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Abstract Thaumatin-like protein (TLP) is one of patho-

genesis-related protein family, which plays an important

role in plant defense system. While its origin and expan-

sion is unknown in plants. Here, we investigated the evo-

lution of this gene family by performing a genome-wide

identification and comparison in Arabidopsis, Oryza,

Populus, Zea, Physcomitrella and Chlamydomonas. We

found a birth process of this gene family in evolution.

Tandem and segmental duplication played dominant roles

for their expansion. In addition, TLPs were under purifying

selection, and most members were responding to some

biotic or abiotic stresses. Functional network analysis

exhibited some resistance genes working together with

TLPs. Our findings shed some light on this family gene

evolution in plants, which might provide a base for further

functional investigation of this family.
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Introduction

As sessile organisms, plants do not have an immune system

like animals. Therefore, when exposed to biotic or abiotic

stresses, they have evolved some adaptive ways to deal

with these environmental stresses (Jacobs et al. 1999),

including hypersensitive response (HR), lignification of

cell wall, and synthesizing a variety of proteins or com-

pounds, such as, antioxidants (like reactive oxygen species,

ROS), anti-microbial compounds (like phytoalexins), late

embryogenesis-abundant (LEA) proteins, proline, sugars

and pathogenesis related (PR) proteins. Based on amino

acid composition, serological and biochemical properties,

PR proteins have been classified into 17 different families,

including b-1,3-glucanases (PR-2), chitinases (PR-3, 4, 8

and 11), thaumatin-like proteins (TLPs) or osmotin (PR-5),

proteinase-inhibitor (PR-6), endoproteinase (PR-7), per-

oxidase (PR-9), defensins (PR-12), thionins (PR-13), lipid-

transfer proteins (PR-14), etc. (van Loon et al. 2006).

Plant TLP belongs to the PR-5 family. Historically, it

has been called TLP/PR5 or osmotin/osmotin-like protein

(OLP). Here, the nomenclature TLP is used to represent

this gene family. Most TLPs have 16-cysteine residues,

which might form eight disulfide linkages. This structure

can stabilize protein, and then let it to resist to pH, pro-

teases and heat-induced denaturation (Ghosh and Chakra-

barti 2008). Some smaller TLPs (only containing ten

conserved cysteine residues) have also been identified in

conifers and monocots (Fierens et al. 2009; Liu et al.

2010a; Petre et al. 2011).

TLPs are involved in plant defense system against various

biotic and abiotic stresses (Petre et al. 2011). Over-expression

of TLPs can induce stress resistance in different transgenic

plants (Liu et al. 1994; Rajam et al. 2007; Datta et al. 1999;

Wanget al. 2010;Munis et al. 2010; Subramanyamet al. 2012;

Acharya et al. 2013). TLPs can inhibit hyphal growth or spore

germinationbyamembranepermeabilizingmechanism (Abad

et al. 1996) or bydegradation of cellwalls (Osmondet al. 2001;

Zareie et al. 2002). In addition to antibiotic activities, TLPs

have also been involved in other physiological and
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developmental roles, including antifreeze activities (Yu and

Griffith 1999), abiotic stress tolerance (Subramanyam et al.

2012; Zhu et al. 1995; Zhang and Shih 2007), floral organ

formation and fruit ripening (Neale et al. 1990; Salzman et al.

1998), seed germination (Seo et al. 2008), senescence (Saka-

moto et al. 2006), and glucanase activity (Osmond et al. 2001;

Grenier et al. 1999).

The recent availability of genome sequences of some

models plant species provides an opportunity to study the

evolution of TLP gene family. Considering the important

roles associated with antibiotic activities and develop-

mental and physiological functions, and the number of the

TLP genes varied greatly among plant species, it’s of

considerable interest to us to investigate how the TLP

genes have evolved in Plantae. Here, our results suggest

that the TLP gene family has an expansion process in

number, and that tandem and segmental duplications play

dominant roles in it. Our studies also reveal different

expression profiles of the TLP genes in rice and functional

network features of the TLP protein in Arabidopsis.

Materials and methods

TLP sequences retrieval and identification in six

plant species

We used the Arabidopsis TLP sequences (Liu et al. 2010b)

as queries to perform BLAST searches against Ensem-

blPlants database (http://plants.ensembl.org/index.html) to

identify potential members of the TLP gene family in these

species. Next, the Conserved Domain Database (CDD)

(Marchler-Bauer et al. 2013) was used to confirm whether

the returned sequences from such searches encode TLP

domain. Predotar program (Small et al. 2004) was used to

perform the protein subcellular location.

