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Abstract
Rice sheath blight, caused by Rhizoctonia solani, is a major worldwide rice disease for which little is known about the molec-
ular mechanisms of host immunity to infection. In the present study, a comparative proteomic analysis of two rice cultivars, 
Teqing (resistant) and Lemont (susceptible), inoculated with R. solani was conducted using an eight-plex iTRAQ (isobaric 
tags for relative and absolute quantitation) technique, resulting in the identification and quantification of 6560 proteins. A 
total of 755 proteins showed significant changes in abundance between plants infected with R. solani and control plants, 
based on an error factor < 2 and a more than 1.5-fold or less than 0.67-fold quantitative difference. The differentially abun-
dant proteins were mainly involved in glyoxylate and dicarboxylate metabolism; glycine, serine and threonine metabolism; 
unsaturated fatty acid biosynthesis; and glycolysis/gluconeogenesis regulation pathways (p < 0.01). In addition, the expres-
sion levels of the genes encoding selected proteins were tested by qRT-PCR, and their functions were tested in Nicotiana 
benthamiana via agroinfiltration. Based on these proteomic and experimental data, a putative model of the regulation of rice 
immunity under R. solani infection is proposed. The proteins identified in the present study provide a basis for elucidating 
the molecular mechanisms underlying rice immunity to infection by R. solani.
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Abbreviations
2-DE	� Two-dimensional electrophoresis
DEPs	� Differentially expressed proteins
EF	� Error factor
EV	� Empty vector
FDR	� False discovery Rate
GC–MS	� Gas chromatography–mass spectrometry
GO	� Gene ontology

iTRAQ	� Isobaric tags for relative and absolute 
quantification

KEGG	� Kyoto encyclopedia of genes and genomes
LC–MS	� Liquid chromatography–tandem mass 

spectrometry
MDH	� Malate dehydrogenase
TFA	� Trifluoroacetic acid
PDA	� Potato dextrose agar
PR	� Pathogenesis-related
qRT-PCR	� Quantitative real-time polymerase chain 

reaction
ROS	� Reactive oxygen species
SA	� Salicylic acid
TCA​	� Tricarboxylic acid cycle

Introduction

Rice sheath blight is caused by the soil-borne necrotrophic 
fungus Rhizoctonia solani, which causes disease in a broad 
spectrum of plants such as rice, wheat, potato, bean, cot-
ton, and sugar beet (Anderson 1982). The fungus invades 
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the roots, stems and other aerial parts of the plant, causing 
disease symptoms such as root rot, sheath blight, banded 
leaf, aerial blight and brown patch (Ogoshi 1987; Wrather 
et al. 1997). R. solani is divided into 14 anastomosis groups 
(AG1 to AG13 and AGBI) (Ogoshi 1987), in which AG1 
IA is one of the most important plant pathogens causing the 
most serious economic agricultural losses.

Rice sheath blight is considered one of the major rice dis-
eases that leads to significant yield and quality losses (Lee 
and Rush 1983). The general symptoms of sheath blight 
include necrotic, dark, reddish-brown, elliptical or oval 
lesions on the leaf sheath, leaf blade and culm (Kumar et al. 
2009; Ghosh et al. 2014). Sheath blight is difficult to manage 
because of the wide host range, rapid variability, and long 
survival time in the soil (Taheri 2007). In addition, attempts 
to control sheath blight by traditional breeding processes 
have not succeeded due to the lack of strongly resistant culti-
vars (Bonman et al. 1992). Hence, investigating and utilizing 
innate rice immune components is an important step toward 
resistant variety development or breeding.

Proteomic analysis is a valuable tool in dissecting plant-
pathogen interactions due to the direct involvement of pro-
teins in molecular processes and biological functions (Kim 
et al. 2004; Neilson et al. 2011a, b). Recently, proteomic 
research has made considerable progress in providing 
functional information regarding abiotic and biotic stress 
responses (Komatsu and Tanaka 2005). For example, pro-
teomic responses to salinity, drought and cold have been 
studied in various plants including rice (Neilson et al. 2011a, 
b; Sarhadi et al. 2012; Wu et al. 2016), canola (Bandehagh 
et al. 2011), soybean (Ma et al. 2012; Tian et al. 2015), wheat 
(Guo et al. 2012; Faghani et al. 2015), grape (Delaunois et al. 
2013), and barley (Fatehi et al. 2012; Chmielewska et al. 
2016). Biotic stresses caused by living organisms (Delaunois 
et al. 2014), such as fungi (Li et al. 2012; Zhao et al. 2014), 
bacteria (Gonzalez et al. 2012), viruses (Chen et al. 2014; 
Berard et al. 2015), and insects (Du et al. 2015) have also 
been investigated. Zhao et al. reported a total of 27 differ-
entially abundant proteins in response to Pst (Pseudomonas 
syringae pv. Tomato) inoculation using the two-dimensional 
electrophoresis (2-DE) technique. Most of these proteins fall 
into the category “response to stimulus” and are involved 
in basic resistance processes, such as glycerol-3-phosphate 
and hydrogen peroxide signaling (Zhao et al. 2014). Li et al. 
(2012) observed that salicylic acid (SA)-treated rice leaves 
contained 36 differentially abundant proteins implicated in 
various functions, including defense, antioxidative enzymes, 
and signal transduction.

