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Abstract
Plant miRNAs are found to be present throughout the genome and they regulate gene expression either by cleaving mRNA 
or inhibiting the translational process at the post transcriptional level. Drought is one of the major limiting factors that nega-
tively affect productivity of plants. Cardamom cultivation is having good production potential but the plants are vulnerable 
to biotic and abiotic stress factors. To date, nothing is known about the regulatory roles of miRNAs in response to drought 
stress in cardamom. Ion Torrent sequencing of two small RNA libraries prepared from control (C) and treated (T) plants 
raised under well irrigated and drought stressed treatments respectively created 3,938,342 and 4,083,181 primary reads. 
A total of 150 conserved and 20 novel microRNAs were identified from both the control and treated libraries. Discovery 
of 17 differentially expressed miRNAs under drought stress suggests that these miRNAs might have involved in various 
biological processes to improve plant tolerance to water stress. Several target genes for drought stress regulating miRNAs 
were identified including miR156l and miR169c which cleave the target mRNA involved in response to water deprivation. 
miR530b and miR156a target mRNAs which respond to water deprivation and inhibit the translational process. The expres-
sion patterns of some of the miRNAs and their targets were validated by qRT-PCR. This study is the first report of drought 
responsive miRNAs and their targets in cardamom. The outcome of this research could provide insights into the miRNA 
based regulatory mechanisms in response to drought stress in monocot plants.
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Introduction

MicroRNAs (miRNAs) which are functionally significant 
and approximately 19–24 nucleotide (nt) long non coding 
RNAs, act as post-transcriptional gene expression regu-
lators by involving in different processes like apoptosis, 
stress response, differentiation and different disease con-
ditions (Shweta et al. 2015). This novel method of tuning 
gene expression in eukaryotes was noticed in the 1990s 
and got fascinated by the scientific community (Lin et al. 
2014). Plant miRNAs are found to be present throughout 

the genome and are produced from exons, introns, intergenic 
regions and repetitive transposable elements (Agharbaoui 
et al. 2015). In plants, miRNA gene got transcribed by RNA 
polymerase II enzyme to form Primary miRNA. Dicer-like 1 
(DCL 1), hyponastic leaves 1 (HYL 1) and serrate proteins 
act on it and generate precursor miRNAs which got cleaved 
to form miRNA::miRNA* duplex and transported from 
nucleus to cytoplasm through HASTY (HST1) (Li et al. 
2015). The duplex is loaded on to RNA induced silencing 
complex (RISC). Either 5p or 3p single stranded miRNA 
binds with Argonaute (AGO) in the RISC while the other 
strand gets degraded. The miRNA-RISC targets comple-
mentary messenger RNA (mRNA) (Zhang et al. 2014; Tang 
et al. 2015). They regulate gene expression either by cleav-
ing mRNA or inhibiting the translational process at the post 
transcriptional level (Yang et al. 2015b). Sometimes, they 
can also involve in methylation at the transcriptional level 
(Brodersen et al. 2008). A single miRNA can target many 
mRNAs and an mRNA can be targeted by multiple miRNAs 
(Zandkarimi et al. 2015; Kelly et al. 2015).
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Both conserved and species specific miRNAs are reported 
to be present in many animal and plant species. Studies have 
shown that conserved miRNAs control common characters 
and species specific miRNAs regulate distinctive features 
(Zhang 2015). Arabidopsis is the first plant in which the 
miRNAs were reported in 2002 (Lima et al. 2012). Later 
it was found to be present in many plants including mono-
cots, dicots, algae, ferns and moss (Song et al. 2015). Plant 
miRNAs exert function mainly by degrading mRNA, but 
recently, studies have reported that translational attenua-
tion is also very frequent. Plant miRNAs are involved in 
different developmental process by binding with their own 
targets and also interacting with each other in a complex 
system of network (Wang et al. 2015). The present version 
of miRBase (a biological database that acts as an archive 
of microRNA sequences and annotations; Release 21: June 
2014, accessible at http://www.mirba se.org) consists of 7057 
plant miRNA entries from 73 species (Boke et al. 2015).

Sequencing is the base for awareness about the number, 
diversity, expression and probable roles of small non cod-
ing RNAs in plants (Sun et al. 2014). Sanger sequencing or 
chain termination method has been the dominant method of 
DNA sequencing which was developed by Frederick Sanger 
in 1977. The human genome project was also accomplished 
by utilising this method by the team work of 20 groups 
from United States, Britain, France, China, Japan and Ger-
many (Lander 2001). This method needs a DNA template, 
primer, DNA polymerase, 2′-deoxynucleotides (dNTPs) 
and 2′, 3′-dideoxynucleotides (ddNTPs). Oligonucleotide 
chain elongation gets terminated by the incorporation of 
ddNTPs and polyacrylamide gel electrophoresis (PAGE) 
is used to separate the products generated with different 
lengths. The sequence of DNA strand is obtained by analys-
ing the ddNTPs at 3′ terminal (Morozova and Marra 2008). 
Genomic research has become revolutionized with the 
launch of next-generation sequencing (NGS) technologies 
since 2005. NGS is more economical than Sanger sequenc-
ing and the researchers are able to carry out many experi-
ments which were formerly problematic. Human genome 
project took around 13 years to get completed by Sanger 
sequencing with an estimated cost of $2.7 billion whereas 
NGS revealed the sequence of human genome within 
5 months for around $1.5 million (Voelkerding et al. 2009). 
Roche 454, Illumina Inc, Life technologies, Ion torrent and 
Pacific Biosciences are some of the companies offering next 
generation sequencing technologies which utilises different 
platforms (Yang et al. 2015a).