Phylogenetic analyses of the TLP gene family

We used MUSCLE 3.52 (Edgar 2004) to perform multiple

sequence alignments of full-length protein sequences, and

used MEGA v5 (Tamura et al. 2011) to carry out phylo-

genetic analyses of the TLP proteins based on amino acid

sequences with the neighbor joining (NJ) method. NJ

analyses were done using p-distance methods, pairwise

deletion of gaps, and default assumptions. Support for each

node was tested with 1000 bootstrap replicates.

Estimation of the maximum number of gained

and lost TLPs

We first divided the phylogeny into different clades to

determine the expansion degrees of the gene family in

these species (Cao et al. 2015). Nodes were labeled as V:

Viridiplantae; Em: Embryophyte; A: Angiosperm; M:

Monocots; and E: Eudicots. Notung v2.6 (Chen et al. 2000)

was used to infer gene duplication and loss events by

reconciling the gene tree with the species tree.

Chromosomal location of the TLP genes

and genomic duplication

Annotation information on TAIR (http://www.arabidopsis.

org), Rice Genome Annotation Project (http://rice.plant

biology.msu.edu/index.shtml), Populus genome browser

(http://www.phytozome.net/poplar) and MaizeSequence

(http://www.maizesequence.org) was used to determine

the chromosomal locations and intron–extron structures of

the TLP genes. SyMAP v3.4 (Soderlund et al. 2011) was

used to depict the paralogous regions of the putative

ancestral constituents of the genomes. In this study, two

patterns of gene expansion (tandem duplication and seg-

mental duplication) were focused on. Tandem duplicated

genes were defined as adjacent homologous genes on a

single chromosome, separated by no more than one non-

homologous spacer gene (Hanada et al. 2008). Moreover,

some tandem duplicated genes were further confirmed in

the plant tandem duplicated genes database (PTGBase)

(Yu et al. 2015). Segmental duplications of each TLP gene

within the family in poplar, rice, maize, and Arabidopsis

genomes were searched in the SyMAP v3.4 (Soderlund

et al. 2011).

Microarray-based expression analysis

Plant Expression Database (PLEXdb, http://www.plexdb.

org/index.php) (Dash et al. 2012) was used for the

expression analyses of rice TLP genes. In this study, six

experiments (OS8, OS10, OS25, OS85, OS65, and OS92)

were selected. And the genesis (v 1.7.6) program (Sturn

et al. 2002) was used to normalize the expression data.

Positive selection assessment

We first used the Selecton Server (http://selecton.tau.ac.

il/) (Stern et al. 2007) to calculate site-specific selection.

Four evolutionary models (M8, M8a, M7 and M5) were

used in this study. Each of the models uses different

biological assumptions to test different hypotheses. In

addition, we also used FEL (fixed-effects likelihood),

SLAC (single likelihood ancestor counting), and REL

(random-effects likelihood) methods with default settings

embedded in the Datamonkey web interface (Delport

et al. 2010) to further identify selection in individual

codons. Finally, PARRIS was also used to test for the

signatures of selection.
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Co-expressed network assembly

We used ANAP (Wang et al. 2012), a co-expressed net-

work designed to convert and then integrate 11 Arabidopsis

data sets, to analyze TLP co-expressed network in Ara-

bidopsis. Arabidopsis TLP genes were mapped to their

corresponding proteins in the network database. Seventeen

TLPs were not present in the assembled network database.

Resulting interactions were used to build the seven mem-

bers interaction network.

Results and discussion

Identification of the TLP genes in Arabidopsis, rice,

poplar, maize, Physcomitrella and Chlamydomonas

genomes

We identified 24 TLP genes in Arabidopsis, 44 in rice, 49

in poplar, 49 in maize, 6 in Physcomitrella and only 1 in

Chlamydomonas (Table 1). Compared with other four

genomes as described above, Physcomitrella and Chlamy-

domonas species encoded a much smaller number of TLP

genes. This suggested that the expansion of TLP family

mainly occurred after the divergence of the Embryophyte

leading to vascular plants. The number of TLP genes in

rice, poplar and maize is very similar, which are about

twice as many TLP genes than that in Arabidopsis.