Proteins responsive to R. solani in sheath tissue were 
investigated in two rice cultivars, Labelle (resistant) and 
LSBR-5 (susceptible) (Lee et  al. 2006). Moreover, an 
array of antifungal proteins, including chitinases (Datta 
et  al. 2000; Sridevi et  al. 2003; Sripriya et  al. 2008), 

thaumatin-like proteins (Datta et  al. 1999), nonspecific 
lipid transfer proteins (Patkar 2006) and plant defense pro-
teins (Jha and Chattoo 2010), have been biotechnologically 
exploited to generate transgenic plants with resistance to 
sheath blight. Constitutive overexpression of the OsWRKY4 
gene increases resistance to R. solani concomitant with 
elevated expression of jasmonate (JA)- and ethylene (ET)-
responsive pathogenesis-related (PR) genes, implying that 
the defensive response to rice sheath blight occurs through 
the JA/ET-dependent signal pathway (Wang et al. 2015). 
More recently, gas chromatography–mass spectrometry 
(GC–MS) and RNA sequencing analyses showed that modu-
lating host photosynthesis, respiration, phytohormone sign-
aling, and secondary metabolism is crucial in rice during R. 
solani infection (Ghosh et al. 2017).

Most rice varieties grown around the world are suscepti-
ble to R. solani, although moderate to high levels of resistant 
have been reported (Pan et al. 1999). Lemont is highly sus-
ceptible to sheath blight disease, while Teqing is moderately 
resistant (Bollich et al. 1985; Tabien et al. 2000; Zheng et al. 
2011; Pinson et al. 2012). Although sheath blight disease 
is one of the most destructive diseases worldwide, limited 
information is available regarding the mechanisms of rice 
response to infection. Understanding the genetic mecha-
nisms of plant disease resistance against this pathogen will 
benefit the development of improved varieties with R. solani 
resistance enormously. To investigate the rice—R. solani 
interaction, we conducted a proteomic analysis in resistant 
and susceptible rice cultivars after R. solani infection The 
primary objectives of this research were to: (1) identify pro-
teins significantly expressed in response to R. solani infec-
tion in rice; (2) analyze the proteins that were differentially 
expressed between resistant and susceptible rice cultivars; 
(3) reveal the interaction network and defense mechanism 
between rice and R. solani. The knowledge gained from this 
study will be instrumental in understanding the molecular 
mechanisms involved in the response to R. solani infection 
in rice.

Materials and methods

Plant materials and inocolalion with R. solani

Rice cultivars Teqing (resistant) and Lemont (susceptible) 
were provided by National Mid-term Genebank for Rice of 
China National Rice Research (Tabien et al. 2000). After 
soaking and germination of rice seeds with water, they were 
planted in soil and placed in the growth room. After then, 
rice seedlings were transferred into 500 mL pots containing 
a vermiculite-potting soil mixture. Plants were cultivated in 
a growth room maintained at 26 °C and 70% relative humid-
ity with a 12/12 h day (200 µE m−2 s−1)/night. R. solani 
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AG1 IA was used in this study. Inoculation was performed 
using a mycelial plug (5 mm in diameter) containing the 
actively growing mycelium of R. solani from a culture that 
had almost covered the surface of the potato dextrose agar 
(PDA) media in a 90 mm plate. Plugs were inoculated onto 
the stems of rice seedlings at the four-leaf stage at 20 mm 
above the surface of the culture liquid. At the same time, the 
control samples were inoculated with PDA. The samples of 
each experimental groups were collected 24 h post inocula-
tion (hpi) for proteomic analysis. The stems of 60 plants 
were collected as one independent biological replicate and 
two biological replicates were produced in our work, which 
resulted in eight samples. The eight samples of two biologi-
cal repeats were analyzed using 8-plex iTRAQ experiment 
and by running the LC–MS/MS analysis twice. LC–MS/
MS analysis for twice resulted in two technical replicates 
in this study. All samples were immediately frozen in liquid 
nitrogen and stored at − 80 °C until used. The pictures of 
phenotype in two rice cultivars infected with R. solani were 
taken at 24 and 192 hpi.

Extraction of total proteins from the rice stem

The stems from three plants (approximately 0.5 g) were 
immersed in liquid nitrogen, ground to a fine powder, and 
then suspended in 10% w/v tricarboxylic acid/acetone con-
taining 0.1% dithiothreitol (DTT) in 50 mL centrifuge tube 
at − 20 °C for 2 h. Thereafter, the tubes were centrifuged at 
40,000×g for 20 min and the supernatants discarded. Finally, 
the protein pellets were washed twice with 30 mL of ice-
cold acetone and lyophilized. The vacuum dried pellets were 
dissolved in 300 µl lysis solution containing 7 M urea, 2 M 
thiourea, 4% w/v CHAPS, 65 mM DTT and 1 mM phenyl-
methylsulfonyl fluoride. Insoluble materials were removed 
by centrifugation, and the protein concentration of the sam-
ple was quantified using the Bradford method with bovine 
serum albumin as standard protein.