Conventional methods like Sanger sequencing are not 
much reliable in detecting species specific miRNAs which 
are expressed in very small amounts (Song et al. 2010). 
NGS provides enormous amount of data to address such 
needs. However, fast processing power and efficient tools 
are needed to manage this big data (Patel and Jain 2012). 

With the advancement in computer capacity and algorithm, 
data interpretation becomes easier. Sometimes errors might 
occur during library construction and sequencing procedures 
which can affect the quality of the raw reads. Quality control 
check has to be done for the raw reads obtained from NGS 
platforms. It gives an idea of whether the data has any issues 
and can be conscious of before starting analysis (Trivedi 
et al. 2014). The blend of next generation sequencing and 
bioinformatics analysis has paved the way for discovery of 
many species specific miRNAs of plants from several spe-
cies (Tang et al. 2015). NGS data are now being produced in 
non-model organisms at a greater speed as this high through-
put studies can be performed at a reasonable budget.

Elettaria cardamomum Maton is a perennial, herbaceous 
rhizomatous plant which belongs to family Zingiberaceae. 
It is one of the valuable spice crops and is mentioned as 
‘Queen of spices’. After vanilla and saffron, it is the costly 
spice in world market. The dried ripe fruit or capsule is the 
commercially important part of cardamom plant. It is used 
as flavouring agent in culinary purposes and is also valued 
for its medicinal properties (Kader et al. 2015). There is a 
possibility of decreasing the risks of cancer, dyslipidemia, 
hepatic steatosis and hyperglycemia by including cardamom 
in our regular diet (Nitasha et al. 2015; Qiblawi et al. 2015). 
Its origin is believed to be in the moist evergreen forests 
of Western Ghats of South India (Ravindran and Madhu-
soodanan 2002). Besides India, cardamom is cultivated in 
Sri Lanka, Guatemala, Papua New Guinea and Tanzania.

Cardamom cultivation is having good production poten-
tial but the plants are vulnerable to many pests, diseases 
and abiotic stress factors like droughts, floods, extreme tem-
peratures, salinity, nutrition starvation, oxidative and heavy 
metal stress. Drought is one of the major limiting factors that 
negatively affect the crop productivity of the plant. Carda-
mom planters have significant worry about shortage of water 
that occurs as a consequence of climate change (Murugan 
et al. 2011). Increased transpiration rate and limited absorp-
tion of water from cold soil also result in water stress. To 
resist this drought stress, plants execute several mechanisms 
at the molecular and physiological levels (Bej and Basak 
2014; Akdogan et al. 2015). Knowledge on the mechanism 
behind plant response to drought will be useful for better 
productivity (Ferdous et al. 2015). Studies have shown that 
post transcription regulation by miRNAs exerts a role in 
response of plants to drought stress (Li et al. 2013). Drought 
regulated miRNAs have been reported in many plant spe-
cies like switch grass (Hivrale et al. 2016), Tobacco (Yin 
et al. 2015), rice (Zhao et al. 2007), wheat (Akdogan et al. 
2015), sugarcane (Lin et al. 2014), Arabidopsis (Song et al. 
2013), foxtail millet (Yi et al. 2015), chickpea (Hajyzadeh 
et al. 2015), banana (Muthusamy et al. 2014), Medicago 
truncatula (Wang et al. 2011), Vigna unguiculata (Barrera-
Figueroa et al. 2011), Glycine max (Li et al. 2011b), Solanum 

http://www.mirbase.org
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tuberosum (Hwang et al. 2011), etc. In rice, which is a model 
plant, miR393 was found to be drought responsive and tar-
gets OsTIR1 and OsAFB2 (Xia et al. 2012) which are auxin 
receptor gene homologs. Another study also reported that 
miR169 shows upregulation in rice under water stress condi-
tion (Jeong and Green 2013). Because of drought stress, a 
rapid increase in expression on miR169g was found in roots 
of rice than in shoots (Zhao et al. 2007). miR169 targets 
NFYA5 mRNA which encodes a subunit of the transcription 
factor named as nuclear factor Y (Li et al. 2008). miR156, 
miR159, miR168, miR170, miR171, miR172, miR319, 
miR396, miR397, miR408, miR529, miR896, miR1030, 
miR1035, miR1050, miR1088 and miR1126 showed down-
regulation and miR159, miR319, miR395, miR474, miR845, 
miR851, miR854, miR896, miR901, miR903, miR1026 and 
miR1125 showed upregulation under drought stress in rice 
(Zhou et al. 2010).

Methods

Plant materials and drought stress treatment

Wild cardamom (accession no. TBG-C75) collected from 
the natural forest area in Therakkudi in the Edamalayar for-
est range (N10°13′13.20″ & E76°47′03.7″) in Kerala state 
of India was selected for the study. This population was 
recorded previously as remaining of the wild cardamom 
in Western Ghats (Kuriakose et al. 2009). The collected 
plants are maintained in a greenhouse with daily watering 
(voucher specimen deposited in JNTBGRI Herbarium as 
TBGT86201). Out of those plants, one group was labelled 
as ‘control’ and another as ‘treated’. Water was withheld to 
the plants labelled as ‘treated’ in order to begin the experi-
ment. Stress indications like leaf rolling appeared 3 weeks 
after water withholding and at this drought condition the 
absolute moisture content of the soil was calculated to be 
< 4.5%. Normal watering was given only to the control plant. 
Completely opened uppermost leaves and stems from each 
control and treated plant were collected, frozen in liquid 
nitrogen and used for RNA isolation immediately.

