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Abstract Artemisia annua L. is presently the sole natural

source of antimalarial drug artemisinin. We established

dual cultures of A. annua callus or regenerated plantlets

with endophytic Penicillium oxalicum B4 to explore

endophyte-mediated effects on artemisinin biosynthesis.

Although A. annua callus could not produce artemisinin

with or without the endophyte, simultaneous growth stim-

ulation of the endophyte and inhibition of A. annua callus

were observed in dual cultures. In an in vitro dual culture

of endophyte-regenerated plantlets, the endophyte

enhanced growth and artemisinin content of host plant. The

endophyte could simultaneously induce oxidative stress in

regenerated plantlets through the generation of reactive

oxygen species (ROS) including O2
•- and H2O2, which was

then accompanied by the activation of antioxidant enzymes

such as peroxidase, catalase and superoxide dismutase

during the later stages. There was a significant increase in

amorphadiene synthase (ADS) and amorpha-4,11-diene

monooxygenase (CYP71AV1) transcripts in dual culture of

endophyte-plantlets. The induced ROS could modulate the

expression of those key genes for artemisinin biosynthesis

and might be responsible for conversion of artemisinin acid

into artemisinin production. Our results demonstrated that

endophytic P. oxalicum B4 could be applied as a promising

means to enhance artemisinin production in plants.
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Introduction

Artemisia annua L. (Asteraceae) is the important plant

source of the potent antimalarial drug artemisinin. As to the

industrial scale, artemisinin is isolated from leaves and

flower buds of A. annua although the total synthesis of

artemisin and semi-synthetic artemisinin through a fer-

mentation process have been established in labs without the

desired commercial feasibility till date (Corsello and Garg

2015). The artemisinin content in the plant materials,

ranging from zero to 0.86 % (w/w, dry weight, DW), was

disclosed to be dependent on the variety, cultivation and

geographic condition (Singh et al. 1988; Woerdenbag et al.

1994).

It is widely believed that the synthesis of secondary

metabolites in plants is part of the defense responses to

elicitors and pathogenic attacks. In our previous reports

(Wang et al. 2001; 2002), fungal elicitors have been tested

for the elicitation of artemisinin production in hairy root

cultures of A. annua. In recent years the defensive mutu-

alism involving the production of host plants by microbial

endophytes has received considerable attention (Hardoim

et al. 2015). Endophytes, a special group of microorgan-

isms living in the internal tissues of healthy plants without

causing apparent pathogenic symptoms, may confer great
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benefits to plants such as growth enhancement, stimulated

nutrient acquisition and stress tolerance (Rodriguez et al.

2009; Subramanian et al. 2015). Many endophytes protect

host plants from natural enemies including animal herbi-

vores and pathogenic microbe (Carroll 1988; Wang et al.

2015). Alkaloid toxins, fungitoxic sesquiterpene and other

antibiotic metabolites from endophytes appeared to be the

basis of insect resistance, mammalian toxicity and anta-

ganism towards microbial pathogens (Tan and Zou 2001).

Thus, endophytes are becoming a promising source of

agriculturally and medicinally important metabolites. Lu

et al. (2000) reported in vitro production of plant hormone

indole-3-acetic acid (IAA) and new antifungal metabolites

3b,5a-dihydroxy-6b-acetoxy-ergosta-7,22-diene and 3b,5a-
dihydroxy-6b-phenylacetyloxy-ergosta-7,22-diene by endo-

phytic Colletotrichum sp. from A. annua. Out of 39 endo-

phytes isolated from the internal stem tissue of A. annua, 21

were found to produce in vitro inhibitory substances to most

of the tested phytopathogens (Liu et al. 2001). Daldinone C,

D and new benzo[j]fluoranthene-based secondary metabo-

lites produced by endophyte Hypoxylon truncatum IFB-18

from A. annua, were of substantial cytotoxic activity against

the colon cancer SW1116 cells (Gu et al. 2007). In our

previous studies (Wang et al. 2001; 2002), oligo- or

polysaccharides derived from encophytic fungi of A. annual

were used successfully to stimulate accumulation of arte-

misinin in A. annua hairy root cultures. With the elicitation

of partially purified oligosaccharides, artemisinin production

was increased by 51.6 % in the hairy root cultures (Wang

et al. 2006). Recently the mycelia extracts of our most

effective endophytic isolate (Penicillium sp.) were found to

simulate both growth and artemisinin biosynthesis in A.

annua seedling (Yuan et al. 2011). Taking into account that

artemisinin was of allelopathic potential on weeds (Lydon

et al. 1997), it is interesting to note that the accumulation of

such an allelochemical can be stimulated by the endophte.