Protein digestion, iTRAQ labeling and strong cation 
exchange

Proteins (100  μg of each sample) were first reduced, 
alkylated and then labeled using iTRAQ reagents as follows 
Proteins of each sample were first dissolved in 20 μL of dis-
solution buffer (7 M urea, 2 M thiourea, 4% w/v CHAPS and 
65 mM DTT), reduced with 120 μL of reducing reagent (8 M 
urea, 0.1 M Tris–HCl and 10 mM DTT), incubated at 36 °C 
for 1 h, alkylated with 120 μL of cysteine blocking reagent 
(8 M urea, 0.1 M Tris–HCl and 50 mM IAA), and incubated 
at room temperature for 10 min (Berger et al. 2007). After 
then, the samples were digested with trypsin at a 20:1 mass 
ratio at 37 °C for 14 h, then labeled using the iTRAQ Rea-
gents 8-plex kit according to the manufacturer’s instructions 

(AB Sciex Inc.). Eight samples of two biological repeats was 
labeled with iTRAQ tags, as follow: the untreated Teqing 
replicates were labeled with iTRAQ tags 113 and 114, and 
the R. solani-treated Teqing replicates were labeled with tags 
115 and 116, while the untreated and R. solani-treated Lem-
ont samples were labeled with 117/118 and 119/121, respec-
tively. The labeled samples were then pooled and dried in 
an Eppendorf vacuum concentrator. Then, the samples were 
mixed and lyophilized before dissolving in 4 mL of strong 
cation exchange (SCX) buffer A (25 mM NaH2PO4 in 25% 
acetonitrile, pH 2.7). The peptides fractionated on Ultremex 
SCX column (4.6 × 250 mm) using an Agilent 1200 HPLC 
were fractionated into ten fractions. An Exigent Nano LC-
Ultra 2D system (AB Sciex) was used for sample separation. 
At last, a Triple TOF 5600 mass spectrometer and a Nano 
Spray III Source (AB Sciex) were used to perform mass 
spectrometer data acquisition twice, which resulted in two 
technical replicates (Berger et al. 2007). In brief, peptides 
were eluted from the C18 column into the mass spectrometer 
using a linear gradient (5–80%) of acetonitrile (ACN) at a 
flow rate of 250 μL min−1 for 1 h. The buffers used to create 
the ACN gradient were: Buffer A [98% H2O, 2% ACN, 0.1% 
formic acid, and 0.005% trifluoroacetic acid (TFA)] and 
Buffer B (100% ACN, 0.1% formic acid, and 0.005% TFA). 
MS/MS data were acquired in a data-dependent manner in 
which the MS1 data was acquired at a 250 ms at m/z of 400 
to 2500 Da and the MS/MS data were acquired from m/z of 
50 to 2000 Da. The independent data acquisition parameters 
were as follows: MS1-TOF acquisition time of 250 ms, fol-
lowed by 50 MS2 events of 48 ms acquisition time for each 
event. The ion had the charge state + 2, + 3 and + 4. The ion 
exclusion time was set to 4 s. The collision energy was set to 
iTRAQ experiment setting. Finally, the collected data were 
analyzed using ProteinPilot™ 4.2 (ABSCIEX) for peptide 
identification.

Database search and iTRAQ quantification

ProteinPilot™ software (Version 4.2) was used for raw 
data processing against the database of Oryza sativa from 
UniProt (http://www.unipr​ot.org). The main database 
search parameters were as follows: the instrument was Tri-
pleTOF 5600, iTRAQ quantification, cysteine modified with 
iodoacetamide; and biological modifications were selected 
as ID and trypsin digestion. Peptides with a global false 
discovery rate (FDR) < 1% were used for further protein 
annotation. To minimize the incidence of false positives, a 
strict cutoff of unused ProtScore > 1.3 was applied for pro-
tein identification. Furthermore, at least one peptide with the 
95% confidence was required for inclusion. The accuracy of 
each protein ratio is given by a calculated “error factor” in 
the software. The error factor expresses the 95% uncertainty 
range (95% confidence error) for a reported ratio, where this 

http://www.uniprot.org
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95% confidence error is the weighted standard deviation of 
the weighted average of log ratios multiplied by the Student’s 
t factor for n − 1 degrees of freedom, where n is the number 
of peptides contributing to relative protein quantification. 
In addition, we performed ANOVA with the biological and 
technical replicates data individual, and two-way analysis 
of variance (ANOVA) and LSD analysis (SPSS 18.0) were 
used to determine if the protein was significantly regulated 
over time. To control the FDR, we also performed Benja-
mini–Hochberg correction for multiple testing, and p < 0.05 
was accepted. When identifying protein species abundance 
as significantly different, data were considered reliable when 
the p value was less than 0.05, the error factor < 2 and a ratio 
fold change > 1.5 (up-regulated) or < 0.67 (down-regulated) 
in two biological replicates and two technical replicates to 
designate significant changes in protein expression.

Gene ontology (GO) and kyoto encyclopedia 
of genes and genomes (KEGG) analysis

Differentially expressed proteins were classified according to 
GO (http://www.geneo​ntolo​gy.org). GO annotation was used 
to predict biological processes, cellular component, molec-
ular function for differentially expressed proteins. KEGG 
(http://www.genom​e.jp/kegg/ or http://www.kegg.jp/) was 
used to predict significant pathways of proteins involved in 
response to R. solani infection. STRING (http://strin​g.embl.
de) was used to obtain protein–protein interaction informa-
tion with the default score setting. Potential paths between 
differentially expressed proteins and metabolic compounds 
were used to query the knowledge-driven database with a 
shortest-path algorithm. Cytoscape (http://cytos​cape.org/) 
(Version 3.1) was used to construct regulatory networks.

