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Effects of 2,4-epibrassinolide on photosynthesis and Rubisco 
activase gene expression in Triticum aestivum L. seedlings under  
a combination of drought and heat stress
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the larger subunit of RCA (45–46  kDa), which is more 
thermostable and increased in response to moderate heat 
stress, and the smaller isoform (38–39 kDa) of RCA may 
play important roles in maintaining the photosynthetic 
capability by EBR under stress conditions.
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Introduction

A broad range of environmental stresses, including cold, 
heat, drought, and high salinity, are responsible for declines 
in crop productivity worldwide (Suzuki et al. 2014). Plants 
are generally subjected to a combination of two or more 
stresses (Moffat 2002). High temperature and drought are 
two major environmental factors that limit crop growth and 
yield, and the combination of these stresses causes many 
physiological changes that affect crop yield and quality 
(Rizhsky et al. 2004; Krasensky and Jonak 2012). Climate 
change models predict that the frequency and intensity of 
both drought and heat stresses will increase in the near 
future (Suzuki et al. 2014). Recent studies have revealed 
that the molecular and metabolic responses of plants to a 
combination of drought and heat are unique and cannot be 
directly extrapolated from plant responses to each of these 
individual stresses (Cairns et al. 2013).

Protein denaturation, enzyme inactivation, reactive oxygen 
species production, disruption of membrane structure, and 
damage to ultrastructural cellular components are some of the 
primary negative effects of drought or heat. In fact, photosyn-
thesis is often the first process that is affected by environmen-
tal stresses, such as heat and drought (Pinheiro and Chaves 

Abstract  We examined the effects of 2,4-epibrassinolide 
(EBR) application on photosynthesis, antioxidant enzyme 
activity, and Rubisco activase (RCA) gene expression in 
wheat (Triticum aestivum L.) seedlings under a combina-
tion of drought and heat stress. The net photosynthetic 
rates (Pn) of wheat seedlings decreased significantly, the 
photosynthetic capability was inhibited, and the activities 
of superoxide (SOD), peroxidase (POD), catalase (CAT), 
and RCA as well as the initial and total activity of Rubisco 
declined under the combined stress. These decreases and 
inhibitory effects were significantly ameliorated by exog-
enous EBR application. Three subunits (45–46, 41–42, and 
38–39  kDa) of RCA were observed in wheat seedlings. 
The abundances of the 38–39  kDa and 41–42  kDa sub-
units were significantly lower in plants subjected to stress-
ful conditions than in unstressed plants. Interestingly, a 
marked increase in 45–46  kDa RCA was observed under 
heat or heat combined with drought stress. The abun-
dance of 38–39  kDa RCA in seedlings exposed to heat, 
drought, or their combination was significantly enhanced 
by EBR pretreatment, which paralleled the changes in ini-
tial Rubisco activity and Pn, but was not consistent with 
observed mRNA abundance. These results indicated that 
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hypochlorite for 15 min followed by repeated washing with 
distilled water.

Treated seeds were germinated on glass Petri dishes 
(15 cm in diameter) with moistened filter paper and allowed 
to grow. Forty seeds were sown per glass culture dish and 
kept in dark conditions for the first 3 days. On the fourth 
day after sowing, seedlings with similar growth in terms 
of shoot and root lengths were selected and transferred to 
a 2-L hydroponics culture plastic box containing 1  L of 
half-strength Hoagland nutrient solution. The boxes were 
wrapped with black tape to prevent light penetration. Then, 
the seedlings were cultured in the artificial climate under 
a 12-h photoperiod, 25 °C/15 °C (day/night) temperature, 
relative humidity of 75 %, and photosynthetic photon flux 
density of 400 µmol m−2s−1. During the cultivation period, 
the nutrition balance was maintained by adding 1 L of nutri-
ent solution to each box at a 2-day interval.

Control seedlings (CK) were maintained at 25 °C and 
75 % relative humidity. Drought stress (D) was induced by 
a 20 % PEG-6000 solution (Sigma–Aldrich Co., St. Louis, 
MO, USA) for 8 h. Heat stress (H) was carried out by trans-
ferring seedlings to a growth chamber pre-conditioned at a 
temperature of 40 °C for 8 h. The combination stress (DH) 
was simultaneously imposed by 20 % PEG and a high tem-
perature (40 °C) for 8  h. For the D + EBR, H + EBR, and 
DH + EBR treatments, seedlings were sprayed with 0.1 
mg·L−1 2,4-epibrassinolide once per day for 3 d before they 
were subjected to stresses. Other seedlings were sprayed 
with distilled water. At 8 h after treatment, the second fully 
expanded leaves (i.e., the second from the top) were sam-
pled, frozen immediately in liquid nitrogen, and stored at 
−80 °C for physiological and gene expression analyses, and 
photosynthetic parameters were determined.