Production of callus and axenic plantlets under tissue

culture conditions provided a simple and efficient system in

understanding of plant–microbial interactions (Nowak

et al. 1998). The dual culture of plant host calli and

endophytes has been a simplified system to explore the

interaction between grasses, crops and endophytic bactria

or fungi (Sieber et al. 1990; Peters et al. 1998). Although

there have been many reports on the complicated interac-

tions between the host plants and endophytic fungi (Ro-

driguez et al. 2009), it is still unclear whether and how the

endophyte is involved in the growth and artemisinin

biosynthesis of the host A. annua. Better knowledge of

their interactions may lead to understand artemisinin

biosynthesis and develop new culture management for

artemisinin production. In continuation of our characteri-

zation of biosynthetic regulation on artemisinin (Wang

et al. 2009; Pan et al. 2014), we herewith wish to explore

the interactions using dual culture of endophytic fungi with

A. annua. As artemisinin production in A. annua was

localized in glandular trichomes on the surface of leaves,

shoots and flowers (Duke et al. 1994), it has been proved

that artemisinin was produced in differentiated tissues such

as shoots, leaves and flowers, but was undetected in callus

or cell cultures (Ferreira and Janick 1996). In this study,

undifferentiated callus-endophyte dual culture was tested

to investigate growth interaction between the endophyte

Penicillium oxalicum B4 and the callus of its host A.

annua. The oxidative stress and its relationship with the

activation of key genes for artemisinin biosynthesis, and

artemisinin production were investigated in dual culture of

endophyte-regenerated plantlets.

Materials and methods

Endophytic strain and culture condition

An endophytic isolate (B4) was isolated from fresh stems

of healthy A. annua plants (collected in July 2008 in Zijin

Mount of Nanjing, Jiangsu Province, China). The isolation

of plant endophytes was carried out by the procedure as

described previously by Schulz et al. (1993) with some

modification. Briefly, random segments (ca. 1 cm-long) of

stems were surface sterilized by immersing sequentially in

75 % (v/v) ethanol for 3 min, and in 50 % (v/v) solution of

commercial available bleach (approximately 2.5 % (v/w)

sodium hypochlorite) for 5 min, followed by rinsing thrice

with sterilized distilled water. After dried with sterilized

gauze, each surface-sterilized rod was cut aseptically into

0.5 cm long segments (both ends were discarded, so 25

segments per plant were prepared) and placed on WA

(1.5 % water agar supplemented with 200 U/mL ampicillin

and 150 lg/mL streptomycin sulphate to inhibit the bac-

terial growth) plates sealed with parafilm. All plates were

kept in dark at 28 �C for up to 30 days depending on the

growth rate of the endophytic fungi. The endophytic fungus

isolates were successively transferred by tip-cut technique

onto potato dextrose agar (PDA) plates till pure cultures

were obtained (Strobel et al. 1996). Penicillium spp. was

the most common endophytic species isolated from A.

annua, making up 11 of the total 82 isolates. A strain of the

Penicillium sp. (strain B4) was selected according to pre-

vious investigation (Yuan et al. 2011) and identified as P.

oxalicum B4 through consulting documented data of its

morphology as well as the 5.8S, 28S, ITS1 and ITS2 rDNA

sequence (GenBank accession number FJ196840). The

strain was cultured routinely and stored at 4 �C on PDA

medium.
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Callus induction and plantlet regeneration

The seeds of A. annua (cv. CQF39), obtained from Yunnan

Academy of Agricultural Sciences in China, were sterilized

with 0.1 % (w/v) mercuric chloride for 60 s and washed

with sterile distilled water three times. Seeds were germi-

nated on MS medium (Murashige and Skoog 1962) con-

taining 2 % (w/v) sucrose at pH 5.8. Germination started

within 7 days and plantlets were used for callus induction.

