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Abstract Drought stress encumbers the seed germination

and delays seedling establishment in dry direct-seeded rice.

Pot and field studies were carried out to ascertain the role

of seed-priming on emergence, seedling growth and asso-

ciated metabolic events in dry-direct seeded rice system.

Seeds of two indica rice cultivars were subjected to dif-

ferent priming agents viz., hydropriming (H2O), potassium

nitrate (KNO3; 0.5 %), polyethelene glycol-6000 (PEG;

10 %) and spermidine (Spd; 0.5 mmol L-1). A no-priming

treatment was kept as control for comparison. Drought

stress was imposed by 15 % PEG solution in a pot exper-

iment; whilst in field trial soil moisture contents were

maintained between 15 and 18 %. In pot experiment,

drought stress severely hampered the germination rate,

seedling growth, and starch metabolism, but increased the

antioxidant enzymes activity and lipid peroxidation in both

rice cultivars as compared with normal conditions. All the

seed priming treatments particularly Spd priming, were

effective in alleviating the damaging effects of drought

stress under controlled as well as field conditions. In field

trial, Spd priming recorded 21, 232, 173, 67 and 78 %

higher emergence, shoot length, shoot fresh weight, max-

imum root length and root fresh weight of dry direct-see-

ded rice, respectively, compared with control. And such

increments were associated with better starch metabolism

particularly increased a-amylase activity in primed rice

seedlings.

Keywords Antioxidant enzymes � Drought stress � Rice
emergence � Seed priming � Stand establishment � Starch
metabolism

Introduction

Rice is a major staple food crop for nearly 65 % population

in China (Zhang et al. 2005). China plays a key role in the

global food security as it produces more than 28 % of rice

production worldwide. However, burgeoning and ever

increasing population necessitates further increase in rice

production to ensure future food security and social sta-

bility. Traditionally, transplanted flooded rice is the major

production system in China accounting nearly 95 % of the

total rice grown area (Peng et al. 2009). Nonetheless in

recent years, depleting water resources, water-intensive

nature of rice cultivation and labor shortage are threatening

the sustainability and productivity of transplanted-flooded

rice (Sun et al. 2015). Dry direct-seeded rice technology

has been proposed to reduce water requirement, save labor

demand, increase resource use efficiency and improve

environmental sustainability (Liu et al. 2014, 2015). It

refers to the process of establishing the crop from dry seeds

sown in the field rather than transplanting seedlings from

nursery (Liu et al. 2014). Previous researches have recor-

ded similar grain yield in dry direct-seeded rice and tra-

ditionally transplanted flooded rice (Qureshi et al. 2006;

Liu et al. 2015).

Poor germination and stand establishment of direct-

seeded rice is a major deterrent for achieving an optimal

crop growth and better productivity especially under

drought stress during emergence (Liu et al. 2014). Severe

drought stress sometimes may result in complete inhibi-

tion of seedling emergence (Kaya et al. 2006). Decreased
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water uptake during imbibition phase is the major cause

for the poor stand establishment (Murillo-Amador et al.

2002). Drought induces various changes in morphological,

metabolic and/or physiological functions of plant. It

severely hampers both the elongation and expansion in

plant growth (Kusaka et al. 2005). Moreover, exposure of

plants to drought stress leads to the generation of reactive

oxygen species (ROS), which can damage plants by lipid

peroxidation, protein degradation, DNA fragmentation

and ultimately cell death (Zhang et al. 2015). However,

activation of antioxidant system and synthesis of

metabolites ensure the tolerance ability of plants in stress

prone environments.

The oxidative stress tolerance is genetically controlled

for crop improvement using conventional breeding and

selection, transgene production or adopting physiological

approaches like seed-priming. Seed priming is a controlled

hydration technique that allows the pre-germination

metabolisms without actual germination (Hussain et al.

2015b). It is one of the most effective, pragmatic and short-

term approaches for increasing seed vigor, synchronization

of germination, as well as the seedlings growth of many

crops under different abiotic stresses including drought

(Kaya et al. 2006; Farooq et al. 2009). Higher and syn-

chronized germination of primed seeds (Kaya et al. 2006)

primarily occurred due to reduction in the lag time of

imbibitions (Brocklehurst and Dearman 2008), build-up of

germination enhancing metabolites (Farooq et al. 2007),

metabolic repair during imbibition (Bray et al. 1989) and

osmotic adjustment (Bradford 1986).

Polyethylene glycol (PEG) and Potassium nitrate

(KNO3) are large in molecular size and nontoxic in nat-

ure, therefore categorized as osmopriming reagents. Both

of the above reagents can lower the water potential

without penetrating into seeds on soaking. Osmopriming

with PEG has been proposed to improve seed germina-

tion, early seedling vigor, antioxidant enzymes activity,

and eventually leading to increased stress tolerance in

many crop plants (Chen and Arora 2011). Likewise, Kaya

et al. (2006) reported that KNO3 priming in sunflower

improved germination and stand establishment under

drought and salinity stresses. Spermidine (Spd) is a

polyamine, which can act as free radical scavengers and

protects the membranes from oxidative damages (Besford

et al. 1993). Exogenous application of Spd has been

reported to improve the drought tolerance in plants (Li

et al. 2015; Yin et al. 2014). Recently, it has been found

that endogenous production of Spd was associated with

improved drought tolerance in rice (Yang et al. 2007;

Farooq et al. 2009).