Measurement of chlorophyll a fluorescence transients, 
photosynthetic rate, and chlorophyll content

The net photosynthetic rate (Pn) was determined using a por-
table gas exchange system (LCpro+; ADC, Hoddesdon, UK). 
Ten plants were measured for each treatment. The chlorophyll 
(Chl) content of the second blade from top was measured 
with a Chl meter (SPAD-502; Minolta, Tokyo, Japan). Six 
plants were measured for every treatment. Three SPAD read-
ings were taken, and mean values were used for the analysis.

The polyphasic rise of the fluorescence transient was mea-
sured on the second fully expanded blade from the top after 
30 min of dark adaptation using a Plant Efficiency Analyzer 
(PEA; Hansatech, UK), following the procedures of Stras-
ser and Strasser (1995). The transients were induced by red 
light of approximately 3000 µmol photons m−2s−1 provided 
by an array of 6 light-emitting diodes (peak 650 nm) (Zhang 
et al. 2011). The chlorophyll a fluorescence transients were 
obtained by 2 s saturating red light and analyzed with the 

2011; Suzuki et al. 2014). As the primary limiting factor of net 
photosynthesis (Salvucci and Crafts-Brandner 2004; Wang et 
al. 2015), the activation state of Rubisco (ribulose-1,5-bispho-
sphate carboxylase/oxygenase) is regulated by Rubisco acti-
vase (RCA) via the maintenance of Rubisco catalytic sites in 
the active state at a high level (Tcherkez 2013). Furthermore, 
introducing more thermostable RCA into Arabidopsis thali-
ana L. increases photosynthesis and the growth rate under 
moderate heat stress (Kurek et al. 2007), which demonstrates 
that RCA is extremely thermolabile. In addition, the activa-
tion state of Rubisco is decreased in plants exposed to drought 
stress, which consistent with thermal inhibition of RCA activ-
ity and limited photosynthesis (Carmo-Silva et al. 2012). 
Consequently, RCA activity may play an important role in the 
regulation of photosynthetic capacity under drought or heat 
stress. Despite extensive studies on drought and heat stress, 
little is known about the effects of their combination on the 
expression of Rca.

2,4-Epibrassinolide (EBR) plays prominent roles in vari-
ous physiological processes, including growth, differen-
tiation, and photosynthesis (Swamy and Rao 2008; Kim et 
al. 2012). As a potent plant growth regulator, EBR is used 
to increase the growth and yield of important agricultural 
crops (Khripach et al. 2000). It can also enhance plant tol-
erance to a variety of abiotic and biotic stresses (Xia et al. 
2009a, b; Sharma et al. 2013; Xi et al. 2013). For example, 
EBR application ameliorates the stress-induced inhibition 
of photosynthesis in tomatoes and cucumbers (Ogweno et 
al. 2008; Yu et al. 2004). RCA is an important factor con-
straining the photosynthetic potential of plants under heat 
or drought stress (Crafts-Brandner et al. 2000). However, 
little is known about the effects of EBR on the activity and 
expression of RCA in plants subjected to heat or drought 
stress, and less is known about the effects under the combi-
nation of stresses.

Wheat (Triticum aestivum L.) is one of the most impor-
tant food crops in the world. Increases in temperature and 
drought incidence associated with global warming pose 
potential threats to wheat yields worldwide (Liu et al. 2014). 
In this study, we investigated the effects of EBR pretreatment 
on photosynthesis, antioxidant enzymes, Rubisco activity, 
and RCA gene expression under heat or drought stress to 
explore whether EBR could alleviate stress-induced damage 
to wheat seedlings.

Materials and methods

Plant materials and treatments

Seeds of the wheat cultivar Yumai 49 were purchased from 
Henan Agricultural University, Zhengzhou, China. Healthy 
seeds were first surface sterilized with 0.4 % sodium 
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anti-RCA antibody (Agrisera, Vännäs, Sweden). The second-
ary antibody was peroxidase-conjugated goat anti-rabbit IgG. 
The RCA protein antibody was used at a dilution of 1:6000 
and the secondary antibody was used at 1:8000. Expression 
levels of RCA were estimated by determining band volume 
with Quantity One (Bio-Rad, Hercules, CA, USA). Band vol-
umes from two replicate plants were averaged.

