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Abstract
Multitasking capability of nitric oxide (NO) makes it a highly investigating signaling molecule in plant biology. In plants 
including inflection of hormonal levels, fruit ripening, wound suppression and defensive responses, and regulation of pro-
grammed cell death, much progress in NO signaling cascades has been achieved. Additionally, growing evidences suggest 
the interactive behavior of NO with auxin, salicylic acid, abscisic acid, jasmonic acid and thus regulates their signaling 
pathways. Parallel to this, reactive oxygen species (ROS) along with NO are supposed to accomplish various developmental 
and stress responses. Under biotic stress, signaling initiated by NO was found to be mediated by two specific protein i.e. 
pathogenesis-related 1 (PR-1) and phenylalanine ammonia lyase. The above mentioned genes were also promoted by second 
messengers like cyclic GMP (cGMP) and cyclic ADP-ribose (cADPR), which further initiate and regulate NO signaling. In 
plants, important mechanism is programmed cell death regulating various growth and developmental aspects by acting as a 
damage control. Under stress condition the infected cells are removed by involving signaling agents i.e. NO and ROS which 
is a matter of crosstalk in recent years. Keeping above facts into consideration, present work mainly deals with NO signaling 
under adverse conditions as well as its interaction with different phytohormones and ROS.

Keywords  Abiotic stress tolerance · Phytohormones · Programmed cell death · Reactive oxygen species · Second 
messengers

Introduction

Nitric oxide (NO), an effective biological factor involved in 
signaling cascade and a gaseous reactive nitrogen species 
(RNS), is mostly known for its multitasking role in plants 
(Domingos et al. 2015). A number of reports have recog-
nized the NO generation endogenously in both higher plants 
as well as in algae, lichens and also in some non-flowering 
plants including ferns and gymnosperms (Domingos et al. 
2015; Chakraborty and Acharya 2017; Tiwari et al. 2019). 
Among many vital components, NO is considered as a 

lipophilic, ubiquitous biologically active signaling molecule 
which is now recognized as a possible intercessor for regu-
lating responses of plants against stress (Asgher et al. 2017; 
Begara-Morales et al. 2018). NO is an elementary molecule 
which governs signaling and controls metabolic processes 
of plants and makes them able to combat with stressful situ-
ations (Arasimowicz et al. 2009; Baudouin 2011; Asgher 
et al. 2017; Singh et al. 2017; Begara-Morales et al. 2018; 
Corpas and Palma 2018). Previously, NO was considered 
as a significant messenger involved in signaling process 
during pathogens attack (Huang et al. 2004). However in 
the recent years, NO has attracted more attention due to its 
omnipresence and the diversity of physiological functions. 
Figure 1 depicts the role of NO in plant development, gene 
expression, defense responses (expression of antioxidant 
enzymes) and stomatal movement under stress condition. 
Figure 2 illustrates the crosstalk of NO with other signaling 
molecules and involvement of NO in plant protein modifica-
tions through nitration and S-nitrosylation process. Under 
abiotic stress, NO reacts with superoxide radical (O2

·−) and 
gets converted into peroxinitrite (ONOO−) which is a power-
ful oxidant RNS molecule which further involved in nitration 
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Fig. 1   A systematic representation of synthesis of NO and its multidimensional roles under stress