Small RNA library preparation and sequencing

Total RNA was isolated from leaves and stems of control 
and drought treated cardamom using the combined miRNe-
asy Mini Kit and CTAB method (Nadiya et  al. 2015). 
100 mg of leaf and stem tissues were first subjected to 
CTAB method until the RNA got precipitated. RNA pel-
let was recovered and the isolation was further proceeded 
with miRNeasy Mini Kit (Qiagen, Germany) according to 
manufacturer’s protocol. Quantification of the isolated RNA 
was done using Biophotometer (Eppendorf, Germany). RNA 

quality was analysed through 1.2% agarose gel and Agilent 
2100 BioAnalyzer. Ion total RNA seq Kit V2 was used for 
small RNA sequence library construction following manu-
facturer’s instructions after pooling the total RNA from leaf 
and stem tissues in both control and treated samples. The 
purified libraries were used for sequencing analysis with the 
Ion Torrent sequencer by Centre for Cellular and Molecular 
Platforms (C-CAMP, Bangalore). Standard procedure was 
followed for small RNA library construction and sequenc-
ing. Total RNA was run on polyacrylamide gel electropho-
resis (PAGE) and the band corresponding to the size of 
17–27 nt was cut out, so that only the miRNA fragments got 
extracted. Then 5p and 3p sequencing adaptors were ligated 
to the size selected RNA fragments. RT-PCR amplification 
was carried out to produce cDNA library, purified by PAGE 
and was used for subsequent sequencing (Ding et al. 2016). 
The sequencing data were deposited in the NCBI Sequence 
Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra/) as 
accession numbers SRX2273832 and SRX2273833.

Data pre‑processing and miRNA identification

Adaptors were removed from the raw sequencing reads 
using Cutadapt with error rate (-e) set to 0.1 (Martin 2011). 
The remaining reads were checked against snRNAs, snoR-
NAs, rRNAs and tRNAs from NCBI database and the per-
fect matches were eliminated using Bowtie alignment tool 
(Langmead et al. 2009). Reads with 17–27 nt length were 
kept for further analysis. The identical sequences were col-
lapsed into a single sequence by FASTQ/A Collapser tool 
available in the FASTX-Toolkit. Nucleotide distribution 
chart was created using FASTQ/A Statistics and FASTQ/A 
nucleotide distribution tools. Pipeline used for the analysis 
of miRNA sequencing data is depicted in Fig. 1.

A Blastn search was performed against plant mature miR-
NAs from miRBase database to identify conserved miRNAs 
in cardamom small RNA libraries. A maximum of three mis-
matches were allowed. The remaining reads were mapped 
onto the transcriptome sequence of Curcuma longa, the 
closest relative of cardamom, for the identification of novel 
miRNAs, as the whole genome or transcriptome sequence 
of cardamom is not available. The aligned reads were used 
as input to predict novel miRNAs with the software miRD-
eep-P (Yang and Li 2011). miRDeep-P is a miRNA finding 
software package equipped with plant specific parameters 
and has been reported in many studies as a novel miRNA 
prediction tool (Jain et al. 2014).

miRNA target prediction and functional annotation

Targets of all the cardamom miRNAs determined in this 
study were predicted using the psRNATarget (http://
plant grn.noble .org/psRNA Targe t/) software with default 

http://www.ncbi.nlm.nih.gov/sra/
http://plantgrn.noble.org/psRNATarget/
http://plantgrn.noble.org/psRNATarget/
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parameters (Dai and Zhao 2011). ‘User-submitted small 
RNAs/preloaded transcripts’ option was fixed and selected 
Arabidopsis thaliana as the reference genome for this analy-
sis. Singular Enrichment Analysis (SEA) tool from AgriGO 
toolkit (http://bioin fo.cau.edu.cn/agriG O/) was used for gene 
ontology enrichment. Supported species was selected as A. 
thaliana (Du et al. 2010).

Differential expression analysis of miRNAs 
under drought stress

The frequency of miRNAs in control and treatment librar-
ies was normalized to transcripts per million (TPM) by the 
formula, normalized expression = (actual miRNA count/total 
count of clean reads) × 1,000,000. If the normalized expression 
of a miRNA in both the control and treatment libraries showed 
a value less than one, it is removed due to the very low level of 
expression (Wang et al. 2011). Fold change of miRNA expres-
sion between treatment and control library was determined 

by using the formula, Fold change = log2 (normalized expres-
sion of miRNA in the treatment library/normalized expression 
of miRNA in the control library). miRNAs with difference 
in expression levels higher than 1.5-fold were considered to 
be differentially expressed under drought stress. Fold change 
with positive values indicate upregulation and negative values 
represent downregulation of miRNAs in the drought treated 
library.