RNA extraction and qRT‑PCR analysis of gene 
expression

To analyze the expression of the target genes, total RNA was 
extracted from ten rice stems at 0, 24 and 48 hpi following R. 
solani infection using TRIzol. A NanoDrop-1000 was used 
to detect the quality and quantity of RNA. Reverse transcrip-
tion to cDNA was conducted by using the SuperScript first-
strand synthesis system (Invitrogen). SYBR Green mix was 
used in qRT-PCR to determine the expression levels of the 
target genes. RT-PCR was performed in 10 µL reaction mix-
ture consisting of 5 µL SYBR Green mix (Vazyme), 0.5 µL 
of 10 mM each primer, and 2 mL of appropriate diluted 
cDNA. The conditions for RT-qPCR were as follows: 95 °C 
for 5 min, then 40 cycles at 95 °C for 30 s and 60 °C for 
34 s, followed by 72 °C for 35 s for PCR amplification. Tran-
script levels of each gene were measured used the Applied 
Biosystems 7500 system according to the manufacturer’s 
instructions. We used 2∆∆CT method analysis the RT-PCR 

data. The 18S RNA was used as a housekeeping gene in the 
qRT-PCR analysis. Primers used in this study are listed in 
Supplementary Table S8.

Functional analysis of proteins in N. benthamiana

Overexpression constructs of candidate genes were gener-
ated by cloning the full-length coding sequences (CDS) into 
a Gateway destination vector pEG100. The constructs were 
transformed into Agrobacterium tumefaciens strain GV3101 
by electric transfer. The agrobactrium harboring constructs 
were inoculated in liquid LB medium containing 50 µg mL−1 
rifampicin and 50 µg mL−1 kanamycin at 28 °C overnight. 
Cultured cells were pelleted by centrifugation, washed once 
with and resuspended in 10 mL infiltration buffer (10 mM 
MgCl, 100 μM acetosyringone). Transient assays in N. 
benthamiana were performed by infiltrating whole leaf of 
3-week-old N. benthamiana plants with Agrobacterium har-
boring constructs containing the proteins (OD600 = 1). Two 
days after infiltration, the leaves were inoculated with R. 
solani using a mycelial plug (5 mm in diameter) contain-
ing the actively growing mycelium from a culture. Lesions 
were measured and photos taken three days later. We used 
Photoshop CS6 calculate the lesions areas.

Statistical analysis

All data obtained were subjected to two-way analyses of 
variance (ANOVA) and mean differences were compared 
by the least significant difference (L.S.D.) test, and compari-
sons with p < 0.05 were considered significantly different. 
Principal component analysis (PCA) was performed with the 
program SIMCA-P Version 13.0 (Umetrics, Umea, Sweden).

Results

Proteomic changes in rice seedling sheath induced 
by R. solani infection

Four-leaf stage rice cultivars (resistant: Teqing, susceptible: 
Lemont) were infected with R. solani. At 24 h post inocu-
lation (hpi), a large numbers of hyphae were produced at 
the inoculation site the rice stalks gradually became yellow 
and lodging was observed in Lemont. In contrast, Teqing 
exhibited fewer disease symptoms. At 192 hpi, the leaves 
of Lemont showed obvious drooping and the stalk was sig-
nificantly thinner. In contrast, the leaf drooping of Teqing 
was not obvious and the stalk was not significantly thinner 
(Fig. 1). To quantitatively profile the protein abundance pat-
tern in rice seedlings in response to R. solani, we employed 
the iTRAQ. Before analyzing differentially expressed pro-
teins (DEPs), we made a PCA analysis raw data of iTRAQ 

http://www.geneontology.org
http://www.genome.jp/kegg/
http://www.kegg.jp/
http://string.embl.de
http://string.embl.de
http://cytoscape.org/
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from two biological replicates and two technical replicates, 
and the results showed that there was a good separation of 
the conditions and no variation (Fig. 2). After then, the total 
proteins of both Teqing and Lemont rice inoculated with R. 
solani for 24 h were analyzed by iTRAQ. A total of 6560 
proteins were identified with less than 1% false discovery 
rate in two biological replicates and two technical repli-
cates, and 755 proteins were identified with an error fac-
tor (EF) < 2, p value < 0.05 and more than 1.5-fold or less 
than 0.67-fold quantitative differences in both biological 
and technical replicates, representing significant changes in 
protein species abundance (Supplementary Tables S1 and 
S2). The peptide sequences are listed in Supplementary 

Table S3. Among these proteins, the abundance of 389 pro-
teins changed significantly in the disease-resistant rice cul-
tivar when infected by R. solani for 24 h, while 448 proteins 
showed significant abundance changes in the susceptible rice 
cultivar (Supplementary Table S2). Only 43 proteins showed 
similar abundance changes in the two rice cultivars (Fig. 2a).

