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Introduction

Atmospheric CO2 concentrations have been increas-
ing dramatically due to anthropogenic activities, 
from approximately 280  μmol  mol−1 to the current 
level of 400  μmol  mol−1, and are projected to exceed 
800  μmol  mol−1 by 2100 (NOAA 2013). Atmospheric 
nitrogen (N) deposition has also increased, by three- to 
five-fold within the last century, and is expected to continue 
to rise (Galloway et al. 2008). Elevated CO2 levels and N 
deposition have affected global biogeochemical cycles, 
particularly the carbon (C), N and phosphorus (P) cycles 
in terrestrial ecosystems (Heimann and Reichstein 2008; 
Gruber and Galloway 2008; Marklein and Houlton 2012). 
The altered ecosystemic nutrient cycles may lead to shifts 
in C:N:P stoichiometry in plant-soil systems (Yang et  al. 
2011; Huang et  al. 2015a). The stoichiometric flexibility 
of elemental ratios, in return, may influence biogeochemi-
cal cycles by their effects on the material cycle in natural 
ecological systems (Huang et  al. 2015b; Liu et  al. 2015). 
Obtaining sufficient concentrations of nutrient elements 
and maintaining relatively stable stoichiometries in plant 
tissues is vital for health (Han et  al. 2011). Our knowl-
edge of the relationship between the global environmental 
changes and ecosystem stoichiometric responses is very 
important for understanding future biogeochemical cycles 
in terrestrial biosphere (Sardans et  al. 2012; Huang et  al. 
2012; Liu et al. 2013a).

Increased atmospheric CO2 concentration stimulates 
photosynthesis and plant biomass, which are affected by 
most environmental stresses, such as nutrient limitation 
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and water deficits (Newingham et  al. 2013; Dong et  al. 
2016; Xiao et al. 2016). The sustainability of ecosystemic 
responses to CO2 maybe constrained by the progressive 
N limitation induced by the stimulation of growth from 
increased CO2 levels (Luo et al. 2004; Reich et al. 2006). 
The interaction of elevated CO2 levels and N addition would 
therefore synergistically increase plant biomass (Lee et al. 
2010; Zhang et al. 2011; Novriyanti et al. 2012; Dong et al. 
2016). A meta-analysis also showed that both grassland 
above- and belowground biomasses increased with a com-
bination of CO2 elevation and N fertilization (Sillen and 
Dieleman 2012). Plant C:N and C:P ratios usually increase 
due to the dilution of N and P concentrations by the accu-
mulation of carbohydrates (Novotny et al. 2007; Stiling and 
Cornelissen 2007). Elevated CO2 levels and N deposition 
can also alter the structures of soil microbial communi-
ties (Lee et al. 2015) and significantly increase soil respi-
ration and nutrient (e.g. N and P) loss from decomposing 
litter (Deng et  al. 2013; Liu et  al. 2015). The availability 
of soil N and P can thus be increased under elevated CO2 
levels in combination with N addition (Huang et al. 2014), 
thereby increasing plant N and P concentrations (Huang 
et al. 2015a). Plant N:P ratios, however, maybe not affected 
(Huang et  al. 2015a), may increase (Huang et  al. 2012) 
or may decrease (Liu et  al. 2013a), depending on species 
(Liu et al. 2013a) and soil nutrient conditions (Huang et al. 
2012, 2015a). Most studies until recently have focused on 
elemental-nutrient stoichiometries on the leaf-level rather 
than the level of whole plants (Liu et al. 2012; Huang et al. 
2012). Mineral elements can respond to elevated CO2 lev-
els and N addition more strongly in roots than leaves (Liu 
et al. 2013a; Huang et al. 2015c), and leaf-level responses 
may not be representative of whole-plant responses. The 
responses of different plant tissues to elevated CO2 levels 
and N addition, however, remain largely unexplored.