Young leaves of 3-week old seedlings were cut into small

pieces and callus was induced on MS medium containing

0.5 mg/L 6-benzylaminopurine (6-BA) and 1.0 mg/L

1-naphthaleneacetic acid (NAA) in continuous darkness at

25 ± 1 �C. Subcultures of the callus were carried out every
20 days and maintained at 25 ± 1 �C under 16 h pho-

toperiod provided by coolwhite florescent lights at

100 lmol/m2 s.

Embryogenic callus (Fig. S1A) was induced on MS

medium supplemented with 1.0 mg/L 2,4-dichlorophe-

noxyacetic acid (2,4-D) (Choi et al. 2007). To produce

regenerated plantlets, embryogenic calli were transferred to

MS medium containing 5.0 mg/L 6-BA and 1.0 mg/L

NAA and incubated at 25 ± 1 �C under 16 h photoperiod

provided by coolwhite florescent lights at 100 lmol/m2 s.

The regenerated plantlets were subcultured every month

(Fig. S1B). Rooting plantlets of 30 days old on 1/2 MS

medium containing 1.0 mg/L NAA were employed in the

experiments of dual cultures.

Dual cultures

Dual culture of the endophyte with callus

Dual culture of endophyte-callus was established according

to the previous report (Peters et al. 1998). 0.5 g fresh callus

(2-week old) and a 5-mm agar plug from a 7-day-old

fungal colony was inoculated simultaneously 2 cm from

opposing sides of Petri dish (90 mm diam) containing

25 mL of callus multiplication medium, where callus and

the endophyte were at a distance of approx. 4.5 cm from

each other (Fig. S1C). Petri dishes were inoculated with

callus or fungus alone as the respective control. Controls

and dual cultures were grown at 25 ± 1 �C under 16 h

photoperiod (light intensity 100 lmol/m2 s). The fungal

colony diam in two directions: dk (diam in direction of the

callus) and ds (perpendicular diam) every other day. The

average radius (ra) was calculated as: ra = (dk ? ds)/4.

Callus growth was analyzed by determining the fresh

weight (FW) of calli during culture. The dual culture was

terminated when fungal growth reached the callus. Six

replicates of dual culture and control were made.

Dual culture of the endophyte with plantlets

The regenerated plantlets were transferred to 1/2 MS

medium containing 1.0 mg/L NAA for rooting induction.

After 30-day culture each plantlet was inoculated with one

piece of B4 mycelial disk (5 mm), which was placed

upside down on the medium (0.5 cm away from the

plantlet caudex) (Fig. S1D). An equal size of PDA was put

as a control (Ren and Dai 2012). All treatments were

conducted in a sterile environment and replicated at least

three times to examine reproducibility. The dual culture

was carried out under fluorescent lights at 100 lmol m2/s

with a 16-h photoperiod at 25 ± 1 �C. To verify successful

colonization by the endophyte, plantlet segments from the

treatment were surface sterilized separately and incubated

on PDA medium to reisolate the endophyte. Plantlet height,

root length, and fresh weight (FW) were measured at

30 days post inoculation (dpi). The dry weight (DW) was

obtained by drying the harvested plantlets at 50 �C in an

oven until constant weight. Each treatment had 3 replicates,

and each replicate consisted of 5 plantlets.

Measurement of reactive oxygen species (ROS)

generation

During dual culture of endophyte-plantlets, O2
•- in whole

plantlets was quantified by monitoring the nitrite formation

from hydroxylamine in the presence of O2
•- as described by

Elstner and Heupel (1976). Hydrogen peroxide (H2O2)

content from the control and endophyte-treated plantlets

was carried out by the method described by Velikova et al.

(2000).