Compared to the untreated plants, in the resistant culti-
var, 161 proteins were significantly more abundant, while 
in the susceptible cultivar, 354 proteins increased in abun-
dance in response to R. solani infection for 24 h (Fig. 3a). 
Interestingly, 35 identified proteins increased significantly 
in both Teqing and Lemont at 24 hpi following R. solani 
infection (Fig. 3a). Among the proteins that were suppressed 

Fig. 1   The phenotype of two 
rice cultivars infected with R. 
solani. The stems of four-leaf 
stage seedlings were covered 
by a mycilia plug with actively 
growing R. solani mycelium 
onto the stem. The pictures 
were taken at 24 and 192 h post 
inoculation (hpi)

Fig. 2   Scores from principal component analysis (PCA) of differential abundance proteins using individual replicates from rice stem sheath in 
response to R. solani infection. The variation in the data explained by the first two PC scores (83.9%) is shown in brackets on the axes
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by R. solani, 185 were identified in only Teqing, whereas 
51 proteins were identified in only Lemont (Fig. 3b). Only 
8 proteins decreased significantly in both Teqing and Lem-
ont (Fig. 3b). These results show that more proteins were 
increased by infection in the disease-susceptible than in the 
resistant cultivar. In contrast, fewer proteins decreased in 
the disease-susceptible than in the disease-resistant cultivar. 
Thus, we chose to study the function of these differentially 
abundant proteins which have differentially relative levels 
between two cultivars.

Functional annotation and pathway analysis 
of differentially abundant proteins

The differentially abundant proteins from Teqing and Lem-
ont were analyzed to extract information relevant to the path-
ways involved in R. solani infection. After KEGG pathway 
analysis, the top ten significantly enriched terms according 
to the GO hierarchy (level four) were depicted in Fig. 4. In 
the biological process analysis, cellular amino acid metab-
olism was the most significant term (p-value: 2.37e−09), 
followed by processes such as organonitrogen and alpha-
amino acid metabolic (Supplementary Table S4) in Teqing. 
In contrast, plastid organization was the most representative 
term (p-value: 2.12e−08) in Lemont and was followed by 
other biological processes such as chloroplast organization 
and single-organism metabolic process (Supplementary 
Table S4). The cell component analysis showed that 21% of 
annotated proteins were located in the cytoplasm in Teqing 
(Supplementary Table S5), and 18% annotated proteins 
were located in the cytoplasm in Lemont (Supplementary 
Table S5). The GO analysis showed that oxidoreductase 
activity and GTP binding were the dominant molecular 
function in Teqing and Lemont, respectively (Supplemen-
tary Table S6).

The KEGG pathway enrichment analysis revealed 
that the differentially abundant proteins at p < 0.01 in the 
resistant cultivar were mainly involved in glyoxylate and 
dicarboxylate metabolism; glycine, serine and threonine 
metabolism; and unsaturated fatty acid biosynthesis path-
ways (Fig. 5a, Supplementary Table S7). However, the 
differentially abundant proteins in susceptible plants were 
mainly involved in the glycolysis/gluconeogenesis regulation 

(Fig. 5b, Supplementary Table S7). We further focused on 
78 significantly differentially abundant proteins based on an 
overall evaluation of their KEGG analyses and functions. 
The first 64 proteins are involved in the pathways identified 
by KEGG analyses, and the last 14 common proteins par-
ticipate in the signal transduction which have an important 
role in the course of rice disease resistance (Supplementary 
Table S9). These candidate proteins were classified into 12 
functional categories: pyruvate metabolism; proteasome; 
photosynthesis; oxidative phosphorylation; metabolic path-
ways; glyoxylate and dicarboxylate metabolism; glycolysis/
gluconeogenesis; glycine, serine and threonine metabolism; 
carbon fixation in photosynthetic organisms; biosynthesis of 
unsaturated fatty acids; alpha-Linolenic acid metabolism; 
and signal transduction. We linked these candidate proteins 
using a protein interaction network. Functional protein asso-
ciation networks generated with STRING revealed the func-
tional links between different proteins. Three major clusters 
of interacting proteins in the resistant cultivar are highlighted 
with circles in Fig. 6a. These proteins are involved in gly-
oxylate and dicarboxylate metabolism; glycine, serine and 
threonine metabolism; and unsaturated fatty acid biosynthe-
sis. Ferredoxin-dependent glutamate synthase (Q69RJ0) is 
the central core protein of this interaction network, due to its 
interactions with many other proteins involved in glyoxylate/
dicarboxylate and glycine/serine/threonine metabolism. A 
glycolysis/gluconeogenesis protein interaction network was 
constructed in the susceptible cultivar (Fig. 6b). Enolase 
2 (Q10P35), which interacted with other proteins directly 
or indirectly, is the central core protein of this interaction 
network.

Validation of protein profiles by qRT‑PCR

To investigate whether changes in the expression of proteins 
were regulated at the transcriptional level, the expression 
pattern of 12 selected genes which have roles in disease 
resistance was further validated experimentally by qRT-
PCR. As shown in Fig. 7, PR1 (Os07g0129300), PBZ1 
(Os12g36880), LOX (rci-1), BAP (OJ1509C06.18) and 
PAL (PAL) were up-regulated in both disease-resistant and 
disease-susceptible cultivars after 24 h and 48 h of infec-
tion. These genes may represent immune regulators acting 

Fig. 3   Venn diagram of dif-
ferentially abundant proteins. 
Group T represents Teqing and 
group L represents Lemont
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Fig. 4   Bioinformatic analysis of the identified proteins from the two 
cultivars. The ten most significantly enriched terms in the level four 
Gene Ontology hierarchy are shown, and the percentage and count of 

the proteins in each term are shown on the left and right y-axes. a 
Teqing, b Lemont
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in basal responses, since their expression was increased in 
both cultivars upon infection. However, their expression lev-
els were different in the two cultivars. For example, PBZ1 
showed a higher expression level in Teqing than in Lemont 
after pathogen stress. PR2 (Gns6), MDAR (Os08g0557600) 
and POD (APX1) were induced in only the disease-resist-
ant cultivar. In contrast, MDH (OsI29345) was induced in 
the susceptible cultivar but down-regulated in the resistant 
cultivar after R. solani infection. Therefore, it may nega-
tively regulate rice immunity. However, PR1 expression was 
induced approximately fourfold and sevenfold in Teqing and 
Lemont, respectively, at 48 hpi following R. solani infection. 