Fig. 2   NO signaling and its interaction with other signaling molecules
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process for post translational modifications. In nitration reac-
tion addition of nitro group (–NO2) to the proteins, fatty 
acids or nucleic acids takes place. Nitro-tyrosine is a most 
studied modification found in case of protein modification 
(Corpas et al. 2009; Kolbert et al. 2017). Peroxinitrite is 
toxic to animals but in plant cells its toxic effect may depend 
on its concentration. Several researchers have reported its 
role in defense, apoptosis and gene expression in plants 
(Groß et al. 2013; Qiao et al. 2014). On the other hand, the 
covalent attachment of NO with thiol (-SH) group in the side 
chain of cysteine (Cys) is depicted as S-nitrosylation process 
(Fig. 2) (Fares et al. 2011; Broniowska and Hogg 2012). 
Fröhlich and Durner (2011) demonstrated that l-arginine 
is as a foremost source of endogenous NO production in 
animals. But in case of higher plants, more investigations 
are required to know the occurrence of such enzymes simi-
lar to mammalian nitric oxide synthase (NOS). There are 
several studies are available to detect the precise character-
istic feature of a gene like mammalian NOS. For instance, 
nitric oxide associated-1 gene (s) was activated by Ca2+ in 
plants (Galatro and Puntarulo 2014). On the other hand, 
Chakraborty and Acharya (2017) reported two ways for NO 
production (i.e. reductive and oxidative) in plants (Fig. 1) 
and also revealed the signaling role of NO in plants. The 
multitasking role of NO has been proven during few decades 
because of its multidimensional role along with interactive 
behavior with biomolecules and phytohormones (Domingos 
et al. 2015). Under drought conditions, higher plants are 
required to check the water loss. In this unfavorable con-
dition, guard cells are known to balance the opening and 
closing of stomata to equilibrate the gaseous interchange 
for active photosynthesis. Nitric oxide governs stomatal 
movement induced by abscisic acid (ABA), a water-stress 
hormone (Freschi 2013). Thus, another important role of 
NO is to make plants more capable against drought condi-
tion (García-Mata and Lamattina 2007; Shabbir et al. 2016). 
According to Wendehenne et al. (2004), programmed cell 
death (PCD) has been observed under synchronised increase 
of NO and H2O2 in tobacco cells; however in soybean cells, 
PCD does not successfully occur in lack of reactive oxygen 
species (ROS). This indicates that only increased level of 
NO is not much enough to drive end of cell life. In recent 
years, several reports showed that NO and its related RNS 
have the capacity to govern every single step of plant devel-
opmental process (Table 1) by balancing antioxidants and 
ROS under stress conditions as described in Fig. 4 (Begara-
Morales et al. 2018). Though there are many studies car-
ried out to understand the nature and signaling of NO that 
triggers the gene expression to modulate plant metabolic 
processes, but the facts are still remained unclear. In spite of 
many evidences which show the behavior and role of NO as 
a plant growth regulator under stress, the current information 
regarding NO synthesis and signaling pathways in plants 

is still limited. In this review, we have tried to appraise the 
plant signaling governed by NO and its cross talks with ROS 
and different phytohormones, and other second messengers 
under stress conditions.

Synthesis of NO in plants

Production of NO is not only limited via enzymatic action 
but can also be formed as a by-product of various pro-
cesses like respiration, nitrogen fixation and denitrification 
(Domingos et al. 2015). Chakraborty and Acharya (2017) 
demonstrated two pathways of NO synthesis i.e. oxidative 
and reductive. The former one is arginine or hydroxylamine- 
dependent pathway and latter one is nitrate dependent path-
way (Fig. 1). Previous studies show that NO primarily pro-
duced through the family of NOS enzymes in mammalian 
cells. Each NOS enzyme catalyzes the production of NO 
from l-arginine i.e. NADPH-dependent simultaneously pro-
ducing L-citrulline (Li and Poulos 2005; Domingos et al. 
2015). There are fewer evidences for NOS existence or simi-
lar enzymes in plant system but Guo et al. (2003) described 
some possibility and identification of AtNOS1 gene in 
Arabidopsis thaliana. Further, AtNOS1 has been renamed 
to AtNOA1 as nitric oxide associated- 1 gene (Crawford et al. 
2006). Zemojtel et al. (2006) have reported the involvement 
of GTPase implied AtNOA1-gene in NO formation from 
l-arginine in mitochondrial biogenesis. However, according 
to the latest available literature, there is a possible existence 
of AtNOA1 that encrypts cGTPase which is localized in the 
chloroplast, possibly engaged in process of mRNA transla-
tion resulting in protein formation (Flores-Pérez et al. 2008; 
Moreau et al. 2008). The more recent evidences regarding 
the presence of NOS like gene sequence in land plants 
as well as in algal system have been shown by Jeandroz 
et al. (2016). On the basis of comparative gene sequencing 
of mammalian NOS with algal and plant NOS they found 
more compatibility with algal system. Overall findings still 
not clearly prove the presence of NOS enzyme in higher 
plants and there are much contradictions about its major 
role in synthesis of NO. Several reports have noticed that 
nitrite found as a foremost substrate for sequential process of 
NO synthesis in higher plants (Santolini et al. 2017). There 
are two ways of NO productions through nitrite involving 
enzymatic along with non-enzymatic pathways (Fig. 1). 
Nitrate reductase (NR) is mainly known to reduce nitrate 
and converts it into nitrite by utilizing NADPH as a reducing 
agent, but it also produces NO from nitrite by both in vitro 
as well as in vivo processes (Yamasaki and Sakihama 2000; 
Rockel et al. 2002; Santolini et al. 2017). Mohn et al. (2019) 
observed two isoforms (NIA1 and NIA2) of NR in A. thal-
iana. They also found that NIA1 mainly involved in NO 
production whereas nitrate reduction is the main function 
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of NIA2. Some biochemical and genetic-based approaches 
show that during ABA signaling and hypoxia, NR is the 
enzyme which chiefly acts as a mediator for NO synthesis 
(Desikan et al. 2002; Dordas et al. 2004; Bright et al. 2006). 
Another aspect of non-enzymatic conversion of nitrite to NO 
in the apoplast has been found at low pH having reductant 
ascorbic acid (Bethke et al. 2004). Still controversy exists 
regarding the co-involvement of l-arginine and NR depend-
ent pathways in NO production in plants (Rasul et al. 2012).