Carbohydrates are the main products of plant photo-
synthesis and are be partitioned mostly into structural 
carbohydrates (SCs) and non-structural carbohydrates 
(NSCs), based on their roles (Song et  al. 2016). SCs, 
including lignin, cellulose, hemicelluloses and pectin, are 
mainly used for the structural growth of plants; NSCs, 
mainly soluble sugar (SS) and starch, provide substrates 
for plant growth and metabolism (Quentin et  al. 2015; 
Hartmann and Trumbore 2016). SS is the main form for 
translating carbohydrates, and starch is the pivotal non-
soluble longer-term storage compound. The concentra-
tions of NSCs strongly influence plant growth and are 
sensitive to environmental changes (Ibrahim et al. 2011; 
de Souza et  al. 2013). The proportional relationships 
between N, P and NSCs, to a large extent, reflect the 
amount of available C for plant growth and its use effi-
ciency (Yin et al. 2009; Guo et al. 2015). Previous studies 
have mainly focused on the foliar stoichiometries of C, N 

and P, but the responses of NSC, N and P stoichiometries 
to elevated CO2 levels and N addition, and the ecological 
significance of these responses, are unclear, strongly hin-
dering our understanding of the availability of C for plant 
growth and its relationships with elemental N and P.

Bothriochloa ischaemum (L.) Keng is a dominant 
species in natural grassland communities, which is 
widespread in the hilly-gully regions on the Loess Pla-
teau. The current rate of N deposition in this area is 
2.2 g N m−2 y−1 (Wei et al. 2010; Han et al. 2013) and is 
expected to increase in the future (Galloway et al. 2004). 
Elevated global levels of CO2 and N deposition would 
synergistically lead to changes in the nutrients cycles in 
this temperate area. The levels of both soil total N and P 
are low on the Loess Plateau (Liu et al. 2013b) and dif-
fer greatly from those in temperate and tropical forests, 
which are usually regarded as N- and P-poor, respectively 
(Huang et al. 2012). The response of perennial grass spe-
cies to elevated CO2 levels in combination with N dep-
osition has rarely been studied. The aim of the present 
research was to evaluate the concentrations and stoi-
chiometries of NSCs, N, and P in whole plants, shoots 
and roots of B. ischaemum under elevated CO2 levels 
combined with N additions. We further hypothesized 
that (1) roots would respond more strongly than shoots 
to elevated CO2 concentration and N addition and (2) N 
addition would have a stronger effect than elevated CO2 
concentration on the concentrations and stoichiometries 
of NSCs, N and P in this nutrient-poor area.

Materials and methods

Plant material and soil

Seeds of B. ischaemum, a C4 perennial herbaceous grass 
species, were collected in the autumn of 2013 from the 
experimental fields at the Ansai Research Station (ARS) 
(36°51′30″N, 109°19′23″E), Chinese Academy of Sci-
ences, on the Loess Plateau of China. The station has a 
mean annual temperature of 8.8 °C, and receives a mean 
annual precipitation of 510  mm, most of which occurs 
from July to September. The rates of seed germination were 
>90% when germinated on moist filter paper in Petri dishes 
at 25 °C prior to the experiment.

The soil was collected from the upper 20  cm layer of 
a farmland at ARS. Soil gravimetric moisture content as 
a percentage of field capacity (FC) and the wilting point 
were 20 and 4%, respectively. The soil organic carbon, total 
nitrogen, and total phosphorus content were 1.50, 0.21, and 
0.57  g  kg−1, respectively. The soil was sieved through a 
5 mm mesh before the experiment.
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Experimental design