The expression level of CS (OsI06215) was similar in the 
two cultivars against R. solani infection (data not shown). 
In the proteomic analysis, this protein was unchanged in 
Lemont but increased in abundance in Teqing.

Assessment of protein function

To further understand the role of the differently abundant 
proteins in plant immunity, a total of four proteins were cho-
sen for function assessment based on their protein expres-
sion during infection and the putative functions. PR1 which 
involved in SA signal pathway, was induced in both cultivars 

Fig. 5   Enriched KEGG path-
ways in the two cultivars. a 
Teqing, b Lemont
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(Fig. 7). PBZ1, a JA signal pathway inducible protein, was 
also induced in both cultivars (Fig. 7). Monodehydroascor-
bate reductase (MDAR) is crucial for Ascorbate (AsA) 
regeneration and essential for maintaining a reduced pool 
of AsA. Overexpression of MDAR confers enhanced resist-
ance against ozone, salt and polyethylene glycol (PEG) stress 
(Eltayeb et al. 2007). Blight-associated proteins (BAPs) are 
found throughout the plant, most abundantly in the xylem 
and vascular cambial zone of roots and stems. One BAP 
that was analyzed and selected for further characteriza-
tion was found to resemble β-1,3-glucanase (Derrick et al. 
1993). In this study, both MDAR (Q6ZJ08) and BAP pro-
teins (Q6K4C4) were increased in the resistant cultivar. We 
introduced the open reading frames of candidate protein 
under the control of the CaMV 35S promoter into Nico-
tiana benthamiana and inoculated the leaves with R. solani 

at 48 h after agroinfiltration. Compared with the empty vec-
tor (EV), overexpression of these proteins in N. benthamiana 
increased resistance to R. solani (Fig. 8a). In addition, small 
lesions were observed on leaves expressing each individual 
protein at 48 hpi (Fig. 8b).

Discussion

R. solani is an important soil-borne pathogen that causes 
significant damage to rice globally (Zheng et al. 2013). To 
date, little is known about the mechanisms of host defense 
in response to infection. In this study, an iTRAQ-based com-
parative proteomic analysis between the resistant (Teqing) 
and susceptible (Lemont) rice cultivars was employed 
to investigate the potential functional proteins related to 

Fig. 6   Protein interaction network generated with STRING based on fold change and KEGG pathway enrichment in the two cultivars. a Teqing, 
b Lemont
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challenge with the fungal pathogen R. solani. A total of 755 
differentially expressed proteins were identified in the resist-
ant and susceptible rice cultivars after inoculation with R. 
solani (Table S2).

Influence of R. solani infection on glyoxylate 
and dicarboxylate metabolism

In plants, the glyoxylate cycle has a key role in conver-
sion of acetyl coenzyme A (CoA) into oxaloacetate via 
fatty acid β-oxidation and in the subsequent conversion 
into sugar (Beevers 1961). In this proteomic study, five 
proteins, including ferredoxin-dependent glutamate syn-
thase (Q69RJ0), glycine decarboxylase complex H-protein 
(Q655T6), formate dehydrogenase (Q0DC43), ribulose 

bisphosphate carboxylase small chain (Q67IU5) and pyri-
doxal phosphate-dependent transferase (Q6ZFI6) were 
identified (Supplementary Table S9). Formate dehydroge-
nase (FDH) is used to oxidize formate to CO2 (Garrett and 
Grisham 2000), which is involved in abiotic and biotic stress 
responses in a variety of higher plants (Hourton-Cabassa 
et al. 1998; Suzuki et al. 1998; David et al. 2010). Our 
results showed that FDH was up-regulated in the resistant 
cultivar (Supplementary Table S9), suggesting putative role 
in immunity to R. solani. Ribulose bisphosphate carboxy-
lase small chain (RBCS) is known to be one of the most 
important enzymes involved in glyoxylate and dicarboxylate 
metabolism (Yang et al. 2015). RBCS increased in both the 
susceptible and resistant rice cultivars after pathogen chal-
lenge (Supplementary Table S9). This result may indicate 

Fig. 7   Expression of representative genes encoding differentially 
expressed proteins as shown qRT-PCR in disease-resistant and dis-
ease-susceptible rice cultivars at 0, 24 and 48 h after R. solani infec-

tion. Different letters indicate significant differences based on two-
way ANOVA (p < 0.05)
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that increased glyoxylate and dicarboxylate metabolism is 
needed to support basic defense during rice immunity to 
R. solani. Ferredoxin-dependent glutamate synthase (Fd-
GOGAT) is a chloroplastic enzyme responsible for the 
reassimilation of photorespiratory ammonia as well as for 
primary nitrogen assimilation, with concomitant consump-
tion of both ATP and reducing power (Leegood et al. 1995; 
Douce et al. 2001). In our study, Fd-GOGAT decreased in 
the resistant cultivar and increased in the susceptible cul-
tivar. It is likely that decreasing of Fd-GOGAT reduced 
energy consumption in resistant cultivar than in suscepti-
ble cultivar response to R. solani infection, which may be 
an important reason why Teqing is more resistance than 
Lemont.

