sustained in the  T2 progeny of four of these six 
events (TC-1-7, TC-6-7, TC-12-4 and TC-18-6).

Evaluation of peanut transgenics for resistance 
against early leaf spots (ELS), late leaf spot (LLS) 
and rust diseases

The progenies of twenty  T1 transgenic events were tested and 
they showed significant differences for all the components of 
resistance to ELS, LLS and rust diseases in detached leaf bio-
assay (Table 1). 

For evaluation of ELS, the event TC-18 and TC-06 showed 
longer incubation period (18 and 15 days), longer latent period 
(21 and 20 days) and less number of lesions per leaf (27 and 
30) in  T1 transformed plants compared to non-transformed 
(control) plants (10 days IP, 16 days LP and 40 lesions). 
Most of the transgenic events (TC-1, TC-06, TC-07, TC-09 
and TC-18) showed less LAD (5.62–11.18%), less number 
of lesions per leaf (27–34) and less IF (2.13–4.63  cm2) com-
pared to non-transformed counter parts (LAD 14.32%, lesions 
40, IF 4.84  cm2). According to our observations, the event 
TC-18 showed better performance in all the recorded resist-
ance parameters for ELS disease. They are longer IP (18 days), 
longer LP (21 days), lesser number of lesions per leaf (27), less 
LAD (5.62%) and lower IF (2.13  cm2) in comparison to other 
events in  T1 plants (Table 1).

T1 transgenic events evaluated for LLS showed signifi-
cant genotypic difference for all the components. Most of the 
transgenic events 01,06,10,12 and 18 showed longer IP (17 to 
23 days) and the events 9,10,12,14 and 18 showed longer LP 
(21 to 24 days) than the non-transformed plants (13 days IP, 
19 days LP). The event no. 14 showed lesser number of lesions 

per leaf (22 lesions), less leaf area damage (6.20%) and lower 
IF (2.50  cm2) in comparison to the control plants (35 lesions, 
18.10% LAD, 5.43  cm2 IF). Thus, the event TC-14 was found 
to be performed better in all the parameters (longer IP-21 days, 
longer LP-26 days, lesser number of lesions per leaf-22, less 
LAD-6.20% and lower IF-2.50  cm2) tested compared to other 
events screened for LLS disease resistance (Table 1).

For evaluation of rust, the event no. 7 showed longer incu-
bation (23 days), longer latent periods (31 days) and less 
no. of lesions (22 lesions) than their control plants (15 days 
IP, 21 days LP and 31 lesions). All transgenic events except 
event 10, 12 showed less LAD (3.23–11.10%) than the 
control plants (12.08%). Similarly, most of the transgenic 
events showed lower Infection frequencies (3.68 to 7.84 
 cm2) except transgenic event TC-9 (9.15  cm2) than the con-
trol plants (8.16  cm2). Thus, the event TC-7 showed the best 
results for all the resistance parameters tested for rust disease 
even compared to all other  T1 transgenic plants (Table 1).

According to our observation, the three transgenic events 
of TC-18, TC-14 and TC-7 displayed significantly higher 
resistance to C. arachidicola, C. personatum and P. ara-
chidis pathogens in  T1 plants, respectively (Fig. 6a–d).

Correlation between chitinase activity and disease 
resistance

Disease severity correlated well with the chitinase activity 
and the infection frequency of ELS, LLS and rust in the 
T1 transgenic plants with the Pearson correlation coeffi-
cients ranging from − 0.7226 (P = 0.05), − 0.8036 (P = 0.05) 
and − 0.8475 (P = 0.05), respectively. These results indi-
cated that the transgenic events with high chitinase activity 
showed lower disease incidence and vice versa.

Fig. 6  a–c Showing the infected 
groundnut cv ICG 13942 WT 
(ELS, LLS and Rust diseases, 
respectively) plants in the field. 
d Transformed TC-18  (T1) 
plants showing healthy leaves
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Discussion

Fungal diseases constitute a major challenge to the millions 
of peanut growing farmers throughout the tropical regions. 
A large proportion of the potential peanut crop is lost yearly 
to several major stresses despite the efforts at transgenics for 
resistance. Analysis of transgenic plants provides a powerful 
tool for functional studies of defense genes in peanut.

As there are no reports on Tcchitinase-I gene expression 
in peanut, we report the transgenic peanut events expressing 
the Tcchitinase-I gene and also evaluated for their tolerance 
to leaf spot (ELS, LLS) and rust diseases.

The T. cacao chitinase gene used in the present study 
is a class I chitinase and belongs to PR3 family, having 
high chitinase activity due to the presence of chitin bind-
ing domain (CBD) (Sela-Buurlage et al. 1993). Deletion 
of chitin binding domain (ChBDTob) from tobacco class I 
chitinase has been reported to cause a threefold reduction of 
activation energy and antifungal activity due to lack of its 
binding capacity to chitin. While a CBD is not required for 
chitinolytic or antifungal activities, it increases both, perhaps 
by anchoring to the substrate and increasing its effective 
concentration for hydrolysis (Iseli et al. 1993). Interestingly, 
all other classes of chitinase have either no or lower antifun-
gal activity as compared to class I chitinases (Sela-Buurlage 
et al. 1993).