Treatment of diphenylene iodonium (DPI)

and exogenous H2O2

For tests on the effect of ROS on endophyte-induced

responses and artemisinin synthesis, NADPH oxidase

inhibitor DPI (50 lM) were applied during the dual culture

of endophyte-plantlets, while 25 mM H2O2 was added as

ROS donors. Their dosages used in the experiments were

chosen based on our previous study (Zheng et al. 2010).

DPI and H2O2 were sterilized by filtering through 0.22 lm
sterile filters (Millipore), and directly sprayed on plantlets

and repeated every 5 days. The control was treated with the

same amount of distilled water only.

Enzyme Assays

Plant tissue (0.5 g) was powdered in liquid nitrogen in a

chilled pestle and mortar and homogenized in 4.0 ml
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chilled 50 mM potassium phosphate buffer (pH 7.0) con-

taining 1.0 % (w/v) insoluble polyvinylpolypyrrolidone

and 1.0 mM phenylmethylsulfonylfluoride, 1.0 mM

EDTA, 1.0 mM dithiothreitol (DTT) and 0.2 % (v/v) triton

X-100. The homogenate was centrifuged at 10,000g for

10 min at 4 �C. The supernatant was stored at 2 �C and

used for enzyme assays within 4 h. Catalase (EC 1.11.1.6,

CAT) activity was estimated in a reaction mixture con-

taining 500 lM H2O2 in 10 ml 100 mM phosphate buffer

(pH 7.0) and 1.0 ml suitably diluted tissue extract. H2O2

decomposed after 5 min reaction was assayed by reading

absorbance 240 nm of both blanks and samples (Bisht et al.

1989). CAT activity is expressed as unit (lmol H2O2)/mg

protein. Peroxidase (EC 1.11.1.7X, POD) activity was

usually determined spectrophotometrically as described

Dias and Costa (1983). POD activity is expressed as unit

(lmol H2O2)/mg protein. Superoxide dismutase (EC

1.15.1.1, SOD) activity was measured by the photochem-

ical method as described by Giannopolitis and Ries (1977).

One unit of SOD activity was defined as the amount of

enzyme required to cause a 50 % inhibition of the rate of

nitroblue tetrazolium chloride (NBT) reduction at 560 nm.

The total protein concentration was measured by the

Bradford method (1976).

Determination of artemisinin and artemisininic acid

content

The plantlets from each treatment were carefully collected

and leave samples were dried at 50 �C in an oven until

constant weight. Dry leaf material (100 mg) was used for

the extraction of artemisinin and artemisininic acid quan-

tified using a high-performance liquid chromatography

(HPLC) method (Zhao and Zeng 1985; Zhang et al. 2005).

HPLC analysis conditions: Agilent 1260 system equipped

with 250 9 4.6 mm, 5 lm Agilent HC-C18 column. Cal-

ibration curves were made with artemisinin (Sigma, USA)

and artemisininic acid standard (Aokebio, China).

RNA extraction and quantitative real-time PCR

(RT-qPCR)

Leaves of A. annua plantlets were sampled randomly after

different treatment, immediately frozen in liquid nitrogen

and store at -80 �C. Total RNA was isolated from dif-

ferent treated and control leaves by using the RNAprep

Pure Plant Kits (Tian Gen Biotech, China) according to the

manufacturer’s instructions. The concentration and purity

of RNA were determined by measuring A260 and A280.

Reverse transcription and fluorescent quantitative PCR

were performed with purchased First Strand cDNA Syn-

thesis Kit (Fermentas, Canada) and FastStart Universal

SYBR Green Master (Roche, Switzerland). Amplifications

were performed in CFX96 Touch Real-Time PCR Detec-

tion System (Bio-Rad, USA), with initial denaturation at

95 �C for 3 min, followed by 40 cycles of 95 �C for 30 s,

56 �C for 30 s and 72 �C for 15 s, and a final extension at

72 �C for 10 min. The housekeeping gene b-actin was

chosen as the internal reference. The primers designed for

the validation of the target genes from A. annua were listed

in Table S1.

Statistical analysis

Experiments were performed at least in triplicate, and the

data are expressed as the mean ± standard deviation (SD).