Proteins involved in glycolysis/gluconeogenesis

Glycolysis/gluconeogenesis is a catabolic anaerobic path-
way that oxidizes hexoses to generate ATP, reducing agents, 
and pyruvate and produces building blocks for anabolism 
(Plaxton 1996). In this study, dihydrolipoyl dehydrogenase 
(Q94CN9), triosephosphate isomerase (Q69K00), 2,3-bis-
phosphoglycerate-independent phosphoglycerate mutase 
(Q5KQH5), enolase 2 (Q10P35), phosphoenolpyruvate 
carboxykinase (Q10NX2) and alcohol dehydrogenase 2 

(Q10A46) were identified as significantly differentially 
expressed proteins (Supplementary Table  S9), provid-
ing evidence that the glycolysis/gluconeogenesis pathway 
(Houde and Diallo 2008) is involved in response to infec-
tion. Alteration in glycolysis/gluconeogenesis metabolism 
has also been reported previously during R. solani infection 
(Mutuku and Nose 2012; Ghosh et al. 2017). The abundance 
of all identified proteins related to glycolysis (except alcohol 
dehydrogenase 2) increased in the susceptible cultivar, but 
no variation was observed in the resistant cultivar, indicating 
that the susceptible cultivar needs more ATP by strengthen-
ing the glycolysis/gluconeogenesis pathway under R. solani 
infection.

Glycine, serine and threonine metabolism‑related 
proteins

A general symptom of photosynthetic plants under stress 
is energy deficiency (Baena-Gonzalez et al. 2007), glycine, 
serine and threonine metabolism is vital to the regulation of 
plant energy metabolism(Ma et al. 2017; Igamberdiev and 
Kleczkowski 2018; Matityahu et al. 2019). In response to 
high soil temperature, glycine, serine, and threonine accu-
mulate in the roots of foxtail millet, which accumulates more 
protective metabolites and is more resistant to high soil 

Fig. 8   Functional tests of proteins in promoting resistance to R. 
solani infection. a Photos of agroinfiltrated N. benthamiana leaves 
expressing recombinant proteins and subsequently inoculated with R. 
solani. b Lesion sizes on R. solani-inoculated N. benthamiana leaves 

expressing recombinant proteins. Different letters indicate significant 
differences based on one-way ANOVA (p < 0.05). Similar results 
were obtained from three biological replicates
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temperature than rice (Aidoo et al. 2016). By identification 
of genes underlying drought resistance, alanine-glyoxylate 
aminotransferase 2 (AGT) was found to have significant role 
in energy and carbon metabolism (Sehgal et al. 2012). In our 
study, tryptophan synthase alpha chain protein (Q6ZL61) 
abundance was increased in the resistant cultivar, and malate 
dehydrogenase (MDH) protein (Q6YYW3) was down-regu-
lated in the susceptible cultivar. Moreover, AGT (Q10R45) 
displayed higher induction in the resistant cultivar than that 
in the susceptible cultivar (Supplementary Table S9). These 
results also suggest that the resistant cultivar perceived envi-
ronmental stress and reduced energy consumption under 
infection.

Biosynthesis of unsaturated fatty acids

In this study, two 3-ketoacyl-CoA thiolase (KAT) proteins 
(Q94LR9 and Q84P96) showed increased abundance in the 
resistant cultivar (Supplementary Table S9). KAT cataly-
sis is a key step in fatty acid β-oxidation, which has an 

important role in seed development, via thiolase activity 
(Germain et al. 2001). KAT catalysis is a key step in fatty 
acid β-oxidation, which is a multistep process to produce 
energy (Lopaschuk et al. 2010). However, the exact role of 
these proteins in rice immunity remains unknown.

Potential model of rice immunity under R. solani 
infection

Based on the functions of the differentially expressed pro-
teins and the expression patterns found using comparative 
proteomics, qRT-PCR and protein function, a possible mech-
anism is proposed for rice resistance to R. solani (Fig. 9). 
This network consists of several functional components, 
such as the SA and JA signaling pathways, reactive oxygen 
species (ROS) production and the TCA cycle.

SA plays a role in rice resistance to pathogen infection 
(Li et al. 2012). Phenylalanine ammonia-lyase (PAL) is a 
crucial enzyme in phenylpropanoid metabolism, catalyzing 
the formation of trans-cinnamic acid via the l-deamination 

Fig. 9   A putative model of rice defense response to R. solani infection. This network consists of the SA and JA signaling pathways, ROS pro-
duction and the TCA cycle. Red color represents significantly differentially expressed proteins identified in the study
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of phenylalanine, which is a key regulator of SA accumula-
tion (Sendon et al. 2011). The abundance of PAL proteins 
was up-regulated in both the resistant (A0A0E0K2L5 and 
Q7X720) and susceptible rice cultivars (Q75HQ7 and 
I1P2D6) (Supplementary Table S9), but the expression 
levels were higher in Teqing than in Lemont (Fig. 8). The 
marker genes PR1 and PR2 in the SA signal pathway were 
induced strongly in the resistant cultivar, but not in the sus-
ceptible cultivar (Supplementary Table S9). However, in the 
transcriptional analysis, the expression of PR1 was more 
highly up-regulated in Lemont than in Teqing (Fig. 8). The 
difference between the qRT-PCR and proteomic results may 
be due to mRNA stability, splicing, and translational regula-
tion (Fabian et al. 2010; Brown et al. 2015). So, we assume 
that resistance to R. solani mediated by SA is due to higher 
levels of PR1 and PR2, which in turn give higher resistance.