Statistical analysis

The statistical analyses were conducted using DPS (Data 
Processing System) (Zhejiang University, China). ANOVA 
was performed and pairwise differences between treatment 
means were assessed using Duncan’s multiple range tests at 
the P < 0.05 probability level.

Results

Effect of EBR pretreatment on wheat seedling 
photosynthesis under stress

The relative Chl a contents for the D, H, and DH treatments 
were significantly lower than that of CK seedlings, and 
was particularly low for the DH treatment (P < 0.05). EBR 
application retarded the decline in relative Chl a content 
(Fig. 1a). Similarly, compared with CK, Pn was 26.1, 27.9, 
and 41.4 % lower for seedlings in the D, H, and DH treat-
ments, respectively (Fig. 1b). These reductions were signifi-
cantly ameliorated by pretreatment with EBR.

Drought and combined drought and heat stress induced 
significant decreases in Fv/Fm. The decline was markedly 
alleviated by EBR pretreatment. However, heat stress alone 
did not induce an obvious decline in Fv/Fm, but, interestingly, 
a slight reduction was observed in the EBR-pretreated plants 
under heat conditions (Fig. 1c). Similar to Fv/Fm, photosyn-
thetic performance (PIabs) decreased significantly by drought 
and the combined stress (Fig. 1d). EBR application remark-
ably improved the PIabs for seedlings in the D and DH treat-
ments, but resulted in an apparent decline in PIabs for the H 
treatment. ∆WOJ revealed a K-band with a peak between 0.2 
and 0.3 ms (SI Appendix, Fig. S1). In addition, the K-band of 
plants exposed to stresses increased more rapidly than that 
of CK plants, especially under combined stress. EBR pre-
treatment resulted in an apparent decline in ∆WOJ under D 
and DH conditions, whereas heat stress caused a significant 
increase in ∆WOJ (SI Appendix, Fig. S1).

Effect of EBR pretreatment on activities of RCA and 
antioxidant enzymes in wheat seedlings under stress

To further study the mechanism by which EBR regulates 
CO2 fixation, the total and initial Rubisco activity and RCA 

JIP-test (Strasser and Strasser 1995): (a) the fluorescence 
intensity at 50  µs, considered Fo, when all PSII RCs are 
open; (b) the maximal fluorescence intensity, Fm, assuming 
that the excitation intensity is high enough to close all of 
the RCs of PSII; (c) the fluorescence intensities at 300 µs 
(K-step) and 2  ms (J-step); (d) WOJ = (Ft − Fo)/(FJ− Fo). 
∆WOJ = WOJ (treatment)–WOJ (drought).

Determination of activities of RCA, Rubisco, and 
antioxidant enzymes

Rubisco activity was measured as described by Jiang et al. 
(2012). RCA activity was determined using a Rubisco Acti-
vase Assay Kit (Genmed Scientifics Inc., Wilmington, DE, 
USA). Total superoxide dismutase (SOD), catalase (CAT), 
and peroxidase (POD) activity levels were determined as 
described by Prochazkova et al. (2001).

Total RNA extraction and Rca transcript expression

Total RNA was isolated from wheat leaves with the Spin 
Column Plant Total RNA Purification Kit (Sangon Biotech, 
Shanghai, China) according to the manufacturer’s instruc-
tions. The cDNA template for real-time RT-PCR was syn-
thesized using the AMV First Strand cDNA Synthesis Kit 
(Sangon Biotech). Based on sequences in the GenBank 
database (Accession number: KC776912.1; AF251264.1; 
AB181991.1), the following gene-specific primers were 
designed with Primer Premier 5.0 and used for amplifica-
tion: Rca a 5′-TCTACATCGCTCCTGCTTTCAT-3′ and 
5′-AGCTCGCACTGGAATGATTTT-3′; Rca b 5′-GAGG 
CTGCCGACATTATCAA-3′ and 5′-GTTGTTCACCGTGT 
ACTGCGT-3′; actin, 5′-TCAGAGGAATAAGGGGTACA 
GG-3′ and 5′-TTTCATACAGCAGGCAAGCA-3′.

Real-time RT-PCR was performed with the ABI StepOne 
PlusTM Real-Time PCR Detection System (ABI, Waltham, 
MA, US). Each reaction (20 µL) consisted of 1 µL of diluted 
cDNA and 10  µL of SybrGreen qPCR Master Mix (ABI). 
PCR cycling conditions were as follows: denaturation at 
95 °C for 3 min and 40 cycles of 95 °C for 10 s and 60 °C for 
40 s. Wheat β-actin was used as an internal reference gene to 
calculate relative transcript levels. Relative gene expression 
was calculated as described by Livak and Schmittgen (2001).