Statistical significance was determined via a one-way

ANOVA followed by Duncan’s multiple range test with the

SPSS 13.0 software (SPSS Inc., Chicago, IL). Differences

in means were considered to be significant for P values

\0.05. A Student’s t test was used for statistical compar-

isons of two means.

Results

Effect of the endophtye on growth and artemisinin

content

To analyze growth interaction between endophytes and

host plants, we established the dual culture model of

endophytic P. oxalicum B4 and undifferentiated A. annua

callus (Fig. S1). In comparison to the monoculture controls,

the average radius of the colonies of the endophyte was

greater in combination with callus of the host A. annua

(Fig. 1a). In contrast to an areal growth of 19.6 cm2

(ra = 2.5 cm) of the fungal colony in monoculture, that in

dual culture with the host was 36.3 cm2 (ra = 3.4 cm) after

10 days of incubation. On the other hand, growth of A.

annua calli was inhibited significantly starting from day 5

of incubation, up to 42 % on the day 10 by the endophyte

(Fig. 1b). Simultaneously, partial browning and necrotic

lesions of calli were observed. Artemisinin was undetected

in callus with and without the endophyte. However, in dual

culture of endophyte-regenerated plantlets, the fresh weight

and plant height in the endophtye-inoculated groups were

greater than that of control (Table 1), indicating that

endophytic fungi was beneficial to the growth of A. annua

plantlets. We also compared the effect of the endophyte on

the contents of artemisinin and its direct precursor arte-

misinic acid in leaves of plantlets. When 30-day-old root-

ing plantlets were exposed to the endophyte for 30 days,

the content of artemisinin reached to 1.32 mg/g DW, a

43.5 % increase over the control. However, there was no

marked enhancement for the precursor artemisinic acid

concentration.
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Effect of the endophtye on ROS production

Figure 2 shows the time courses of ROS production after

the endophyte inoculation in the dual culture of endo-

phyte-plantlets. A higher O2
•- production over that of the

control was detected after 3 days of inoculation. The

endophyte-induced O2
•- production exhibited a biphasic

time course, reaching the first higher plateau around day

9, and starting the second phase from day 18 and

reaching the second plateau around day 24, after the

inoculation of the endophyte. The O2
•- production in

dual culture was 2.4-fold higher than that of the control

in the first phase (day 9), and 1.7-fold higher in the

second phase (day 24) (Fig. 2a). On the other hand, the

endophyte induced a later production of H2O2 in A.

annua plantlets, reaching a broad peak around day 24

post inoculation (Fig. 2b).
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Fig. 1 Comparison of growth of endophytic P. oxalicum B4 in dual

culture with controls (monocultures). a The radius of the fungal

colony; b the fresh weight of calli. 0.5 g fresh callus (2-week old) and

a 5-mm agar plug from a 7-day-old fungal colony was inoculated on

MS medium containing 0.5 mg/L 6-BA and 1.0 mg/L NAA. The

results are represented by their mean ± standard deviation (SD) of six

replicates

Table 1 Effects of endophytic P. oxalicum B4 on the growth index, content of artemisninic acid and artemisinin of A. annua plantlets

Treatment Number of leaves Number of roots Plant heights (cm) Fresh weight (g) Artemisinic acid

(mg/g DW)

Artemisinin

(mg/g DW)

Dual culture 11.1 ± 1.5 5.6 ± 1.2 8.3 ± 0.8* 0.85 ± 0.05* 1.43 ± 0.35 1.32 ± 0.24*

Control 10.8 ± 2.1 6.1 ± 0.8 6.2 ± 1.2 0.67 ± 0.03 1.48 ± 0.07 0.92 ± 0.03

All data are measured 30 days after the inoculation. In dual culture, each 30-day-old rooting plantlets was inoculated with one piece of mycelial

disk (5 mm) placed upside down on the medium (0.5 cm away from the plantlet caudex). An equal size of potato dextrose agar was put as a

control. The results are represented by their mean ± standard deviation (SD) of triplicate samples (5 plantlets for each replicate)