Validation of cardamom miRNAs by quantitative 
real time PCR (qRT PCR) method

Results obtained by small RNA sequencing were experimen-
tally proved using qRT PCR method. Total RNA was isolated 
from leaves and stems of control and drought treated carda-
mom using the combined miRNeasy Mini Kit and CTAB 
method as described above and complementary DNA (cDNA) 
was prepared using miScript II RT Kit (Qiagen, Germany). 
Gene specific real time PCR primers for randomly selected 
eight drought responsive miRNAs were designed using 
miRprimer2 software (Supplementary File 1). 5.8S rRNA was 
selected as the internal control. Each reaction was performed 
on a StepOnePlus real time PCR system (Applied Biosystems, 
USA). The relative expression level of miRNAs were calcu-
lated using  CT and  2−ΔΔCT method (Schmittgen et al. 2008). 
 2−ΔΔCT or the fold change values which are > 1 represents 
upregulation of miRNA and < 1 indicates downregulation of 
miRNA (Lutful Kabir et al. 2015). The average of the fold 
change values from the three experiments was finally taken.

Validation using 5′ RNA ligase‑mediated rapid 
amplification of cDNA ends (RLM‑RACE) PCR

In order to validate the predicted target cleavage sites, 5′ 
RNA Ligase-Mediated Rapid Amplification of cDNA Ends 
(5′ RLM-RACE) was performed using the FirstChoice RLM-
RACE Kit (Ambion, Austin, TX, USA) according to manufac-
turer’s instructions. Total RNA was extracted from cardamom 
and RNA oligo adapter was ligated to it. The amplifications 
were carried out using 5′ RACE outer primer and gene-specific 
outer primer. After nested PCR with 5′ RACE inner primer 
and gene-specific inner primer, the 5′ RACE products were 
purified using the Agarose Gel DNA Purification Kit (TaKaRa 
Bio), ligated into the pMD19-T vector (TaKaRa Bio), and 
sequenced. The list of primers used in this study is provided 
in Supplementary File 2.
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Fig. 1  Pipeline used for the analysis of miRNA sequencing data
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Results

Overview of ion torrent sequenced small RNA 
libraries from cardamom

To study miRNA mediated plant response to drought stress 
in cardamom, two small RNA libraries named as control 
and treated were prepared from plants raised under well irri-
gated and drought stressed treatments respectively. The Ion 
Torrent sequencing of this two small RNA libraries created 
3,938,342 (C) and 4,083,181 (T) primary reads under con-
trol and treated conditions. 62,915 (1.6%) reads in control 

library and 63,627 (1.6%) reads in treated library were found 
to be with 3′ adapters. Following the filtering steps explained 
in the “Materials and Methods” section, 1,251,632 (C) and 
997,432 (T) collapsed sequences were obtained from the 
two libraries with a size range of 17–27 nt (Table 1). The 
sequence length distribution of collapsed reads from both 
control and drought stress small RNA libraries are shown in 
Fig. 2. Nucleotide sequences of 22, 23 and 24 base lengths 
are considerably lesser in drought treated library when com-
pared with control library. It may be due to the inhibition 
of sequences with this type of lengths in drought stressed 
library (Liu et al. 2015).

Table 1  Statistics of small RNA 
sequences for control (C) and 
drought treated (T) libraries

Control library Drought 
treated 
library

Raw reads 3,938,342 4,083,181
Reads with 3′ adapter 62,915 63,627
Reads after the removal of other small RNAs 3,157,875 3,062,358
Unique reads 1,251,632 997,432
Reads matching against known miRNAs 1734 2078
Conserved miRNAs 139 134
Novel reads mapped to the transcriptome 515,716 449,475
Novel miRNAs 9 12

Fig. 2  Distribution of small RNAs in a control and b drought stress 
libraries. Nucleotide sequences of 22, 23 and 24 base lengths are con-
siderably lesser in drought treated library when compared with con-

trol library. It may be due to the inhibition of sequences with this type 
of lengths in drought stressed library
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Identification of known and novel miRNAs

Cardamom miRNAs which are conserved in other plant 
species were identified by comparing with miRNAs from 
miRBase database (Griffiths-Jones et al. 2008). Mapping 
of filtered reads against miRBase 21.0 identified 1734 (C) 
and 2078 (T) reads matching against known miRNAs. A 
total of 150 conserved miRNAs were identified from the two 
libraries, of which 139 miRNAs belonging to 36 families 
and 134 miRNAs belonging to 34 families from control and 
treated libraries respectively (Table 1). miR159, miR396, 
miR535, miR166b, miR167 and miR396e were the most 

abundantly expressed miRNAs in both the libraries (Fig. 3). 
miR156/159/319 family contained 30 members which is 
the highest among the miRNA families identified while 15 
miRNA families (miR3711, miR482, miR5179, miR5250, 
miR528, miR6478, miR8175, miR8285, miR894, miR9674, 
miR394, miR8155, miR5810, miR5765 and miR2673) each 
had only one member (Fig. 4). Known miRNAs are classi-
fied into conserved and non-conserved based on the num-
ber of different plant families in which they were already 
reported (Zhang et al. 2006). We identified 24 miRNA fami-
lies which are conserved and 14 miRNA families which are 
non-conserved in other plant species (Supplementary File 3).