Some recent studies describe that polyamines also par-
ticipate in synthesis of NO in some cases (Fig. 1). In Arabi-
dopsis seedlings, Tun et al. (2006) described spermidine and 
spermine, two polyamines which are known to induce quick 
generation of NO in root tip (in elongation zone) and also in 
primary leaves (in the trichomes and veins).

Cross talk of NO with other second 
messengers (Ca2+, cGMP and cADPR)

In animals, it has been reported that guanylate cyclase (sGC) 
in soluble state is involved in NO signaling. Mechanism 
includes the binding of NO with sGC heme triggering the 
enzymatic action and thereby, increase in the level of ubiq-
uitous cGMP as a second messenger was noticed which is 
for a short time activates various respective goals (Besson-
Barda et al. 2008). Further, it has also been reported that 
similar mechanism runs in Tobacco (Durner et al. 1998) and 
cucumber (Pagnussat et al. 2003) hence, attests the fact that 
cGMP amount increased after the exogenous application of 
NO. Besides this, Wendehenne et al. (2004) demonstrated 
in tobacco plant that sGC inhibitors chunk the behavioral 
role of gene phenylalanine ammonia lyase (PAL) and its 
enzymatic action, as well as root development in cucumber 
which is dependent on NO and auxin interactions (Pagnussat 
et al. 2003). However, several major constituents of the NO/
cGMP pathway and its role are still to be identified.