* P\ 0.05 versus control
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Fig. 2 Time course of O2
•- (a) and H2O2 (b) production in A. annua

plantlets in dual culture with endophytic P. oxalicum B4. Each

30-day-old rooting plantlets was inoculated with one piece of

mycelial disk (5 mm) placed upside down on the medium (0.5 cm

away from the plantlet caudex). An equal size of potato dextrose agar

was put as a control. The results are represented by their mean ± s-

tandard deviation (SD) of triplicate samples (5 plantlets for each

replicate)
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Effects of the endophtye on the activities

of antioxidant enzymes

The activities of antioxidant enzymes POD and SOD

assessed in dual cultures showed some similar patterns

(Fig. 3a, b). During the early stage (day 1–9) of the dual

cultures, there was no significant differences in activities of

POD and SOD between the dual cultures and monocultures

of plantlets while both activity were stimulated in the dual

culture after day 10. The CAT activity was also enhanced

in dual cultures after day 12 (Fig. 3c). The activities of

those antioxidant enzymes reached their peak levels around

day 20 after endophyte inoculation, indicating that the

redox change and the induced defensive responses might

be involved in the dual cultures.

Effects of ROS on artemisinin accumulation

in the dual culture

To investigate whether ROS are involved in the induction

of the endophyte inoculation on artemisinin biosynthesis,

A. annua plantlets were treated with exogenous H2O2 or

DPI (an inhibitor of NADPH oxidase) treatments. As in

Fig. 4, treatment with DPI significantly reduced endo-

phyte-induced artemisinin increase (B4 ? DPI vs B4),

which was significantly stimulated by the treatment with

exogenous H2O2 (B4 ? H2O2 vs B4). On the other hand,

we found H2O2 alone could reduce the content of artemi-

sinic acid of A. annua plantlets in monocultures. Although

the endophyte inoculation did not cause any changes in

artemisinic acid content (B4 vs control), the combination

treatment with DPI in dual cultures (B4 ? DPI) increased

its content significantly while H2O2 still depressed the

accumulation of artemisinic acid in plantlets (B4 ? H2O2

vs B4). These results suggested that ROS could be involved

in the induced artemisinin production.

Effects of the endophyte on transcription changes

of artemisinin biosynthetic genes

To observe the transcriptional chnages of artemisinin

biosynthetic genes during the dual cultures, the relative

expression level of genes encoding six vital enzymes was

measured by qPCR. As shown in Fig. 5a, mRNA levels of

amorphadiene synthase (ADS) and amorpha-4,11-diene

monooxygenase (CYP71AV1) were observed to be stimu-

lated significantly. However, the enhanced expression of

both genes was inhibited significantly in presence of

50 lM DPI (B4 ? DPI vs B4 in Fig. 5b, c). The expres-

sion of ADS was stimulated by H2O2 alone or with the

inoculation of the endophyte (Fig. 5b), while H2O2 didn’t

cause any change in CYP71AV1 expression (Fig. 5c). All

these results reveal the possible complicated relationship

among ROS in the activation of artemisinin biosynthetic

genes in dual culture of endophyte-plantltes.

Discussion

As less investigated microorganisms colonizing inner host

plant tissues, endophytes are obviously a rich and reliable

source for secondary metabolites exhibiting a variety of

biological activity such as growth promotion of the host

plant and improvement of the hosts’ ecological adaptability

(Tan and Zou 2001). Liu et al. (2001) reported that most of
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(SOD) and catalase (CAT) during the dual cultures of A. annua
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plantlets was inoculated with one piece of mycelial disk (5 mm)

placed upside down on the medium (0.5 cm away from the plantlet
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endophytes isolated from the internal stem tissue of A.

annua could produce in vitro inhibitory substances against

phytopathogens. Colletotrichum sp. ascertained as en

endophytic fungus in A. annua, was reported to produce

new antimicrobial compounds and plant hormone IAA (Lu

et al. 2000), suggesting that the endophyte could relate to

growth and metabolism of the host plant. Li et al. (2012)

found although the inoculation of an endophytic actino-

mycete YIM63111 (Pseudonocardia sp.) inhibited the

growth of A. annua plantlets, it stimulated accumulation of

artemisinin. In our previous studies (Wang et al. 2001;