0

100

200

300

400

500

600

Ab
un

da
nc

e

Known miRNA family

Control Drought treated

Fig. 3  Count of each known miRNA family. miR159, miR396, miR535, miR166b, miR167 and miR396e were the most abundantly expressed 
miRNAs in both the libraries

0
5

10
15
20
25
30
35

m
iR

15
6/

15
9/

31
9

m
iR

16
0

m
iR

16
2

m
iR

16
4

m
iR

16
6

m
iR

16
7

m
iR

16
8

m
iR

16
9

m
iR

17
1/

m
iR

47
9

m
iR

17
2

m
iR

37
11

m
iR

39
0

m
iR

39
3

m
iR

39
5

m
iR

39
6

m
iR

39
7

m
iR

39
8

m
iR

39
9

m
iR

40
8

m
iR

47
7

m
iR

48
2

m
iR

51
79

m
iR

52
50

m
iR

52
8

m
iR

52
9

m
iR

53
0

m
iR

53
5

m
iR

64
78

m
iR

81
75

m
iR

82
85

m
iR

84
5

m
iR

89
4

m
iR

96
74

m
iR

47
7

m
iR

39
4

m
iR

81
55

m
iR

58
10

m
iR

57
65

m
iR

26
73

N
um

be
r o

f m
em

be
rs

 p
er

 fa
m

ily

Known miRNA family

Fig. 4  Distribution of number of members in known miRNA families. miR156/159/319 family contained 30 members which is the highest 
among the miRNA families identified while 15 miRNA families each had only one member



207Plant Growth Regulation (2019) 87:201–216 

1 3

The remaining 1,175,494 (C) and 941,664 (T) reads were 
retained for novel miRNA prediction. From this 515,716 (C) 
and 449,475 (T) reads got aligned with the transcriptome 
sequence of Curcuma longa and were used for the predic-
tion of novel miRNAs. The main step involved was to ana-
lyse the precursor sequences of each aligned read and to 
check the ability to form stem loop secondary structures 
using RNAfold from the Vienna RNA software package 
(Hofacker 2003). Using software package miRDeep-P, 9 
novel miRNAs from the control and 12 new miRNAs from 
the treated small RNA libraries were identified. The length 
of these novel miRNAs varied from 21 to 25 nt, with the 
majority being 24 nt. The stability of stem loop second-
ary structure is measured in terms of minimum free energy 
(MFE), a lower value of MFE indicates greater stability 
of RNA secondary structure and it is a characteristic of 
miRNAs (Bonnet et al. 2004). The average MFE for car-
damom miRNA precursors was comparatively lower and 
found to be − 59.28 kcal mol−1 which is in accordance 
with MFE calculated for miRNA precursors of other plant 
species like Chick pea (− 57.58 kcal mol−1), Arabidopsis 
(− 76.2 kcal mol−1), rice (− 71.57 kcal mol−1), soybean 
(− 56.83 kcal mol−1), Medicago (− 67.73 kcal mol−1) and 
Sorghum (− 54.29 kcal mol−1) (Jain et al. 2014; Katiyar et al. 
2015).

Differentially expressed miRNAs in response 
to drought in cardamom

Differential expression analysis was performed between 
the control and treated libraries to identify drought 

responsive miRNAs in cardamom. Seventeen known miR-
NAs which belong to twelve miRNA families were iden-
tified to be differentially expressed under drought stress 
(Table 2). Of these, 11 miRNAs were upregulated and 6 
miRNAs got downregulated. miR169f and miR172 were 
the most significantly upregulated (fold change 3.64) and 
downregulated (fold change − 2.6) miRNAs respectively 
(Fig. 5; Table 3). 16 conserved and 8 novel miRNAs were 
discovered only in control library whereas 11 conserved 
and 11 novel miRNAs were found only in the treated 
library (Supplementary File 4). These miRNAs from the 
treated plants might be expressed under the influence of 
drought stress in cardamom.

Table 2  Drought responsive 
miRNAs in cardamom

Family miRNA miRNA reads Normalized reads Fold change P-value

Control Treated Control Treated

miR156/miR159 miR156d 6 18 4.79374 18.0463 1.9 0.010
miR159b 4 9 3.19583 9.02317 1.50 4.42E−80
miR156l 3 1 2.39687 1.00257 − 1.25 0.017

miR166 miR166d-5p 7 1 5.59270 1.00257 − 2.4 1.08E−15
miR166p 3 1 2.39687 1.00257 − 1.25 0.017

miR167 miR167f5p 2 5 1.59791 5.01287 1.68 4.00E−16
miR169 miR169d 4 10 3.19583 10.0257 1.64 6.75E−100

miR169f 1 10 0.79896 10.0257 3.64 9.87E−76
miR171 miR171i 2 5 1.59791 5.01287 1.64 4.00E−16

miR171b 3 1 2.39687 1.00257 − 1.25 0.017
miR172 miR172 8 1 6.39166 1.00257 − 2.6 3.03E−23
miR396 miR396f-5p 2 5 1.59791 5.01287 1.64 4.00E−16
miR397 miR397 1 3 0.79896 3.00772 1.91 3.30E−05
miR399 miR399b 3 1 2.39687 1.00257 − 1.25 0.017
miR408 miR408 8 19 6.39166 19.0489 1.57 0.05
miR477 miR477e 3 11 2.39687 11.0283 2.2 1.11E−109
miR3711 miR3711 1 3 0.79896 3.00772 1.9 3.30E−05
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Target prediction and functional annotation