Engineering for disease resistance in legumes has been 
considered important in the recent years. However, very lit-
tle progress is seen in the improvement of legumes through 
the transgenic approach and more so with peanut because 
of the recalcitrancy in regeneration of the crop. There are 
reports of regenerability and Agrobacterium-mediated 
genetic transformation efficiency in the peanut, but less fre-
quency of transformation 55%, 31% in JL 24 (Sharma and 
Anjaiah 2000; Anuradha et al. 2006), 55% in ICGV 86031 
(Prasad et al. 2013), 40% in ICGV 89104 (Prasad et al. 2013) 
and 34% in K6 (Mehta et al. 2013). Survival rate of the 
in vitro regenerated plantlets was over 75% in cv. Golden and 
49% in cv. Bari-2000, while healthy putatively transgenic 
 (T0) plants with over 41% transformation frequency in cv. 
Golden and 32% in cv. Bari-2000 were produced through 
Agrobacterium-mediated gene transfer of the rice chitinase 
gene and all the plants flowered and set seed normally (Iqbal 
et al. 2012). Whereas in the present investigations, we have 
developed the transgenic  T0 peanut plants with high trans-
formation efficiency of 63.63% when compared to earlier 
reports.

The integration of the transgene was confirmed by PCR 
and Southern blot analyses. Segregation studies showed 
Mendelian ratio of 3:1 of the Tcchitinase-I gene in  T1 and 
 T2 generation transgenic peanut plants. Similarly, Anuradha 
et al. (2006) have reported that the inheritance of a promoter 

less gus:nptII bifunctional fusion gene in groundnut through 
Chi-square analysis showed that the segregation of fusion 
gene followed the Mendelian 3:1 ratio. Tiwari et al. (2008) 
obtained 3:1 segregation ratio for cry1 EC gene in transgenic 
groundnut as we have observed in the present study. Thus, 
the inheritance and stable expression of transgenes is impor-
tant in crop improvement through gene manipulations. In 
the present study, the expression of the transgenes was also 
confirmed by RT-PCR.

In the present study, 6.5-fold increase in the chitinase 
activity (0.29–1.30  Umg−1 protein) was recorded in trans-
genic plants as compared to 0.20  Umg−1 protein in the non-
transformed control plants. The enhanced chitinase activity 
in the transgenic plants compared to their non-transformed 
controls confirmed the expression of Tcchitinase-I. Several 
reports on intensified chitinase activity have been observed 
in the transgenic plants expressing the other type of chi-
tinase genes (Lin et al. 1995; Datta et al. 2000; Nandakumar 
et al. 2007). Over 14-fold increase in chitinase activity over 
controls was reported in the leaves of peanut transformants 
(Prasad et al. 2013), while in transgenic rice it has been 
reported up to 14 times (Lin et al. 1995; Nandakumar et al. 
2007). A 5-fold increase in chitinase activity in transgenic 
peanut plants transformed with rice chitinase gene was 
observed (Iqbalet al. 2012).

Although in our study some of the transgenic events 
showed increased Tc-chitinase-I activity, these differed in 
their level of resistance to ELS, LLS and rust diseases. This 
variation may be explained by differences in the biochemi-
cal composition and structure of the fungal cell wall, tis-
sue and cellular localization of the recombinant chitinase, 
concordance in chitinase expression kinetics and the period 
of infection, and the type of interaction between the plant 
and the pathogen (Grison et al. 1996; Datta et al. 2001; 
Pasonen et al. 2004). Nevertheless, most of the transgenic 
plants showed reduced infection than their non-transformed 
control plants confirming the antimicrobial property of the 
expressed Tcchitinase-I against these pathogens.

In the present study, correlation analysis showed a signifi-
cant trend towards decreased disease severity in the trans-
genics with the increasing chitinase activity that confirmed 
that the inhibition observed was due to the presence of 
over expressed Tcchitinase-I protein. A positive correlation 
between increased chitinase activity and resistance to ELS 
has also been shown earlier (Rohini and Rao 2001). Similar 
correlations have also been observed in various studies on 
different crop species (Lin et al. 1995; Tabei et al. 1998; Zhu 
et al. 1998; Carstens et al. 2003; Itoh et al. 2003; Liang et al. 
2005; Nandakumar et al. 2007).

For the evaluation of transgenic resistance against ELS, 
LLS and rust diseases, a total of 20  T1 events were tested. 
According to our observation, the events of TC-18, TC-14 
and TC-7 performed better in all the parameters tested 
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compared to other events screened for ELS, LLS and rust 
disease resistance in  T1 transgenic plants, respectively. The 
level of resistance to ELS, LLS and rust in these transgenic 
peanut plants was comparable or higher than that identified 
in the cultivated peanut showing 2–5 disease scores on a 1–9 
scale (Reddy et al. 1992, 1996; Pensuk et al. 2003; Hossain 
et al. 2007; Badigannavar et al. 2005).

Recent development of transgenic plants using bacte-
rial chitinase (Bchit) and rice chitinase (RCG-3) genes 
showed higher expression of enzyme activity conjoined 
with varied levels of resistance to C. Arachidicola (Iqba-
let al. 2011, 2012). The variability of pathogen resistance 
between transgenic events may be due to the localization 
of chitinase enzymes at the tissue and cellular levels (Leeu-
wenet al.2001). Further use of rice chitinase (Rchit) in pea-
nut transgenics displayed longer incubation and latent peri-
ods, lower infection rating, fewer lesions against late leaf 
spot (LLS) and rust diseases (Prasad et al. 2013) as we have 
observed in the present investigations.

Thus, we conclude that the resistance against C. ara-
chidicola C. Personatum and P. arachidis appeared to be 
enhanced in those lines which were exhibiting 6.5-fold 
increase in chitinase enzyme activity by using Tcchitinase-I 
gene for the first time in peanut cv ICG 13942. The lines 
showing less enzyme activity did not played a role in 
resistance against pathogen. The resistant lines will go in 
breeding cycle in next generations to fix the character in 
character-deficient cultivar. Once this character proved to 
be inheritable, these lines could be used as good genetic 
source of disease resistance breeding material. We expect 
that the combination of this transgenic strategy based on 
the use of Tcchitinase-I gene and traditional breeding will 
provide durable fungal disease-resistant peanut lines with 
good agronomic phenotypes.
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