The cylindrical plastic pots (20  cm in depth, 15  cm in 
diameter) with sealed bottom were filled with 3.8 kg soil. 
Multiple seeds were sown in the pots on 1 June 2014. All 
pots were well watered in order to ensure seedling estab-
lishment. After emergence, seedlings were thinned to three 
plant per pot. The pots were transferred to two closed cli-
mate-controlled chambers (AGC-D001P, Qiushi Corp., 
Hangzhou, China) on 1 August 2014. The environmental 
conditions of the two chambers have been described detail 
elsewhere (Xiao et al. 2016). Briefly, one chamber received 
ambient CO2 concentration (400  μmol  mol−1), the other 
received elevated CO2 concentration (800  μmol  mol−1). 
The pots in each chamber received N fertilizer by spraying 
the seedlings twice a month at rates of total NH4NO3–N of 
0, 2.5 and 5 g N m−2 y−1, respectively. All pots were regu-
larly weighed, and water was added through plastic pipes 
to above 80% of FC until the end of the experiments. There 
were a total of six treatments were included: ambient CO2 
concentration and no N fertilization (AN0), ambient CO2 
concentration and low-N fertilization (AN1); ambient CO2 
concentration and high-N fertilization (AN2); elevated CO2 
concentration and no N fertilization (EN0), elevated CO2 
concentration and low-N fertilization (EN1); elevated CO2 
concentration and high-N fertilization (EN2). Each treat-
ment had five replicates.

Sample collection and measurement

At the end of growing season, the three plants in each of 
pot were harvested. The shoots were severed from the roots 
at the crown. The roots were collected from the soil and 
carefully washed. Shoots and roots were dried at 80 °C for 

48 h in oven to determine the dry weights (DW), respec-
tively. Shoots and roots were ground using a mortar and 
pestle to fine powder prior to NSC, N, and P analyses.

NSCs were defined as the sum of SS and starch concen-
trations, which were measured using the anthrone method 
(Yemm and Willis 1954). The details of the extractions and 
measurements are described by Zhang et al. (2015). SS and 
starch concentrations were expressed as mg g−1 DW.

N and P concentrations were measured by Kjeldahl 
method and molybdenum blue method, respectively (Bao 
2000). The N and P concentrations were presented in units 
of mg g−1 DW.

Statistical analysis

The SPSS 16.0 (SPSS Inc., Chicago, USA) was used for 
data analysis. Two-way analysis of variance (ANOVA) was 
conducted to evaluate the effects of CO2 and N treatments 
and their interactions on the concentrations and stoichio-
metries of NSCs, N and P based on whole plants, shoots 
and roots. Differences between each treatment were com-
pared by Duncan’s multiple range tests at a probability 
level of 0.05.

Results

Plant Biomass

The elevated CO2 concentration and N addition had sig-
nificantly positive effects on total, shoot and root bio-
masses and the root:shoot ratio (P <0.01 or <0.001) 
(Table  1). The elevated CO2 concentration increased 
total biomass by 47.14, 71.05 and 51.04% in the EN0, 

Table 1   Effects of elevated 
CO2 concentration and nitrogen 
addition on plant biomass and 
its allocation

Different letters with a column indicate significant differences (P < 0.05) based on Duncan’s multiple range 
test
*P < 0.05
**P < 0.01
***P < 0.001

Treatment Total biomass (mg) Shoot biomass (mg) Root biomass (mg) Root to shoot ratio

AN0 466.67 ± 51.32a 280.87 ± 23.58a 185.8 ± 27.83a 0.66 ± 0.05a
AN1 1013.33 ± 247.86b 581.22 ± 153.55b 432.11 ± 97.7a 0.75 ± 0.08ab
AN2 2716.67 ± 358.38d 1473.87 ± 110d 1242.79 ± 249.93c 0.84 ± 0.11bc
EN0 686.67 ± 75.06ab 406.55 ± 68.04ab 280.12 ± 18.14a 0.70 ± 0.10ab
EN1 1733.33 ± 94.52c 879.59 ± 54.56c 853.74 ± 41.76b 0.97 ± 0.03c
EN2 4103.33 ± 290.23e 1966.89 ± 285.25e 2136.44 ± 178.17d 1.10 ± 0.19d
F values of two-way ANOVAS
CO2 55.751*** 20.151*** 55.916*** 12.028**
N 263.861*** 144.952*** 190.546*** 11.336**
CO2 × N 10.585** 2.428 13.633** 1.840
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EN1 and EN2 treatments, respectively. N addition at the 
ambient CO2 concentration increased total biomass by 
117.17 and 482.14% in the AN1 and AN2 treatments, 
respectively, and N addition at the elevated CO2 concen-
tration increased total biomass by 152.43 and 497.57% 
in the EN1 and EN2 treatments, respectively. The interac-
tion of the elevated CO2 concentration and N addition 
significantly affected total and root biomass (P < 0.01).