SDS–PAGE and RCA Western blot analysis

Leaf proteins were extracted in 10 % (w/v) trichloroacetic 
acid according to Wu and Wang (1984), and protein concen-
tration was determined by Coomassie blue staining. RCA 
proteins were denatured and separated using a 12.5 % poly-
acrylamide gel. Protein (30 μg) was added to each well. The 
resolved proteins were electroblotted to a PVDF membrane 
(SunBioTech, Beijing, China) and then probed with rabbit 
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Effect of EBR pretreatment on the expression of Rca 
under stress

A qRT-PCR analysis was performed to investigate the effects 
of stress on Rca expression at the transcript level. As shown 
in Fig. 3, significant decreases in Rca a transcript level were 
observed under drought, heat, and combined stress, espe-
cially drought stress. The expression of Rca b was signifi-
cantly higher, by more than 27- and 29-fold, respectively, 
under heat and combined stress compared with CK, and 
a slight decrease was observed for the drought treatment. 
EBR significantly enhanced the expression of both Rca 

activity were determined. Initial and total Rubisco activity, 
the Rubisco activation state, and RCA activity decreased in 
response to drought, heat, and, in particular, their combina-
tion. However, EBR-pretreated plants had higher Rubisco and 
RCA activity than plants without EBR treatment (Table 1).

In addition, the activity levels of SOD, POD, and CAT 
decreased significantly under drought and combined heat 
and drought stress, especially under the combined stress. 
However, the decrease was inhibited significantly after EBR 
pretreatment. Interestingly, their activity levels were mark-
edly increased under heat stress, but reduced after EBR pre-
treatment (Fig. 2).

Table 1  Effects of EBR on the activity of total and initial Rubisco, RCA, and the Rubisco activation state in wheat seedlings under drought, heat, 
and their combination

Treatments Total Rubisco activity (µmol 
m−2 s−1)

Initial Rubisco activity (µmol 
m−2 s−1)

Rubisco activation state (%) RCA 
activity 
(μmol ECM 
min−1)

CK 41.3 ± 2.1a 21.4 ± 1.7a 51.8 ± 3.7a 0.28 ± 0.03a
D 35.7 ± 1.9d 15.6 ± 1.1c 43.7 ± 1.4d 0.17 ± 0.02c
D + EBR 37.4 ± 2.7c 18.6 ± 1.4b 49.7 ± 6.2b 0.21 ± 0.03b
H 37.8 ± 1.4c 17.8 ± 1.5b 47.1 ± 2.8c 0.19 ± 0.04b
H + EBR 39.5 ± 1.7b 20.7 ± 1.2a 52.4 ± 1.7a 0.24 ± 0.03a
DH 32.9 ± 3.0d 12.5 ± 2.2d 38.0 ± 3.1d 0.12 ± 0.01c
DH + EBR 36.8 ± 2.4c 17.7 ± 1.9b 48.1 ± 5.9b 0.18 ± 0.02b

The different treatments are described in the Fig. 1 legend. Values followed by different letters within a column are significantly different at 
P < 0.05 according to Duncan’s test
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Fig. 1  The effect of EBR pretreatment on the relative chlorophyll con-
tent (a), net photosynthetic rate (Pn) (b), Fv/Fm (c), and PIabs (d) of 
wheat seedlings under drought or heat stress. The wheat seedlings were 
treated as follows: CK distilled water as a control, D 20 % PEG-6000 
solution for 8 h, D + EBR 0.1 mg L−1 EBR + 20 % PEG-6000 solution, 
H 40 °C heat stress, H + EBR 0.1 mg L−1 EBR + 40 °C heat stress, DH 

20 % PEG-6000 solution + 40 °C heat stress, DH + EBR 0.1  mg  L−1 
EBR + 20 % PEG-6000 solution + 40 °C heat stress. Wheat seedlings 
were pretreated with 0.1 mg L−1 EBR, then exposed to drought or heat 
stress for 8 h. Data are the means ± SD of three replicates. Different let-
ters indicate significant differences at P < 0.05 according to Duncan’s 
multiple range tests
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Discussion