Additionally, cGMP by inducing cyclic ADP-ribose 
(cADPR) and Ca2+ mobilization, NO may pose its func-
tions in both plants and animals. Another second mes-
senger i.e. cADPR, stimulates the release of Ca2+ through 
intracellular channel permeable to Ca2+ i.e. RYR (ryan-
odine receptor channels) (Wendehenne et al. 2001). In 
animals, cGMP dependent pathway mediates cADPR syn-
thesis which directly activates NO (Fig. 3) by acting as 
downstream messenger for NO and also by up-regulating 
PAL and PR-1 genes and ultimately Ca2+ mobilization 
is enhanced which directly governs the response against 
signaling (Wendehenne et al. 2001). NO is known to regu-
late signaling cascade i.e. cADPR-dependent action gov-
erned by PAL and PR-1 genes is simultaneously sensitive 
to RYR inhibitors (Wendehenne et al. 2004). Whereas 
8- Br-cADPR plays opponent role against cADPR and Ta
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suppresses the induction caused by PR-1 and NO (Kles-
sig et al. 2000). In guard cells of Vicia faba, it has been 
described that NO promots the levels of cytosolic Ca2+ 
(Garcia-Mata et al. 2003). As in above mentioned evi-
dences, NO regulates its function through cGMP (Beligni 
and Lamattina 2001) and cADPR through activated intra-
cellular Ca2+-permeable channels and liberating free cyto-
solic Ca2+ as reported earlier in cells of tobacco that are 
reacting against cryptogein (Lamotte et al. 2004). Hossain 
et al. (2014) showed positive interaction of cADPR with 
NO and ROS in methyl jasmonate mediated guard cells 
movement. In addition, NO shows its importance against 
fight with drought condition by mediating ABA medi-
ated opening and closing of stomatal guard cells along 
with cGMP and cADPR (Garcia-Mata and Lamattina, 
2001). With regards to the role of NO in stomatal closure 
in Vicia faba, c-PTIO affect the Ca2+-dependent ABA 
induced processes i.e. c-PTIO inactivates the inward- 
movement mediated by K+ channel while activates the 
outward-movement mediated by Cl− channel (Garcia-
Mata et al. 2003). Hence, it is cleared that NO involved 
in the regulatory process of plants but their regulatory 
pathway(s) have yet not been demarcated. The study con-
cludes that NO regulates the genes that are involved in 
maintaining the level of intrinsic Ca2+ through its chan-
nels and also via the modulators of cGMP and cADPR 
which are NO/redox-sensitive processes (Fig. 3).

Crosstalk of NO and phytohormones

Nitric oxide, being a signaling bioactive molecule, shows 
its interaction with phytohormones and with its related 
reactive nitrogen species (RNS: ONOO−, N2O3, NO2) 
regulates metabolic processes against pathogenic attack 
and environmental stresses in plants. Its mechanism of 
targeting in overall metabolic process in order to counter 
stress responses is still not properly known. Over the last 
few decades some findings have enlighten the rapid induc-
tion and potential role of NO in plant growth regulation as 
described in Table 1. The intrinsic level of NO increased 
during stress condition and simultaneously involved in 
plant growth and developmental processes (Delledonne 
2005). Hao and Zhang (2010) suggested a governing factor 
“ABA–H2O2–NO–MAPK-antioxidant existence sequence” 
that indicates the ABA performed ameliorative functions 
during water stress. Nitric oxide has been shown to act as a 
dynamic signaling intermediate resulting in vital phenom-
ena i.e. closure of stomata to moderate the dehydration 
along with triggering the antioxidant defense system to 
respond to damage caused by oxidative species (Shabbir 
et al. 2016). In another study the interactive role of NO has 
been implicated in regulating metabolism in CAM plants 
by up-regulating the cytosolic Ca2+ (Freschi et al. 2010; 
Mioto and Mercier 2013). Seed dormancy during germina-
tion is mainly decided by the stability between ABA and 