NSC, N and P concentrations

The elevated CO2 concentration significantly increased 
the starch and NSC concentrations in whole plants, 
shoots and roots (P <0.01 or <0.001) (Table 2; Fig. 1). 
N addition significantly decreased the SS concentration 
in whole plants and shoots and significantly increased 
the starch and NSC concentrations in whole plants, 
shoots and roots (P <0.01 or <0.001). The interaction of 
the elevated CO2 concentration and N addition signifi-
cantly affected only the SS concentration in the shoots, 
with the highest and lowest values in the AN0 and EN2 
treatments, respectively (P < 0.05) (Table 2; Fig. 1b).

The elevated CO2 concentration had a significantly 
negative effect on the whole-plant P concentration 
(P < 0.05) (Table  2; Fig.  1) but not the P concentra-
tions in the shoots and roots. N addition significantly 
increased the N concentrations in whole plants and 
roots and significantly decreased the P concentrations 
in whole plants, shoots and roots (P <0.01 or <0.001). 
The interaction of the elevated CO2 concentration and 
N addition significantly affected the P concentration in 
roots (P < 0.05) (Table 2).

Stoichiometries of NSCs, N and P

The elevated CO2 concentration significantly increased 
the starch:N and NSC:N ratios in whole plants, shoots and 
roots (Table 3; Fig. 2). N addition significantly decreased 
the SS:N ratio in whole plants, shoots and roots and signifi-
cantly increased the starch:N and NSC:N ratios in whole 
plants and roots. The elevated CO2 concentration and N 
addition did not have a significant interactive effect on the 
SS:N, starch:N or NSC:N ratios.

The elevated CO2 concentration significantly increased 
the SS:P ratio in roots and the starch:P and NSC:P ratios in 
whole plants, shoots and roots (Table 3; Fig. 3). N addition 
significantly increased the SS:P ratio in whole plants and 
shoots and the starch:P and NSC:P ratios in whole plants, 
shoots and roots. The elevated CO2 concentration and N 
addition had interactive effects on the starch:P and NSC:P 
ratios in roots.

The elevated CO2 concentration significantly increased 
the N:P ratio in whole plants (Table 3; Fig. 3), and N addi-
tion significantly increased the N:P ratio in whole plants, 
shoots and roots. The elevated CO2 concentration and N 
addition did not have significant interactive effects on plant 
N:P ratios.

Discussion

Plant biomass

Soil nutrient availability modifies the responses of plant 
species to elevated CO2 levels. Soil total N content is low 
on the Loess Plateau (Liu et  al. 2013b), so N addition 
would be better for plant growth. The growth and biomass 

Table 2   Significance 
(F-values) of the effects of 
elevated CO2 concentration, N 
addition and their interactions 
on NSC, N and P concentrations 
(The values were presented in 
Fig. 1)

*P < 0.05
**P < 0.01
***P < 0.001

Source SS Starch NSC N P

Whole plants
 CO2 2.933 76.805*** 49.846*** 0.002 7.531*
 N 38.267*** 153.022*** 80.842*** 6.304** 53.706***
 CO2 × N 2.282 1.398 1.992 0.175 2.433

Shoots
 CO2 0.813 90.954*** 57.183*** 0.498 2.795
 N 25.242*** 21.227*** 7.204** 2.168 38.444***
 CO2 × N 3.916* 0.117 0.256 0.089 1.837