Phylogenetic analyses and comparison of TLP

proteins

A phylogenetic analysis of the predicted TLP protein

sequences was performed based on the NJ method. As

displayed in Fig. 1, tree branches are colored by species,

TLP subclass, the number of introns, and predicted tar-

geting to organelles. TLP genes can be classed into six

groups based on their phylogenetic relationships (Fig. 1b).

We found that most of the rice TLP proteins belong to the

Group II and III. 14 of 15 TLP members come from poplar

in Group IV, suggesting that species-specific expansion has

happened in these groups (Fig. 1a, b).

Figure 1c displays the proportions of TLP genes with no

intron, one intron, two introns, three introns, four introns

and more than four introns in each species. The large

majority of the TLP genes contain one or two introns in two

eudicots (Arabidopsis and poplar). But, most of TLP genes

in two monocots (rice and maize) are intronless. In addi-

tion, we also found that two lower plants (Physcomitrella

and Chlamydomonas) have more introns. For example,

EDP07492 and PP1S412_14V6.1 genes possess five

introns, respectively. As we know, introns are important

component of eukaryotic genes, and their loss or gain

affect the complexity of genetic structure (Koonin 2006).

Our results indicated that intron loss/gain events have

occurred during the expansion and evolution of TLP

paralogs.

Next, we also used the program Predotar (Small et al.

2004) to predict the organelles targeting of the family

proteins. As a result, most of the TLP proteins were pre-

dicted to be targeted to the endoplasmic reticulum (ER)

(Fig. 1d). Proteins targeted in the ER are usually experi-

enced some protein processing, such as glycosylation,

disulfide bond formation, folding and so on. Finally, these

modified proteins are transported to their destinations when

the signal peptides are removed (Trobetta 2003). More-

over, over 80 % of TLP proteins possess the signal peptide

identified by the SignalP 4.0 server (Petersen et al. 2011).

Contrasting changes in the numbers of TLP genes

To better understand how TLP genes have evolved in these

species, we estimated the number of TLP genes in the most

recent common ancestor (MRCA) of Viridiplantae. There

were about five ancestral TLP genes in the MRCA of

Viridiplantae (V5) by reconciling the gene trees with the

species phylogeny. Furthermore, we only identified one

orthologous gene in the C. reinhardtii, implying that four

of these five ancestral TLP genes have been lost when

chlamydomonas is appearing (Fig. 2). The number of TLPs

remained relatively stable before Angiosperm. Only after

the emergence of Angiosperm species did TLPs once more

expand significantly. It suggested that there were about 23

ancestral TLP genes in the MRCA of the green flowering

plants. Interestingly, when compared with the MRCA of

eudicots and monocots, it appeared that the expansion was

uneven before their divergence. The MRCA of monocots

has increased in size as much as two times (23/43), while

the MRCA of eudicots has a similar number of TLP genes

with that of Angiosperm (23/22). The expansion was also

unbalanced between plant species since the divergence of

eudicots and monocots (Cao and Li 2015). For example,

Table 1 Number of TLP genes of Arabidopsis, rice, poplar, maize,

Physcomitrella and Chlamydomonas in Groups I–VI

Group A.

thaliana

O.

sativa

P.

trichocarpa

Z.

mays

P.

patens

C.

reinhardtii

I 9 3 10 4 3 0

II 3 10 5 9 0 0

III 1 21 4 17 3 1

IV 0 0 14 1 0 0

V 3 4 5 8 0 0

VI 8 6 11 10 0 0

Total 24 44 49 49 6 1
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poplar increased over two times (22/49) in size, while

Arabidopsis only added two TLP genes (Fig. 2). When

compared with the number of ancestral genes, it appeared

that, except chlamydomonas, the TLP family had expanded

in all the tested species. For instance, there are 24, 49, 44

and 49 genes in Arabidopsis, poplar, rice and maize,

respectively; while the estimated number of genes in the

MACA of eudicots and monocots is 23. Therefore, Ara-

bidopsis, poplar, rice and maize have netted 1, 26, 21 and

26 genes, respectively, since their splits. Obviously, the

numbers of genes gained in the poplar, rice and maize

lineages are much greater than that in the Arabidopsis

lineage.