Fig. 3   NO combines with sCG 
and activates the enzymatic 
activity resulting in production 
of secondary messenger i.e. 
cGMP which further induces 
cADPR activity and is also 
directly involved in the process 
of NO synthesis. Simultane-
ously, sCG inhibitor deactivates 
PAL activity as well as auxin 
mediated root development 
by inhibiting the role of NO. 
cGMP with cADPR increases 
the Ca+ release intracellularly 
and further signaling cascade 
regulates the cell response. 
Mobilization of Ca+ through 
RYR channel is sensitive to 
its inhibitor which also blocks 
the PR-1 gene mediated PAL 
activity directed by cGMP and 
cADPR messengers induced 
by NO
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gibbrellins (Table 1), hence acts as signals triggered by 
environmental factors to further proceed the physiologi-
cal and metabolic functions (Arc et al. 2013). The stud-
ies demonstrated that exogenous NO application is also 
capable of breaking the seed dormancy in Arabidopsis and 
barley, and its role was further confirmed by the use of NO 
scavenger (c-PTIO) (Bethke et al. 2004, 2006a, b; Libourel 
et al. 2006). Evidences showed that exogenous ABA appli-
cation promotes NO production endogenously in tobacco 
and Arabidopsis (Guo et al. 2003; Bright et al. 2006; Liu 
et al. 2009), and similar phenomena was also noticed in 
the aleurone layer specifically in apoplast cell through-
out the process of germination in barley (Bethke et al. 
2004). Likewise, various responses mediated by auxin, for 
instance- development of root (Pagnussat et al. 2003; Cor-
rea-Aragunde et al. 2004), root movement towards gravity 
(Hu et al. 2005), process of root re-differentiation (Correa-
Aragunde et al. 2004; Pagnussat et al. 2004; Lanteri et al. 
2006), formation of nodules in root (Pii et al. 2007) are 
also modulated by ABA and NO (Table 1). Several other 
responses such as development of root under deficiency of 
iron (Chen et al. 2010), cell division, embryonic develop-
ment (Ötvös et al. 2005) and induction of NR activity (Du 
et al. 2008) are also synergistically regulated by auxin and 
NO. In Arabidopsis, exogenously applied NO reduced the 
PIN1-dependent acropetal auxin transport in root apical 
meristem thereby inhibits the polar transport of auxin indi-
cating NO acts downstream regulator of auxin (Fernández 
et al. 2011; Fernández-Marcos et al. 2012).

Previous reports underlined that NO inhibits the hypoco-
tyl elongation (Table 1) in Arabidopsis and lettuce grown in 
the absence of light (Beligni and Lamattina 2000). Further-
more, Tonón et al. (2010) have noticed that in etiolated A. 
thaliana seedlings, NO together with superoxide and ATP 
regulates hypocotyl elongation. Gibberellic acid (GA) has 
been shown to regulate NO mediated signaling pathway 
by a possible mechanism in which PIF and DELLA pro-
teins are also actively involved. Hence, it was concluded 
that increase in DELLA proteins and growth-promoting PIF 
gene products are also coordinated by NO (Lozano-Juste and 
León 2011). In recent past, accumulating evidences suggest 
a complex interaction between NO and CKs. For example 
zeatin (a kind of CK) has been shown to induce NO produc-
tion in Arabidopsis seedlings (Tun et al. 2008). However, 
other evidences point out either unchanged response or quite 
low level of NO production after CK treatment/in mutant 
or transgenic plants with increased level of CK (Xiao-Ping 
and Xi-Gui 2006; Romanov et al. 2008; Liu et al. 2013). 
The synergistic role of CKs with NO has been clearly dem-
onstrated in the plants treated with NO scavengers/NOS 
inhibitors or in mutant plants deprived of NO production 
demolish the expression of CKs induced gene CYCD3;1 
(transcriptional gene for cell cycle activation). Furthermore, 

Freschi (2013) has also pointed out the antagonistic effect of 
CKs with NO in epidermal strips of Vicia faba where SNP 
as a donor of NO reduced the generation of NO inside the 
guard cell.

In the last decade, several observations focused on a 
probable role of NO and it is considered as a crucial game 
changer against hypersensitivity like wounding/cutting or 
other power-driven stresses (Pedroso et al. 2000; Garcês 
et al. 2001). Work of Liu et al. (2016) on tomato reflected 
the role of NO as wound healer. Nitric oxide acts as a down-
stream mediator of jasmonic acid (JA) synthesis, by hin-
dering the H2O2 production and inhibiting proteinase gene 
expression. Now, it is clear that during pathogenesis, the 
role of those genes which express themselves when wound 
occurs was down-regulated by NO. The inhibition of this 
defense gene was not dependent on salicylic acid (SA), 
which is an antagonistic phenomenon against JA synthe-
sis and/or its activity (Alavi et al. 2014). Though, systemic 
acquired resistance (SAR) induced by SA has been weaken 
by the application of inhibitors of NOS enzyme and scav-
engers of NO and thereby, these results revealed that both 
SA and NO are dependent on each other. In this phenom-
enon nitric oxide required for the action and biosynthesis 
of SA and NO requires SA for its functions (Ji et al. 2016). 
After detailed observations based on these studies it can be 
pretended that NO is a key component to regulate phyto-
hormones homeostasis. Moreover, some researchers have 
considered that NO itself as an “artificial plant hormone” for 
its extraordinary performance (Qian et al. 2009).