Roots
 CO2 2.190 9.444** 14.989** 0.093 2.766
 N 1.032 138.023*** 160.855*** 23.870*** 6.489**
 CO2 × N 0.088 2.004 2.726 0.336 4.029*
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Fig. 1   SS (a–c), starch (d–f), NSC (g–i), N (j–l) and P (m–o) concentrations in whole plants, shoots and roots of B. ischaemum. Different letters 
indicate significant differences (P < 0.05) based on Duncan’s multiple range test
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Table 3   Significance (F 
values) of the effects of elevated 
CO2 concentration, N addition 
and their interactions on the 
stoichiometries of NSCs, N 
and P

The values were presented in Figs. 2, 3
*P < 0.05 
**P < 0.01
***P < 0.001

Source SS:N Starch:N NSC:N SS:P Starch:P NSC:P N:P

Whole plants
 CO2 0.558 34.804*** 18.175*** 3.600 49.309*** 33.572*** 5.827*
 N 31.644*** 44.198*** 11.909*** 9.305** 103.662*** 71.441*** 34.105***
 CO2 × N 0.467 0.437 0.364 4.521* 2.742 3.383 1.265

Shoots
 CO2 1.093 33.448*** 9.676** 2.163 46.080*** 24.564*** 3.133
 N 10.666*** 3.010 0.663 8.707** 27.714*** 20.716*** 14.726***
 CO2 × N 1.436 0.466 0.446 3.069 1.472 1.911 0.722

Roots
 CO2 1.000 6.122* 6.548* 8.878* 9.029** 14.145** 1.891
 N 11.502** 68.508*** 43.085*** 0.689 99.258*** 113.316*** 29.288***
 CO2 × N 0.229 2.968 2.948 2.664 4.008* 5.940* 1.747

Fig. 2   SS:N (a–c), starch:N (d–f) and NSC:N (g–i) ratios in whole plants, shoots and roots of B. ischaemum. Different letters indicate signifi-
cant differences (P < 0.05) based on Duncan’s multiple range test
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allocation of plants in response to elevated CO2 levels and 
N addition are species-specific (Zhang et  al. 2010, 2011). 
The significant positive effect in our study of the elevated 
CO2 concentration and N addition on the root:shoot ratio 
implies that root growth in B. ischaemum is more sensitive 
than shoot growth to elevated CO2 levels and N addition, 
which supports our first hypothesis.

NSC, N and P concentrations

NSCs are products of photosynthesis and provide energy 
for plant growth and metabolism. NSCs play a central 
role in the response of plants to environmental changes 

(Quentin et al. 2015). Elevated CO2 levels and N addition 
can synergistically enhance plant photosynthesis (Zhang 
et al. 2011; Chen et al. 2016) and thus increase NSC accu-
mulation (Zhang et al. 2008; Zhu et al. 2016). Other stud-
ies have reported that elevated CO2 levels and/or N addition 
had no influence on, or even decreased, NSC concentra-
tions due to higher carbohydrate use and the constraints of 
soil environmental stresses (Kakani et  al. 2011; Pelletier 
et al. 2009; Alderman et al. 2011; Farrer et al. 2013; Sul-
livan et al. 2015; Liu et al. 2016). In the present study, the 
elevated CO2 concentration and N addition synergistically 
increased NSC accumulation, mainly due to the increase 
in starch. The SS content did not change significantly and 

Fig. 3   SS:P (a–c), starch:P (d–f), NSC:P (g–i) and N:P (j–l) ratios in whole plants, shoots and roots of B. ischaemum. Different letters indicate 
significant differences (P < 0.05) based on Duncan’s multiple range test
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even decreased under the elevated CO2 concentration and/
or N addition. The elevated CO2 concentration and N addi-
tion significantly increased root biomass, so less energy 
was used for assimilating soil water and nutrients, and more 
SS, the main direct energy source for metabolism, was con-
verted to starch (Latt et al. 2001), which was stored in the 
plant tissues.