Chromosomal location and duplication events

of the TLP genes

Next, we also investigate the phylogenetic relationship and

chromosomal location of each TLP gene. The results

indicated that the TLP genes unevenly distributed among

different chromosomes of these genomes (Fig. S1), and that

the generation of 7 (29.2 % of 24) Arabidopsis, 25 (56.8 %

of 44) rice, 28 (57.1 % of 49) poplar and 20 (40.8 % of 49)

maize TLP genes could be explained by tandem duplication

(Fig. S1). The largest TLP gene clusters are located on

chromosome 1 of poplar genome and contain 13 tandem

species subclass

introns targeting

A B

C D

Fig. 1 NJ distant tree of all

TLPs in Arabidopsis, rice,

poplar, maize, Physcomitrella

and Chlamydomonas. Terminal

markers are colored to

indicated: a species

(Arabidopsis bright green; rice

pink; poplar blue; maize black;

Physcomitrella red;

Chlamydomonas yellow);

b subclass (Group I orange;

Group II turquoise; Group III

crimson; Group IV yellow;

Group V deep yellow; Group VI

bright green); c number of

introns (genes with no intron

gray; one intron yellow; two

introns turquoise; three introns

pink; four introns blue; more

than four introns red); and

d predicated organelle targeting

(ER green; mitochondrial red;

plastid blue; elsewhere gray),

some no-Met proteins are

discarding and are not shown in

here

(44)  O. sativa

(49)  Z. mays

(49)  P. trichocarpa

(24)  A. thaliana

(6)  P. patens

(1) C. reinhardtii-4/ + 0

-0/ + 3

-1/ + 16

-3/ + 23

-8/ + 9

-11/ + 17

-9/ + 8

-3/ + 30

-6/ + 8

-6/ + 4

Em8

A23

M43

E22V55

Fig. 2 Gene gain and loss of TLPs in the evolution of plants. The

names of internal nodes are abbreviated (V Viridiplantae, Em

Embryophyte, A Angiosperm, M Monocots, E Eudicots). The

numbers of common ancestors at the five internal nodes (V, Em, A,

M and E) are shown in the quadrates. Numbers after the plus signs the

numbers of gene gain events, whereas numbers after the minus signs

gene loss events
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arrayed members, i.e. POPTR_0001s22810.1, POPTR_

0001s22830.1, POPTR_0001s22850.1, POPTR_0001s

22860.1, POPTR_0001s22870.1, POPTR_0001s22880.1,

POPTR_0001s22890.1, POPTR_0001s22900.1, POPTR_

0001s22910.1, POPTR_0001s22920.1, POPTR_0001s

22930.1, POPTR_0001s22950.1 and POPTR_0001s

22960.1 (Fig. S2). Moreover, these genes form a single

clade, suggesting that they may come from the recent

tandem duplications (Fig. S2). In addition to tandem

duplication, segmental duplications also played an impor-

tant role in the expansion of the TLP family gene. At least

3, 2, 7, and 4 pairs of paraloguos genes come from seg-

mental duplication in Arabidopsis, rice, poplar and maize,

respectively (Fig. S1). Within the identified duplication

events, some pairs are retained as duplicates, whereas

others lost them. It is likely that dynamic changes have

occurred following segmental duplication. Therefore, tan-

dem duplication and segmental duplication are the major

factor that contributed to the expansion of this gene family.

Expression of the TLP gene family in rice

Expression profiling is a useful tool for understanding gene

function (Durick et al. 1999). To assess the transcriptional

characteristics of the TLP genes, we examined some pub-

licly databases in rice. First, we analyzed the spatial- and

temporal-specific expression profiles of rice TLP genes in

embryo (6 days), endosperm (6 days), root, leaf and

seedling. All of the 37 detected transcripts were divergent

expressed in different tissues (Fig. S3). Some members of

rice TLP gene (such as LOC_Os12g43490, and

LOC_Os09g36580) were expressed at the highest levels in

the root, implying that they may be involved in the root

development. In addition, LOC_Os06g47600 and

LOC_Os10g05600 genes were higher expressed in the

embryo, suggesting that these TLPs might be associated

with early embryonic development of rice. Similar results

have also been observed in their homologs in Arabidopsis,

which were highly expressed during seed germination (Seo

et al. 2008).

Plant growth is affected by some abiotic cues (Han et al.