Target prediction of known and novel miRNAs is required 
for annotation of molecular functions (Liu et al. 2015). 1261 
unique potential targets were identified for known and novel 
miRNAs in cardamom using psRNATarget software. Gene 
ontology enrichment analysis for all the predicted miRNA 
targets of cardamom was carried out using the tool AgriGO. 
Target genes were found to be involved in biological process, 
cellular component and molecular function. Large number of 
target genes were mainly found to be associated with cellular 

process (GO:0009987), metabolic process (GO:0008152), 
biological regulation (GO:0065007), response to stimulus 
(GO:0050896), developmental process (GO:0032502) and 
multicellular organismal process (GO:0032501) in the cat-
egory biological process. For cellular component the main 
terms are cell part (GO:0044464), cell (GO:0005623), 
organelle (GO:0043226) and important terms for molecu-
lar functions are binding (GO:0005488), catalytic activ-
ity (GO:0003824) and transcription regulator activity 
(GO:0030528) (Fig. 6). Six genes with GO term ‘response 
to water deprivation’ (GO:0009414), four genes with GO 
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Fig. 6  Gene ontology analysis of target genes for all known and novel 
miRNAs in cardamom. Gene ontology enrichment analysis for all the 
predicted miRNA targets of cardamom was carried out using the tool 

AgriGO. Target genes were found to be involved in biological pro-
cess, cellular component and molecular function
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term ‘response to heat’ (GO:0009408), eight genes with GO 
term ‘response to cold’ (GO:0009409), eight genes with 
GO term ‘response to salt stress’ (GO:0009651), two genes 
with GO term ‘cellular response to phosphate starvation’ 
(GO:0016036) and seven genes with GO term ‘response to 
oxidative stress’ (GO:0006979) were identified by further 
analysis of genes related with GO term ‘response to stimu-
lus’ (Figs. 6, 7). These identified GO terms are associated 
with the major abiotic stress factors which limits the pro-
ductivity of plants. We also identified four genes with GO 
term ‘response to abscisic acid stimulus’ (GO:0009737) and 
three genes with GO term ‘response to peroxidase activity’ 
(GO:0004601). Abscisic acid (ABA) and peroxidase activity 
play important roles in drought stress conditions. miRNAs 
which target the genes involved in ‘response to water depri-
vation’ is shown in Table 4.

qRT PCR validation

Among the eight drought responsive miRNAs selected for 
qRT PCR study, seven showed similar expression pattern 
with that of the small RNA sequencing results (Fig. 8). 
miR156d, miR169f, miR3711 and miR397 were upregulated 
and miR172, miR166d5p and miR171b were found to be 
downregulated. In contrast to the high throughput sequenc-
ing results, miR477e was downregulated in qRT PCR 
results. It may be due to the low quality of the primers or 
low abundance of the miRNAs and more study is needed to 
confirm this observation. Previous studies conducted in Gly-
cine max, Populus euphratica and rice roots have reported 
this type of contradiction between the deep sequencing and 
qRT PCR results (Li et al. 2011a, b; Bakhshi et al. 2016).

Validation of miRNA targeted cleavage on mRNAs

RLM RACE was done to confirm two unigene sequences as 
targets for cardamom miRNAs (Fig. 9). Unigene 8377-2_
P1263 encoding MYB domain protein was mapped with 
a cleavage site at the 12th nucleotide of the miR159 from 
5′end. Cleavage site at the 9th base of the miR169 bind-
ing site on the unigene 8377-1_P1263 which encodes the 
nuclear factor Y; subunit 1 having a considerable role in 
drought tolerance was identified.

Fig. 7  Stress responsive 
genes associated with GO 
term ‘response to stimulus’. 
Six genes with GO term 
‘response to water depriva-
tion’ (GO:0009414), four 
genes with GO term ‘response 
to heat’ (GO:0009408), eight 
genes with GO term ‘response 
to cold’ (GO:0009409), eight 
genes with GO term ‘response 
to salt stress’ (GO:0009651), 
two genes with GO term ‘cel-
lular response to phosphate 
starvation’ (GO:0016036) and 
seven genes with GO term 
‘response to oxidative stress’ 
(GO:0006979) were identified 
by further analysis of genes 
related with GO term ‘response 
to stimulus’
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Table 4  miRNAs targeting genes which respond to water deprivation

Target miRNA Score (UPE) Inhibition

AT2G29130.1 miR397a 1.5 Cleavage
miR530b 2.5 Translation
miR397 2.5 Cleavage

AT3G45140.1 miR397 2.5 Cleavage
AT1G54160.1 miR169c 3 Cleavage
AT2G38470.1 miR393d 3 Cleavage

miR393-5p 3 Cleavage
miR393 3 Cleavage

AT5G08620.1 miR156c 3 Cleavage
miR156 2.5 Cleavage
miR156r 2 Cleavage
miR156b 3 Cleavage
miR156e 2.5 Cleavage
miR156l 2.5 Cleavage
miR156a 3 Translation

AT2G35930.1 miR396a 3 Cleavage
miR396e 3 Cleavage
miR396 3 Cleavage
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Discussion

Plants are continuously exposed to both biotic and abi-
otic stresses which limit crop yields. Among those fac-
tors, the negative influence of abiotic stress is increasing 
worldwide. This pointed out to the fact that unraveling 
the complex mechanisms underlying stress resistance of 
plants has profound significance to tackle the situation. 
Recently, the newly developed sequencing technologies, 
such as the Illumina Genome Analyzer, the ABI SOLiD 
system and Ion Torrent sequencing, show advances over 
traditional methods with improved throughput, speed and 
reduced cost. Currently, such next generation sequencing 
technologies offer applications such as identification of 
miRNAs in control and stress environments, which detect 
differential expression of those miRNAs and deliver new 

insights into the role of miRNAs in plant development, 
and stress related regulation. To date, nothing is known 
about the functions of miRNAs in abiotic stress responses 
in cardamom.