N and P are important nutrients for plant growth (Huang 
et  al. 2012). They are commonly considered as limiting 
factor for primary production and other ecosystemic pro-
cesses. N and/or P concentrations generally decrease in 
plants with elevated CO2 levels because of nutrient dilu-
tion by the accumulation of NSCs (Loladze 2002; Deng 
et al. 2015). Elevated CO2 levels, though, can stimulate soil 
microbial processes and increase nutrient mineralization, 
which contribute to the uptake of more available N and 
P by the plants (Huang et  al. 2012; Sardans et  al. 2012). 
Our results showed that plant N concentration was little 
affected by the elevated CO2 concentration but significantly 
decreased the whole-plant P concentration, suggesting that 
B. ischaemum on the Loess Plateau is more limited by P 
than N under elevated CO2 levels. N deposition directly 
increases soil N availability and can increase the capacity 
of plants to take up P by stimulating the activity of phos-
phatase in the rhizosphere (Phoenix et al. 2004; Fujita et al. 
2010). Increased N deposition thus usually increases N and/
or P concentrations in plant tissues. In the present study, N 
addition significantly increased N concentrations in whole 
plants and roots, supporting our first hypothesis that roots 
would respond more strongly than shoots to N deposition. 
P concentrations, however, decreased significantly with N 
addition in whole plants, shoots and roots, indicating that 
the limiting effect of P was enhanced by N addition.

Stoichiometries of NSCs, N and P

NSCs are the main energy sources for plant growth, repro-
duction and survival under stress (Hartmann and Trumbore 
2016; Song et al. 2016). The ratio of NSCs to N or P, to a 
large extent, reflects the relationship between the input of N 
or P and the output of NSCs and their use efficiencies (Li 
et  al. 2008a, b; Guo et  al. 2015). In accordance with our 
second hypothesis, the elevated CO2 concentration did not 
significantly influence the SS:N or SS:P ratios, and N addi-
tion significantly decreased the SS:N ratio and increased 
the SS:P ratio, implying that each unit of N produces less 
SS, and each unit of P produces more SS. The elevated CO2 
concentration and N addition both significantly increased 
the starch:N, NSC:N, starch:P and NSC:P ratios, indicating 
that each unit of N and P produced more starch and NSCs, 
and the use efficiencies of N and P both increased.

N:P ratios can be used as diagnostic tool for evalu-
ate nutrient limitation in terrestrial ecosystems under 

future environmental scenarios (Liu et  al. 2013a; Huang 
et  al. 2015a). The elevated CO2 concentration increased 
the whole-plant N:P ratio, and N addition significantly 
increased the whole-plant, shoot and root N:P ratios, sup-
porting our second hypothesis. The higher N:P ratios under 
the elevated CO2 concentration and N addition were mainly 
due to the lower P concentrations. This result is consistent 
with those by Huang et al. (2012), who reported that ele-
vated CO2 levels and N addition increased foliar N:P ratio 
in a subtropical model forest. Elevated CO2 levels and N 
addition can decrease N:P ratios but are mainly related to 
the increases P concentrations (Liu et al. 2013a), consistent 
with the results of a previous study reporting strong con-
trol of elevated CO2 levels and N addition on soil nutrient 
availability, especially P availability (Huang et  al. 2014). 
The available-N:available-P ratio is much higher than the 
N:P ratio on the Loess Plateau (Jiao et  al. 2013), and P 
mineralization cannot provide enough available P for plant 
growth under elevated CO2 levels and N addition. Plant 
growth in this region would thus suffer more from P than 
N limitation (Jiao et al. 2013; Xu et al. 2016), and N addi-
tion would exacerbate the P limitation on plant growth (An 
et al. 2011).

Conclusions

The elevated CO2 concentration and N addition signifi-
cantly increased total biomass, starch and NSC concentra-
tions and the root:shoot, starch:N, NSC:N, starch:P and 
NSC:P ratios in whole plants and roots of B. ischaemum. N 
addition alone decreased SS concentration in whole plants, 
increased N concentration and decreased P concentration in 
whole plants and roots and thus decreased the SS:N ratio 
and increased the SS:P and N:P ratios. Our results suggest 
that plant growth on the Loess Plateau suffers more from P 
than N limitation and that N addition would exacerbate the 
P limitation on plant growth.
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