JA signaling also plays an important role in rice basal 
defense against pathogen infection (Mei et al. 2006; Yam-
ada et al. 2012). LOX catalyzes the oxygenation of linoleic 
polyunsaturated fatty acids, resulting in the formation of 
hydroperoxides important for JA biosynthesis (Christensen 
et al. 2014). AOS2 encodes an allene oxide synthase, a key 
enzyme in JA biosynthesis, which plays an important role in 
resistance to rice blast (Mei et al. 2006). Incereased expres-
sion of LOX and the defense gene, PBZ1, can enhance resist-
ance to R. solani and M. oryzae (Peng et al. 2012). In the 
present study, LOX protein abundance in the susceptible cul-
tivar (Q9FSE5, A0A0E0QL12, and I1PFA2) was higher than 
in the resistant cultivar (Supplementary Table S9). However, 
LOX expression level was higher in the resistant than that 
in the susceptible cultivar at 48 hpi according to qRT-PCR 
(Fig. 8). The AOS protein (Q10EK5) was up-regulated in 
only the resistant cultivar (Supplementary Table S9). This 
result implies that the AOS protein is likely a key factor 
in JA biogenesis when rice is challenged with R. solani. 
Indeed, PBZ1, which is a JA-inducible gene (Mahmood et al. 
2006), was more up-regulated in the resistant cultivar than 
in the susceptible cultivar according to qRT-PCR (Fig. 8).

The generation of ROS is one of the first universal reac-
tions to abiotic or biotic challenges in plants (Torres 2010; 
Suzuki et al. 2012). ROS can be either beneficial or harm-
ful to cells and tissues. Plants have evolved complex regu-
latory mechanisms to maintain steady-state levels of ROS 
and to respond to different environmental and developmen-
tal signals (Mittler et al. 2004; Circu and Aw 2010). The 
peroxidase family plays a major role in regulating the lev-
els of ROS, and these detoxifying enzymes oxidize a wide 
variety of compounds in the presence of H2O2 (Teixeira 
et al. 2004). In this study, ten (APX1_ORYSI, Q5U1S3, 
Q5U1T0, Q9ST80, O22438, Q5U1Q2, Q9FYP0, Q5U1F5, 
Q6AVZ3 and Q6AVZ3) and seven peroxidase homologous 
proteins (Q7XSU7, A0A0P0VZ16, Q6K4J4, Q9SMG8, 
Q9FYP0, Q9LDL0 and A0A0E0H918) (Supplementary 

Table S9) with putative functions in ROS level regulation 
were detected in the resistant and susceptible cultivars, 
respectively. In the resistant cultivar, five proteins were up-
regulated, and five were down-regulated. In the susceptible 
cultivar, six proteins were up-regulated, and one protein 
was down-regulated. Interestingly, one peroxidase protein 
(Q9FYP0) had different expression patterns in the suscep-
tible and resistant cultivars, suggesting that plants have dif-
ferent strategies in response to pathogen infection depending 
on the plant variety. ROS have been reported to play a role 
in the interaction between R. solani and wheat (Foley et al. 
2016). The accumulation of ROS may be essential for cell 
death in the infected tissues.

The TCA cycle is one of the iconic pathways in metabo-
lism and is associated with energy metabolism or the oxi-
dation of respiratory substrates (Sweetlove et al. 2010). In 
the present study, two identified proteins were involved 
in the TCA cycle. Citrate synthase (Q9FUJ7) was up-
regulated in only the resistant cultivar (Supplementary 
Table S9). However, MD was down-regulated in the resist-
ant cultivar (A0A0E0KJK7) and up-regulated in the sus-
ceptible cultivar (A2YVI5), which was consistent with the 
transcriptional data (Supplementary Table S9 and Fig. 8). 
The increase in the levels of metabolic proteins related to 
the TCA cycle indicates enhanced respiration in rice after 
infection. Increased respiration has previously been observed 
during the interaction between R. solani and rice (Suharti 
et al. 2016; Ghosh et al. 2017). Plants usually increase res-
piration to support the induction of defense programs upon 
pathogen infection (Berger et al. 2007). Our recent study 
found that SA and JA signal pathways are also involved in 
defense response to the blast disease (Liu et al. 2014). In 
contrast, ROS production and TCA cycle are only found in 
rice immunity against R. solani infection. So we inferred 
that SA and JA are the general defense machinery to broad-
spectrum pathogen.

Conclusions

In conclusion, our findings provide a possible model by 
which multiple signal pathways are activated to regulate rice 
immunity following R. solani infection. These pathways do 
not function separately; instead, they work together as an 
integral network via multilateral cross talk. However, fur-
ther research is needed to explore the importance of these 
proteins and their potential roles during the establishment 
of rice sheath blight disease.
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