NO regulates gene expression to maintain 
hormonal balance in plants

Neill et al. (2002) have reported interactive relation between 
ROS and NO and came to a conclusion that NO has the 
capability of modifying the way of working of many genes 
in plant cells. Like in soybean and tobacco plants, NO trig-
gers the expression of several proteins such as PR-1 which is 
related to pathogenesis while PAL and GST show a vibrant 
role in defensive routes inside the cell (Delledonne et al. 
1998; Durner et al. 1998). del Rio et al. (2003) described 
that expression of genes related to diverse form of peroxi-
dases, ferritin, and biosynthesis of crucial enzymes of jas-
monic acid are induced by NO. In Arabidopsis, it has been 
reported that NO induces expression of genes encoding 
several enzymes like GST, CHS (chalcone synthase), GPX 
(glutathione peroxidase), and AOX1a (alternative oxidase) 
which detoxify stress biomarkers and also down regulate 
ascorbate peroxidase (tAPX), present in thylakoid region 
(Huang et al. 2002). The SnRK2 kinase regulated by absci-
sic acid (ABA) and SRK2C/SnRK2.8 in Arabidopsis noti-
fied as a drought resistant factor in plants by up-regulating 
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DREB1A/CBF3 which encodes transcription factor regulat-
ing those genes which are responsive under stress condition 
(Umezawa et al. 2004). In addition, to activate AREB1 and 
TRAB1 they are activated by phosphorylation of SnRK2 
kinases in both Arabidopsis as well as rice plant, respec-
tively (Kobayashi et al. 2005; Furihata et al. 2008) and 
regulate ABA-responsive genes. Beside this, osmotic stress 
facing cells might use NO as an initial signaling factor to 
promote the defensive pathway guided by SnRK2 (Courtois 
et al. 2008). Guo et al. (2003) have also observed that sto-
matal opening guided by lower light and resistivity towards 
drought in Arabidopsis was due to mutant nitrate transporter 
Chl1 gene. Similarly, Meyer et al. (2005) revealed the role 
of AtNOS1 which is dually involved in NO production and 
in ABA responsive closure of stomata in Arabidopsis. Groß 
et al. (2013) have also noticed that in wild type Arabidopsis 
plant, higher accumulation of SA, JA and ethylene occurred 
during pathogen attack. As a result of this, the endogenous 
accumulation of NO inside the cell ultimately suppresses 
the Hb1-coding gene GLB1 in order to resist plants against 
pathogen attack (Table 1).

NO and ROS crosstalk: nitric oxide‑induced 
programmed cell death (PCD)

Reactive oxygen species (ROS) are mainly consequential 
result of a sequential processes involved in cellular metabo-
lism (Halliwell and Gutteridge 2007). Sharma et al. (2012) 
considered their excessive accumulation as necessary 
evil and in excess caused deleterious effect on plants and 
animals. As Fig. 4 shows that plants possess an effective 
endogenous defensive mechanism including a wide network 
of antioxidant machinery which defends them from harm 
caused by ROS, and hence harmonizing their internal ratio 
(Wrzaczek et al. 2013). Figure 4 depicts a group of oxi-
dative molecules/ions: (1) superoxide anion, (2) hydroxyl 
free radical, (3) hydrogen peroxide and (4) oxygen species 
having single electron are considered as ubiquitous ROS in 
cell (Gechev et al. 2006; Sharma et al. 2012; Singh et al. 
2016). In plant cells, the major sites of oxidative biomarkers 
production are chloroplasts, mitochondria, and peroxisomes 
(Sharma et al. 2012; Kong et al. 2013; Sandalio et al. 2013; 
Singh et al. 2016). Previous studies have considered ROS as 
signaling molecules in many cellular processes (Mittler et al. 
2011; Wrzaczek et al. 2013). Equilibrium of ROS is a crucial 

Fig. 4   An active interaction between NO and ROS affects antioxidant 
defense system under abiotic stress. Under low stress condition, mod-
erately produced ROS act as signals for NO synthesis that enhances 
antioxidant defense system to provide protection to stressed plants. 