2002), oligo- or polysaccharides derived from endophytic

Colletotrichum sp. were used successfully as elicitors to

stimulate artemisinin production in A. annua hairy root

cultures. Recently the mycelia extracts of an effective

endophytic Penicillium isolate were found in our lab to

promote both growth and artemisinin biosynthesis in A.

annua seedling (Yuan et al. 2011). In this study, although

growth of A. annua calli was inhibited in dual culture with

the endophyte (Fig. 1), the plantlet growth and artemisinin

content was enhanced markedly (Table 1). Artemisinin

was proved not only to be an antimalarial drug for human

health, but also known to be very effective against a wide

spectrum of microorganisms including protozoa, bacteria,

fungi and viruses as well as serve as a selective insecticide

and phytoalexin (Jessing et al. 2014). The synthesis of such

metabolite in plants is believed to be part of the defense

responses to pathogenic attacks and stress environment. In

the present study, it is interesting to note that synthesis of

such an allelochemical can be enhanced (at least in dual

cultures) by the action of P. oxalicum B4, an indigenous

endophyte originally derived from native A. annua plants.

To our knowledge, this is the first report on the induction of

artemisinin biosynthesis by fungal endophyte.

Despite the progress in general understanding of plant–

microbe interactions, the relationships between fungal

endophytes and their respective plant hosts remain highly

complex (Wu et al. 2009). Production of axenic plantlets

under tissue culture conditions provides a good simplified

system to explore the complex interaction. Interactions

between plant calli and their endophytes have been studied

by many groups (Sieber et al. 1990; Hendry et al. 1993;

Peters et al.1998). Sieber et al. (1990) used the dual cul-

tures to investigate the interactions between the endophyte

Cryptodiaporthe hystrix and the callus of its host Acer

macrophyllum. A significant growth stimulation of the
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fungus and simultaneous inhibition of callus growth

observed therein were revealed in our present study in dual

cultures of A. annua callus with the endophyte (Fig. 1).

Also in agreement with our results are those of Lu and Clay

(1994) on dual culture of endophyte Aktinsonella with their

host calli. The authors suggested that growth of fungi on

medium with host calli correlated positively with com-

patibility of the host calli, and secreted metabolites from

endophytic fungi could have been responsible for the

growth inhibition of plant calli. However, in our results

from dual cultures with plantlets, the endophyte exhibited

positive effects on the growth of A. annua plantlets at least

on MS medium (Table 1). In contrast to the uninoculated

controls, A. annua plantlets had significant enhancement in

plant height and biomass. It has mostly been reported that

endophytic fungal species enhanced plant growth due to

their regulation on plant physiology and host protection

under biotic and abiotic stresses (Schulz and Boyle 2005).

Plant growth-promoting endophytic fungi could increase

plant nutrition efficiently (Malinowski and Belesky 1999)

and secreted phytohormones such as gibberellins and IAA

(Lu et al. 2000; Khan et al. 2012). An endophytic Col-

letotrichum sp. from A. annua was proved to produce IAA

and some new secondary metabolites in vitro (Lu et al.

2000). While the precise mechanism on growth enhance-

ment by endophytic P. oxalicum B4 needs to be further

elucidated, our results suggest that growth response of host

plant to endophytes may be different during undifferenti-

ated callus and seedling growth stage. Additionally, in

order to better understand endophyte–host interactions,

host defense reactions must be studied.

Increasing evidence proved the endophyte protection

(defensive mutualism) of host plants was based on the

enhanced antioxidant capacity induced by endophytes

(White and Torres 2010). As the antioxidants are the result

of ROS production by endophytes, ROS is part of a

mechanism whereby endophytic fungi alter host cell

membranes to facilitate nutrient acquisition and enhance

stress tolerance (Tanaka et al. 2006). Consistent with this,

we found that the endophyte inoculation induced oxidative

stress through the generation of ROS such as O2
•- and H2O2

in dual culture of endophyte-plantlets (Fig. 2), which was

then accompanied by the activation of POD, CAT and SOD

(Fig. 3). Although oligosaccharide elicitor from endophytic

Colletotrichum could also trigger higher activities of POD

in A. annua hairy root cultures (Wang et al. 2002), but the

characteristic of the induction was divergent from the liv-

ing endophyte. The responses of hairy roots to the elicitor

was quick while maximum activity of POD reached within

1 day and then strikingly decreased to control level within

3 days. The intense physiological reaction (cellular apop-

tosis) occurred during the elicitation (Wang et al. 2002).