High‑throughput sequencing of cardamom 
microRNAs

Small RNA libraries were constructed from wild cardamom 
plants grown under irrigated and drought conditions and Ion 
torrent sequencing was performed. After the pre-processing 
steps of the raw reads, sequences with 17–27 nt length were 
obtained. A total of 150 known and 20 novel miRNAs were 
identified from both the control and drought treated librar-
ies. Sequences having 21 nt length were abundant among 
the miRNAs identified for both control and drought stressed 
small RNA libraries (Fig. 10). miR159, miR396, miR535, 
miR166b, miR167 and miR396e were the most abundantly 
expressed miRNAs. miR159 target mRNAs coding for MYB 
proteins which are known to bind to the promoter of the flo-
ral meristem identity gene LEAFY (Reyes and Chua 2007). 
miR396 target mRNA coding for Growth regulating factor 
(GRF) transcription factors, Rhodenase like protein and 
kinesin like protein B (Liu et al. 2009). miR535 mediates 
the cleavage of an SPL gene, controlling a number of funda-
mental aspects of plant growth and development, including 
vegetative phase change, flowering time, branching, and leaf 
initiation rate. miR166b cleave their target mRNAs of HD-
ZIP III genes, play overlapping, distinct and antagonistic 
roles in key aspects of development that have evolved dur-
ing land plant evolution (Boualem et al. 2008). miR167 has 
been implicated in auxin signalling by regulating the expres-
sion of certain auxin response factor (ARF) genes to deter-
mine the plant developmental process (Ebrahimi Khaksefidi 
et al. 2015). miR3711 which is a non-conserved miRNA 
reported only in Norway spruce and Astragalus chrysochlo-
rus targets the hydroxycinnamoyltransferase gene which is 
known to promote lignin synthesis. Lignin is known to have 
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Fig. 8  Relative expression level of miRNAs evaluated by qRT PCR 
method. Among the eight drought responsive miRNAs selected for 
qRT PCR study, seven showed similar expression pattern with that of 
the small RNA sequencing results. miR156d, miR169f, miR3711 and 
miR397 were upregulated and miR172, miR166d5p and miR171b 
were found to be downregulated. In contrast to the high throughput 
sequencing results, miR477e was downregulated in qRT PCR results

4/5

8377-2_P1263 3’ ACACUCGUAUUCUGAAGCCUAACUUCCCUCGAGACGGACAACGCGC 5’
|| ||||||||||||||||||   

miR159 5’ UUUGGAUUGAAGGGAGCUCUG 3’

4/5

8377-1_P1263 3’ GCAAAAUCGUGAUCGUCGGUUCCUACAGAACGGAUGUUUUUUGAUUUC 5’
|||||||||||| ||||||||

miR169 5’ CAGCCAAGGAUGACUUGCCUA 3’

Fig. 9  Mapping of target gene cleavage sites by 5′RLM-RACE. For 
each cardamom miRNA, miRNA sequence is shown in blue colour 
at the bottom and the partial target sequence is shown in black and 

red colour at the top. Arrow indicates the mapped cleavage sites on 
miRNA aligned position on the target mRNAs and number denotes 
the fraction of cloned pcr product. (Color figure online)
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pest resistance characteristics because of the insolubility 
and complexity of lignin polymer. There is a proposition 
that cardamom plants with high lignin content show more 
resistance to pest (Soumya and Sabu 2014). The targets of 
novel miRNAs were predicted using psRNAtarget. The func-
tions employed by these targets were analysed by searching 
against the TAIR database (Supplementary File 5).

Drought responsive microRNAs in cardamom

Seventeen miRNAs belonging to 11 families were found to 
be drought responsive in cardamom. Of these miRNA fami-
lies, 9 were previously reported to be upregulated or down-
regulated under drought stress. miR156/159 family members 
like miR156d and miR159b were found to be induced and 
miR156l was repressed under drought stress in cardamom. 
Gene ontology analysis has shown that miR156l cleaves 
the target mRNA AT5G08620.1 which was identified to be 
involved in response to water deprivation (Table 4).There 
are reports that miR156 was up-regulated in A. thaliana 
(Liu et al. 2008), Triticum dicoccoides (Kantar et al. 2011), 
Hordeum vulgare (Kantar et al. 2010), Populus euphratica 
(Li et al. 2009), Prunus persica (Eldem et al. 2012) and was 
downregulated in Oryza sativa (Zhou et al. 2010). miR159b 
in cardamom was upregulated like that in Arabidopsis, but 
was discovered to be repressed in Oryza and Prunus. Both 
miR166 family members, miR166d-5p and miR166p were 
identified to be downregulated in this study. miR166 was 
downregulated in Triticum, but was induced in Glycine max. 
miR167 was upregulated in Arbidopsis and downregulated 
in Prunus. In this study miR167f-5p was induced under 
drought stress. miR169 targets Nuclear factor Y (NF-Y) tran-
scription factor subunit A-5 which have predominant roles 
in developmental process and response to abiotic stresses in 