Whereas under heavy stress situation, excessively produced ROS pro-
motes production of RNS that tends to create imbalance in AOX and 
ROS. This imbalance causes cell damage or cell death
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phenomenon i.e. production of ROS and their scavenging 
decide their fate as damaging or signaling molecules (Fig. 4). 
ROS level in cell triggers different signaling networks which 
depend on multiple aspects such as: (1) chemical individual-
ity of ROS, (2) concentration of ROS, (3) signal intensity, 
(4) site of ROS production, (5) plant developing stage, and 
(6) crosstalk among ROS, hormones, and NO (Chaudhuri 
et al. 2013; Mor et al. 2014; Singh et al. 2016). Klepper 
(1979) had first time reported generation of NO within 
cell. Thereafter, Delledonne et al. (1998) reported NO as 
a key factor in Arabidopsis and tobacco which is involved 
in defense response. Although, NO may pause destructing 
effect of ROS depending on its rate and site of production 
(Beligni and Lamattina 1999). Crosstalk among NO and 
ROS decides the fate of cells under stress conditions and 
also determined the physiological phenomena inside the cell 
(Rodríguez-Serrano et al. 2009). In fact, targets of S-nitros-
ylation process i.e. attachment of NO to cysteine thiol within 
a protein to form an S-nitrosothiol (SNO) (Fig. 2) which 
operates the signaling for the action of antioxidant enzymes 
against ROS suggesting a perfect balance between NO and 
ROS (de Pinto et al. 2013; Romero-Puertas et al. 2013). 
NO has a short life time and considered as a free radical 
which limits its effect on surrounding environment. Apart 
from NO, S-nitrosylated glutathione (GSNO) is relatively a 
stable reservoir and transportable form of NO (Kovacs et al. 
2016). GSNO level inside cell is either guided by its produc-
tion or by enzymatic action catalyzed by GSNO reductase 
(GSNOR). Mutation in GSNOR gene caused deteriorated 
plant growth (Lee et al. 2008; Xu et al. 2013). The gsnor-ko 
plants contain increased level of S-nitrothiols (SNO) and 
nitroso species reflecting the controlled activity of GSNOR 
for both GSNO and protein-SNOs (Lee et al. 2008).

Programmed cell death (PCD) is an active plus geneti-
cally controlled phenomenon promoting the cell death in 
plants which includes cellular metabolic processes that 
occurs throughout plant life and considered as an essential 
process for normal development against biotic and abiotic 
stresses (van Doorn 2005; Gechev et al. 2006; Bozhkov 
and Lam 2011; Singh et al. 2016). Every cell completes 
its life cycle by a sequential event PCD which includes 
several peculiar proceedings: (1) transformed morphol-
ogy of nucleus, (2) inflammation of vacuoles along with 
mitochondria, plus ER, (3) protoplast contraction, and (4) 
cytoskeleton reformation (Serrano et al. 2015). Additional 
demarcations are fragmentation of DNA, caspase mediated 
activity, and an increase of ROS and RNS (Xu and Huang 
2017). According to de Pinto et al. (2012), ROS and NO 
are considered as the important component for PCD in 
plants. Plant develops a multifaceted response i.e. innate 
and immune which is collectively called as hypersensi-
tivity (HR). This is mainly evolved to defend themselves 
against insects and microbial pathogen which can uniquely 