2015; Jayakannan et al. 2015; Liu et al. 2015). Here, we

also examined the expression profiles of rice TLP genes

under drought, salt, cold and heat shock stresses. Divergent

expression patterns were present among TLP members

when exposed to these stress conditions (Fig. S3). Four

TLP genes (LOC_Os12g43450, LOC_Os03g46060,

LOC_Os07g23470, and LOC_Os03g14050) displayed

higher expression levels in these conditions. Interestingly,

we also found that, compared with the control, over 70.2 %

of rice TLP genes showed higher expression levels under

heat shock stress, implying that most TLP genes might be

involved in the heat shock response. Infections of some

pathogenic bacteria and insect pest are key factors affecting

crop quality and yield. Next, we examined some experi-

ments infected by Xanthomonas oryzae pv. oryzae (Xoo)

and Blumeria graminis (Bgh) and found that over 67.5 and

75.6 % rice TLP genes exhibited an increase in expression

levels under X. oryzae and B. graminis infection, respec-

tively (Fig. S3). In addition, we also examined the

expression levels of TLP gene under an insect pest, striped

stem borer (SSB) (Fig. S3). The results indicated that

expression levels of over 59.4 % TLP genes were increased

when attacked by this pest. An increasing number of evi-

dence has suggested that TLPs may function in both biotic

and abiotic stress tolerance. Previous studies reported that

transgenic plants over-expressing TLP proteins showed

enhanced resistance to Alternaria alternate (Velazhahan

and Muthukrishnan 2003), Fusarium graminearum

(Mackintosh et al. 2007), Verticillium dahliae (Munis et al.

2010), Phaeseoropsis personata (Singh et al. 2013), and so

on. Moreover, over-expression of some TLP proteins could

confer tolerance during salt, drought and other stresses

(Rajam et al. 2007; Munis et al. 2010; Wang et al. 2011;

Singh et al. 2013). In addition, several TLPs have been

reported to be induced during insect attack (Johnson et al.

2011; Singh et al. 2013). Our study also indicated that most

rice TLPs can be induced by these abiotic and biotic

stresses, suggesting that they are likely to be required for

enhancing resistance to stress.

Different selection regimes in different groups

and amino acid sites

Ka/Ks ratio measures selection pressure on amino acid

substitutions. A Ka/Ks ratio greater than 1 suggests positive

selection and a ratio less than 1 suggests purifying selec-

tion. The amino acids in a protein sequence are expected to

be under different selective pressures and to have distinct

Ka/Ks ratios. To analyze positive or negative selection of

specific amino acid sites within the full-length sequences of

the TLP proteins in different groups, substitution rate ratios

of nonsynonymous (Ka) versus synonymous (Ks) mutations

were calculated with the Selecton Server (http://selecton.

tau.ac.il) using a Bayesian inference approach (Stern et al.

2007). We performed the tests using four evolution models

[M8 (xs C 1), M8a (xs = 1), M7 (beta) and M5 (gamma)]

implemented in this server. Selection models M8a and M7

do not indicate the presence of positively selected sites,

whereas the M8 and M5 models do (Table S1). Moreover,

statistical significance of positive selection has been testing

for the identified positively selected sites. The results

indicated that the Ka/Ks ratios of the sequences from dif-

ferent TLP groups were significantly different (Table S1).

Higher Ka/Ks values existed in Group IV, indicating a

higher evolutionary rate or selective relaxation within
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members of the Group IV. On the other hand, the Ka/Ks

values in Group I are relatively small, implying a lower

evolutionary rate or selective constraint within Group I

members. However, despite the differences in Ka/Ks val-

ues, all the estimated Ka/Ks values are substantially lower

than 1, suggesting that the TLP sequences within each

group are under purifying selection pressure and that pos-

itive selection may have acted only on a few sites during

the evolutionary process (Table S1). In addition, we also

used SLAC, FEL and REL methods with default settings

implemented in the Datamonkey web interface (Delport

et al. 2010) to further identify selection in individual

codon. The results were shown in Table 2. All the Ka/Ks

ratios were less than 1, indicating that most codons in TLP

sequences were under purifying selecting in these six

groups. The FEL software detected the largest number of

potential positively selected sites for each group. However,

SLAC and REL analyses only detected a few. In this study,

we used two programs (Selecton and Datamonkey)

including seven methods to detect positively selected sites

and got similar selection pressures for each group

(Tables S1 and 2). Detecting positive selection will help to

understand functional residues and functional shift of

protein (Loughran et al. 2012; Chen et al. 2014). In this

paper, we found that a few sites might undergo positive

selection in evolution (Tables S1 and 2); implying that

positive selection on these sites might have accelerated

functional divergence and then result in the formation of

gene subgroups.