Brassinosteroids, a class of plant steroid hormones, play a 
significant role in the amelioration of various biotic and abi-
otic stresses by mediating several physiological processes. 
The brassinosteroid EBR is involved in the regulation of 
plant development and physiological processes under stress 
conditions (Yu et al. 2004; Wang et al. 2011; Xu et al. 2015). 
Previous studies have demonstrated that EBR pretreatment 
significantly alleviates the inhibition of photosynthesis 
induced by high temperatures and drought (Ogweno et al. 
2008; Hu et al. 2013). Brassinosteroid-induced improve-
ments in photosynthesis might be related to stomatal or 
non-stomatal factors, or a combination of these (Ali et al. 
2008). In the present study, we found that EBR improved 
photosynthesis and protected the photosynthetic apparatus 
of wheat under stress; the reductions in Pn, Fv/Fm, and PIabs 
were significantly retarded by EBR pretreatment. However, 

a and Rca b in the drought and combined treatments, but 
reduced in heat treatment.

Three RCA cross-reacting bands were detected in all 
treatments. The molecular masses of the observed bands 
were 45–46  kDa, 41–42  kDa, and 38–39  kDa (Fig.  4). 
Expression levels of 41–42 kDa and 38–39 kDa RCA were 
significantly lower in all treatments than in CK plants. Heat 
and combined stress resulted in a remarkable increase in the 
45–46 kDa subunit, but it was significantly decreased under 
drought stress (Table 2).

The band volumes of all the three RCA subunits in 
the D + EBR and DH + EBR treatments were dramati-
cally enhanced compared to those of the D and DH treat-
ments. However, compared with plants under heat stress, 
a slight decrease in the band volume of the 45–46 kDa and 
41–42 kDa subunits, and a dramatic increase in the expres-
sion of the 38–39 kDa subunit were observed in the H + EBR 
treatment (Table 2).

Fig. 4  Cross-reacting RCA band volumes. Immunoblot analysis of 
leaf protein extracts of wheat seedlings under drought or heat stress. 
Proteins were analyzed using SDS-PAGE and immunoblotting. 

Immunoblots were probed with rabbit anti-Rubisco activase antibody. 
An equal amount of protein was loaded. The different treatments are 
described in the legend to Fig. 1
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Fig. 2  Effects of EBR pretreatment on catalase (CAT) (a), peroxidase 
(POD) (b), and superoxide dismutase (SOD) (c) activity of wheat 
seedlings under drought or heat stress. The different treatments are 

described in the legend to Fig.  1. Data are the means ± SD of three 
replicates. Different letters indicate significant differences at P < 0.05 
according to Duncan’s multiple range tests
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in photosynthetic acclimation to moderate heat condi-
tions (Chen et al. 2015). A correlation analysis indicated 
that the small RCA subunit (RCAs) content was highly 
related to initial Rubisco activity under both heat stress 
and normal conditions (Wang et al. 2010). Similarly, in 
our study, the abundance of the 38–39 kDa RCA subunit 
decreased significantly after all stresses and was dramati-
cally enhanced by EBR application, consistent with the 
change in initial Rubisco activity. In addition, photosyn-
thetic acclimation was positively correlated with changes 
in initial Rubisco activity (Wang et al. 2009). However, 
these changes were not observed for the 45–46 kDa and 
41–42 kDa subunits. Therefore, we speculated that EBR 
increased initial Rubisco activity via enhanced expres-
sion of 38–39  kDa RCA, and then further improved the 
photosynthetic capacity under stress conditions. Changes 
in Rca transcript abundance in EBR-treated plants were 
not consistent with the observed changes in initial Rubisco 
activity and Pn, which suggested that EBR improves the 
photosynthetic capacity of plants subjected to stress via 
post-transcriptional regulation.

Furthermore, Immunogold labeling and western blotting 
have shown that EBR increases the RCA content and this 
effect can be blocked by inhibitors of redox homeostasis 
(Jiang et al. 2012). These results strongly suggest that redox 
homeostasis affects the EBR-induced enhancement in the 
expression of RCA. Whereas NO contribute to a general 
plant cell redox homeostasis (Correa-Aragunde er al. 2015). 
H2O2 and NO are two major signaling molecules during 
stress responses in plants (Neill et al. 2002). NO plays an 
important role in the H2O2-dependent induction of plant 
stress tolerance by EBR (Cui et al. 2011). Additional studies 
are needed to determine whether NO or H2O2 is involved in 
the expression of RCA after EBR treatment.

In conclusion, EBR pretreatment enhanced the photosyn-
thetic capacity of wheat leaves subjected to combined heat 
and drought stress by increasing the 38–39 kDa RCA sub-
unit and initial Rubisco activity.
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