end in systemic acquired resistance (SAR) (Domingos 
et al. 2015). This was mainly regulated by increase in the 
Ca2+ level inside the cell through CNGC (cyclic nucleo-
tide-gated ion channels) (Ali et al. 2007). CNGC is cGMP-
mediated channel which is mainly regulated by peptide 
signaling molecule, AtPeps, and their receptor, AtPepR1 
(Qi et al. 2010). Further, the increase in endogenous Ca2+ 
triggers salicylic acid (SA) (Yun et al. 2016), NO and 
ROS generation leads to PCD in the area of infection, 
in that way limits the pathogen growth (Domingos et al. 
2015). Nitric oxide and H2O2 play crucial role in govern-
ing hypersensitivity (Grant and Loake 2000; Kovacs et al. 
2016) (Table 1). Delledonne et al. (2001) mentioned in 
their work that cell death phenomena are determined by 
the ratio of NO to H2O2. Interestingly, tropospheric ozone 
(O3) induces ROS production and enhances the HR pro-
gramme in the apoplast and thereby, considered as an ideal 
for regulation of end of life of cell by the initiating and 
proliferating the death signals (Overmyer et al. 2003). In 
animal cell, infection (also considered as HR) results in 
PCD phenomena and similar to the plants, NO and H2O2 
are considered as responsible molecules for the same 
(Wang et al. 2013). Either of them could be responsible for 
functioning of cytochrome c and also for the regulation of 
signaling cascade guided by caspase leading to the hyper-
sensitivity as coated by Mur et al. (2006) and Tan et al. 
(2013). Besides these, certain other significant machin-
eries are also involved in defense signaling pathway i.e. 
activation of protein kinases (MAPKs) and phosphatases 
which are also influenced by ROS and NO and therefore, 
cumulative role of NO and H2O2 enhanced by the stimula-
tion of central MAPK cascade against pathogen infection 
(Domingos et al. 2015). In plants, leaf senescence is also a 
consequence of PCD, which is considered as the ultimate 
leaf developmental phase which is controlled by age of 
organ and environmental conditions as conveyed by Jing 
et al. (2005). The work of Cui et al. (2013) verified that at 
senescence stage, the amount of H2O2 increases leading 
to cell death in Arabidopsis. Along with oxidizing prop-
erties, H2O2 also transduces the signals and regulates the 
gene expression involved in the senescence process. With 
this context, several senescence-associated genes (SAG) 
are characterized from Arabidopsis which is ROS-induced 
expressions of these genes as reported by Navabpour et al. 
(2003) clarifying the role of ROS in senescence. Apart 
from ROS, NO can provoke as well as hinder senescence 
process which dependents upon its amount and place of 
act (Wang et al. 2013). It may increase the ROS toxicity 
resulting in leaf senescence (Niu and Guo 2012). Kong 
et al. (2013) observed that H2O2 was implicated in NO-
mediated PCD in maize.
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Conclusions and future perspectives

To maintain all the primary and basic functions of the cell, 
NO manages an internal environment that pretends to change 
gene expression patterns and thus modulates chemical 
homeostasis of the cell. By this way, NO successfully makes 
a cell capable of alleviating impact of different stress. Nitric 
oxide suppresses Hb1 coded GLB1 genes during hypoxia 
and pathogen attack in Arabidopsis that clear its role in 
defense gene regulation and protein modifications which 
provide a base for further study in this area. Involvement of 
NO signaling in several post translational modifications also 
provide a significance to its crucial role in defense machin-
ery. Further in defense mechanism, the NPR1/TGA inter-
action is critical for regulating responses by salicylic acid 
action (Astier and Lindermayr 2012). Few reports proposed 
the efficient role of NO in defense signaling, over the modu-
lation of PCD mediated by ROS and some new assessments 
regarding organic and bio molecular information intended 
for this crucial functional intermediary component are also 
explained in Fig. 4. Some recent discoveries described plant 
NOSs that have little sequential similarities to their mam-
malian counterparts. Intrinsic NO production by pathways 
involved in different biosynthesis processes in varied cellular 
sections including different organelles, involving physiologi-
cal, biochemical and molecular events in response to spe-
cific ecological stimulus is still having an area of curiosity. 
Although NO, is known for its extraordinary faith for all 
around growth and developmental processes, however, it is 
not only limited to plants but also applied for animals as well 
as various organisms like algae, bacteria, lichen, fungi etc. 
Therefore, multidimensional studies will be helpful for fur-
ther researches regarding role of NO in plant biology. Future 
research involving investigation on intricate NO signaling 
network in plants will certainly witness exciting outcomes.
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