Functional network analysis of the TLP genes

in Arabidopsis

Genes involved in related biological pathways are usually

expressed cooperatively (Eisen et al. 1998). To further

investigate which genes are possibly regulated with the

TLPs, we assembled a co-expression network (Fig. 3). 7 of

24 TLPs were present in the network, which exhibited 245

physical or functional interactions with 188 genes.

Molecular function analysis of these 188 genes showed that

genes with ATP or DNA binding, protein binding, kinase

activity, hydrolase activity, and transporter activity were

overly represented. Among the 188 interactors identified,

102 and 64 genes co-expressed with AT1G18250 and

AT4G38660, respectively. Plant resistance is very important

to the growth of plant (An et al. 2015). Our co-expressed

analysis also revealed that TLP genes might function with

some pathogen resistance proteins. C ysteine-rich repeat-

like kinases (CRK) is an important group of enzymes

involved in pathogen resistance (Chen et al. 2004). Here,

three CRKs (AT4G23210, AT4G23150 and AT4G23160)

were identified to be co-expressed with the TLP proteins,

implying potential interactions between the TLP and CRK

genes. In addition, some proteins with transporter activity

are also involved in plant resistance. Some of these co-

expressed genes included EDS5 (AT4G39030), DND2

(AT5G54250) and TIL1 (AT5G58070). EDS5 encodes an

orphan multidrug and toxin extrusion transporter, which is a

necessary component of salicylic acid-dependent signaling

for disease resistance (Ng et al. 2011). DND2 is a second

cyclic nucleotide-gated ion channel gene for hypersensitive

response (Jurkowski et al. 2004). TIL1 encodes a tempera-

ture-induced lipocalin, which is involved in the thermotol-

erance (Chi et al. 2009). Plant chitinases are involved in

defense responses against pathogen attacks and in tolerance

of diverse environmental stresses (Takenaka et al. 2009). A

TLP, AT4G11650, was found to be co-expressed with one

chitinase, AT3G54420. In addition, another chitinase, CHI

(AT2G43570), might be the potential interactors of the TLP,

AT1G75040. Thus, whether chitinase could serve as a link

to TLP molecular pathways need further experimental

confirmation. Although the exact pathways mediated by

these genes were still unclear, we speculated that these TLP

genes might play critical roles in plant resistance. These

observations have led us to hypothesize that TLP could

regulate these plant responses through its involvement in

different signal pathway in plants. This contributes to the

selection of candidate genes for further functional

genomics.

Table 2 Predicted positive selection sites and evidence for positive selection within different TLP gene family

Gene

branches

Ka/Ks Numbers of positive selection

sites

Null model

log-likehoods

Alternative mode

log-likehoods

Likelihood

ratio test

P value Evidence for

positive selection

SLAC FEL REL

Group I 0.298787 0 3 0 -18,677.1 -18,680.5 -6.841 1 No

Group II 0.389193 1 3 0 -17,583.6 -17,583.6 0.000983128 0.999509 No

Group III 0.487274 5 21 6 -29,811.3 -29,811.3 0.000102436 1.00E?00 No

Group IV 0.627454 0 6 3 -3791.51 -3791.51 5.56E-05 0.999972 No

Group V 0.305479 0 2 0 -13,360.2 -13,360.2 2.63E-05 0.999987 No

Group VI 0.408379 2 9 0 -27,038.4 -27,038.4 0.0001208 0.99994 No
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Conclusions

This study provided a comparative genomic analysis

addressing phylogeny, chromosomal location and dupli-

cation, selective pressures, expression profiling, and func-

tional network analysis. Phylogenetic analyses revealed six

well-supported groups in the TLP family. The TLP gene

family had a birth process only after the emergence of

Angiosperm species. Tandem and segmental duplication

played a dominant role in the expansion of this gene

family. In addition, TLPs were under purifying selection

according to estimations of the substitution rates of these

genes. Furthermore, comprehensive analysis of the

expression profiles provided insights into possible func-

tional divergence among members of the TLP gene family.

Functional network analysis was also identified some

resistance genes, which might work together with the TLPs.

These data may provide valuable information for future

functional investigations of this gene family.
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