Our present results showed that the endophyte-induced

ROS production experienced a longer process of increment

and remained a higher level at the end of dual cultures

(30 days). Unlike most fungal elicitors, which can lead to a

biomass decrease (Wang and Wu 2013), the endophyte in

present study could stimulate both growth and artemisinin

accumulation concomitantly of A. annua. It suggested that

ROS-producing endophytes with growth-promoting

capacity could be better elicitors to improve the quality of

the medicinal herb.

Beside the ROS burst and several increases of antioxi-

dant enzyme activities in dual culture of endophyte-plant-

lets, the increase of artemisinin contents as a possible

defensive response were recorded in our study (Table 1).

This observation, along with the fungal elicitors to induce

artemisinin biosynthesis by our previous report (Wang

et al. 2009; Wang and Wu 2013), highlighted that artemi-

sinin is an inducible secondary metabolite involved in plant

defensive responses to fungi. Our present study has also

shown that the induction of artemisinin biosynthesis by the

endophyte was strongly dependent on the induced ROS

production (Fig. 4). H2O2 generated through methylene

blue sensitized photo-oxygenation was reported to convert

artemisinic acid to another artemisinin precursor artemisi-

nin B (EI-Feraly et al. 1986). The oxidation reaction of the

D4,5 double bond in both artemisinic acid and dihy-

droartemisinic acid in A. annua plants was found to be

involved in the biotransformation to artemisinin (Brown

and Sy 2004). Our study clarified the points that O2
•- from

the endophyt-induced oxidative burst may play a role in

stimulating the conversion from artemisinic acid to arte-

misinin whereas exogenous H2O2 stimulated endophyt-in-

duced artemisinin accumulation, although H2O2 alone

suppressed the content of artemisinic acid (Fig. 4). In our

previous studies (Wang et al. 2001; 2002), both oligosac-

charide and polysaccharide elicitor induced oxidative

damage to hairy roots of A. annua and the oxidative stress

in turn altered artemisinin concentration and yield. These

studies thus support our observations that ROS including

O2
•- and H2O2 were generated during dual cultures with the

endophyte and might be responsible for conversion of the

immediate precursors into artemisinin production. On the

other hand, there also was a significant increase in ADS and

CYP71AV1 transcripts in endophyte-inoculated plantlets in

dual cultures (Fig. 5), indicating a high capacity to produce

artemisinin precursors. Endophytic fungi have also been

shown to stimulate rate-limiting enzymes in the terpenoid

pathway, namely 3-hydroxy-3-methylglutaryl coenzyme A

reductase (HMGR) and 1-deoxy-d-xylulose5-phosphate

synthase (DXR) (Gao et al. 2011). CYP71AV1 and cy-

tochrome P450 oxidoreductase (CPR) expression were up-

regulated in A. annua upon inoculation with actinobacteria

strain YIM 63111 (Li et al. 2012). The qPCR data pre-

sented here clearly demonstrated that NADPH oxidase
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inhibitor DPI treatment resulted in significant decrease in

induced transcription level, but exogenous H2O2 had

opposite effects on ADS gene expression (Fig. 5b, c). It can

be suggested that the expression of those key genes could

be modulated by ROS production induced by the endo-

phyte in dual cultures.

In conclusion, this study suggests that fungal endophytes

may interact with host plant A. annua to stimulate plant

growth and artemisinin production. Since the interactions

between the endophytes and the plant hosts have not been

well characterized and their potential benefits on secondary

metabolites not been fully explored, further efforts aiming

at such interactions are desired to understand the mutual-

istic mechanism, to utilize the interaction for improved

production of key metabolites, finding of novel messenger

molecular and bioactive metabolites. Furthermore, it also

suggests strategies of reintroduction of endophytes to

improve the quality of medicinal herbs.
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