plants (Ding et al. 2013). miR169 was upregulated in tomato 
in response to drought. With the increased expression of 
miR169c in tomato, stomatal conductance and water loss 
become decreased and shows increased tolerance to drought 
(Li et al. 2008). Induced expression of this miRNA under 
drought stress was also observed in other plants like Oryza, 
Glycine max (Li et al. 2011b) and Populus euphratica. We 
also observed that miR169d and miR169f were upregulaed 
in cardamom. Using AgriGO software, miR169c in car-
damom was found to target AT1G54160.1 mRNA which 
express in response to water deprivation. In contrast to this, 
downregulation of this miR169 was found in Arabidopsis, 
Medicago (Wang et al. 2011) and Prunus. NFYA5 gene is 
more expressed in guard cells and vascular tissues. In guard 
cells, NFYA5 controls the opening and closing of stomata 
and in vascular tissues, NFYA5 regulates the expression 
of many drought responsive proteins (Li et al. 2008). This 
drought responsive proteins include dehydrins, vacoular acid 
invertase, glutathione-S-transferase (GST), helicase, proline, 
carbohydrates and abscicic acid regulating genes produc-
ing proteins like late embryo abundant (LEA), responsive to 
abscisic acid (RAB), cold regulated (COR) and 5-bisphos-
phate carboxylase oxygenase (Rubisco) (Close 1996; Pnueli 
et al. 2002; Trouverie et al. 2003; Anderson and Davis 2004; 
Nezhadahmadi et al. 2013). Expression of two members of 
the family miR17l was obtained in a contradictory manner. 
miR171i was upregulated and miR171b was downregulated 
in cardamom under drought stress. There are many reports 
of such differentially expressed miRNA members of the 
same families in response to water stress condition(Ferdous 
et al. 2015). In rice miR171 family members showed both 
induced and repressed expression, miR171b was upregulated 
and miR171i, miR171a, miR171c and miR171 show down-
regulation (Zhou et al. 2010). Upregulation of this miRNA 

Fig. 10  Distribution of miRNA 
sequences obtained from control 
and drought treated small RNA 
libraries. Sequences having 
21 nt length were abundant 
among the miRNAs identified 
for both control and drought 
stressed small RNA libraries
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family was found in other plant species like Arabidopsis, 
Prunus and down-regulation was observed in Triticum and 
Medicago. miR172 was downregulated in cardamom with 
a significant fold change of − 2.6. It was downregulated in 
rice also, but an induced expression level was noticed in 
case of Arabidopsis. miR396 was repressed in most of the 
plant species like rice, Medicago and Prunus. In cardamom 
miR396f-5p was upregulated as in Arabidopsis. In this study, 
Gene ontology has shown that the gene AT2G35930.1 and 
AT3G45140.1, which functions in response to water stress 
condition is targeted by miR396 and miR397 respectively. 
miR397 which showed upregulation in cardamom was found 
to be induced in Arabidopsis also, but was downregulated 
in rice and Prunus. miR399 was reported to be upregu-
lated under drought condition in Medicago. In cardamom 
miR399b was identified to be downregulated. A repression 
of miR408 was observed in plant species like rice, Prunus 
and Populus trichocarpa (Shuai et al. 2013) which targets 
drought responsive genes like early responsive dehydration-
related protein (ERD) and polyphenol oxidase (PPO). In 
cardamom, miR408 shows an upregulation like in Arabi-
dopsis and Medicago. Studies have shown that upregulation 
of miR408 cleaves the target genes of COX5b, CSD1 and 
plantacyanin in Medicago (Trindade et al. 2010). miR477e 
in cardamom was upregulated under water stress. miR477 
was found to be significantly differentiated in bread wheat 
under drought condition. miR3711 which is a non-conserved 
miRNA discovered as drought regulating in cardamom was 
not previously reported to be responsive to drought stress. 
miR3711 was reported to be upregulated in selenium treated 
tissues of Astragalus chrysochlorus (Cakir et al. 2016). 
Cross adaptation is a phenomenon in which plants subjected 
to a stress develop resistance against other stresses (Sabe-
hat et al. 1998). In Medicago, upregulation of miR2089 and 
miR2118 was observed under drought stress whose target 
genes are responsive to disease condition (Wang et al. 2011). 
Upregulated miRNAs during stress condition leads to the 
inhibition of target genes which negatively affects the stress 
tolerance and downregulated miRNAs helps in accumulation 
of target mRNAs which positively contributes towards stress 
tolerance (Zhang 2015).

Monocot specific miRNAs in cardamom

miR396d and miR396e, reported to be present only in mono-
cots were observed in cardamom which belongs to the mono-
cotyledons family Zingiberaceae (Sunkar and Jagadeeswaran 
2008). miR528 which is a monocot specific family detected 
in rice, sorghum and maize was found in our study (Franke 
and Green 2015). SsCBP1 was experimentally proven to be 
target for miR528 (Zanca et al. 2010). miR528 target recog-
nition site in SsCBP1 is present only in monocot genomes 
and was confirmed that miR528 is monocot specific. Other 

miRNAs specific to monocots (Katiyar et al. 2015) observed 
in cardamom are miR156b, miR319a-b, miR395, miR396a 
and miR529.

Conclusions

This study provides an insight into the drought responsive 
miRNAs of cardamom by combined small RNA sequencing 
and bioinformatics analysis. A total of 150 conserved and 
20 novel miRNAs were identified from both the control and 
treated libraries. Discovery of 17 differentially expressed 
miRNAs under drought stress suggests that these miR-
NAs might have involved in various biological processes 
to improve plant tolerance to water stress. Target genes 
were found to be involved in cellular, metabolic, biological 
regulation, response to stimulus, developmental and mul-
tiorganismal processes. Expression profiles of a group of 
differentially expressed miRNAs were successfully validated 
by using qRT PCR. This study would provide valuable con-
tribution towards understanding miRNA-mediated regula-
tory mechanisms underlying drought response in monocot 
plants.
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