Climate change has been typically summarized by

varying precipitation patterns potentially leading to more

frequent and severe drought episodes. Approximately one-

third of the world land area is prone to drought, and this

ratio is higher up to 47 % in China (Wei et al. 1997). Rice,

being a high delta crop, is a key target for water saving and

developing novel strategies for rice production and is

inevitable to face the consequences of future climate

change on agriculture and natural ecosystems (Hussain

et al. 2015a). Despite the availability of volumetric infor-

mation on rice seed invigoration techniques, priming

agents like Spd, PEG and KNO3 have rarely been tried in

dry direct-seeded rice under drought stress. The aims of

this study were: (1) to examine the effects of seed priming

on emergence and early seedling growth of two rice cul-

tivars in dry direct-seeded rice system under drought stress;

(2) to investigate the biochemical changes in rice seedlings

induced by seed priming under controlled and open-field

conditions.

Materials and methods

Seed source

Seeds of two widely grown indica rice cultivars viz.,

Huanghuazhan (HHZ, inbred) and Yangliangyou6 (YLY6,

hybrid) were obtained from Crop Physiology and Produc-

tion Center, Huazhong Agricultural University, Wuhan,

China. The initial seed moisture contents of HHZ and

YLY6 were 10.8 and 11.0 %, respectively. The seeds were

placed in nylon mesh bags and dried at ambient tempera-

ture in silica gel drier. The dry seeds of HHZ and YLY6

contained moisture contents of 9.07 and 8.98 % (on dry

weight basis), respectively. After drying, seeds were sealed

in aluminum foil bags for subsequent usage.

Seed priming treatments

Seed priming treatments were pre-optimized in various

preliminary studies. Seeds of both rice cultivars were

treated with various concentrations of KNO3, Polyethelene

glycol-6000 (PEG) and Spd. Effective levels of these

treatments were selected based on emergence, early seed-

ling growth and various biochemical attributes under

drought (data not shown). Seed priming treatments selected

for present studies were: hydropriming (distilled water),

KNO3 (0.5 %), PEG (10 %) and Spd (0.5 mmol L-1).

Seeds were primed in dark at 25 �C for 24 h, with constant

gentle agitation. The ratio of seed weight to solution vol-

ume (w/v) was 1:5 and priming solution was changed after

every 12 h. The primed seeds were washed with distilled

water for 2 min, surface dried and transferred to air dried

oven at 25 �C for 48 h to reduce the moisture contents near

to 10 %. The seeds were sealed in polythene bags and

stored in a refrigerator at 4 �C until use.
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Experimentation

Pot experiment

To ascertain the germination and growth responses of rice

to different seed priming treatments under PEG-induced

drought stress, a pot experiment was conducted in Crop

Physiology and Production Center, Huazhong Agricultural

University, Wuhan, China. Plastic pots with

23.0 cm 9 17.0 cm 9 15.0 cm size were filled with 3 l of

distilled water for control (CK) and of 15 % PEG solution

(w/v) for drought stress treatments. Floating board on the

surface of solution contained five separated sections, and

thirty seeds of a treatment were sown in each section. The

experiment was laid out in a completely randomized design

with factorial arrangement replicated thrice. All the pots

were placed in growth chamber with 24 h dark period for

first 2 days. However, for the rest of study period, growing

conditions were kept uniform with 12 h light period, 30 �C
day and 25 �C night temperatures.

Germination of seeds was recorded on daily basis

according to AOSA (1990) until a constant count was

achieved. Seeds were considered to be germinated when

radicle and hypocotyl length exceeded 2 mm. Seedlings

were harvested at 8 days after sowing (DAS), and shoot

length and maximum root length of ten randomly selected

seedlings per replication were measured and averaged.

Seedlings of each replicate were dissected into roots and

shoots and their fresh weights were recorded immediately.

Then the seedling samples were put in a disposable ziplock

bag and were stored in -80 �C refrigerator for analysis of

malondialdehyde (MDA) contents and antioxidant

enzymes activities.

To extract antioxidant enzymes, 0.5 g fresh shoot sam-

ples in each container were ground using a tissue grinder in

8 ml of 50 mM cool phosphate buffer [pH 7.0, containing

1 % (w/v) polyvinylpyr- rolidone] in tubes that were placed

in an ice bath. The homogenate was centrifuged at

15,0009g for 20 min at 4 �C. The supernatant was used for
assays of enzyme activity and the level of lipid peroxidation.

The lipid peroxidation level was determined in terms of

malondialdehyde (MDA) content by the method of

Dhindsa et al. (1981) and Zhang and Kirkham (1994). A

2-ml aliquot of enzyme solution was added to a tube

containing 1 ml 20 % (v/v) trichloroacetic acid and 0.5 %

(v/v) thiobarbituric acid. The mixture was heated in a water

bath at 95 �C for 20 min, cooled to room temperature and

then centrifuged at 10,0009g for 10 min. The absorbance

of supernatant at 532 nm was determined and the non-

specific absorbance at 600 nm was subtracted. The MDA

content was calculated by the extinction coefficient of

155 mM-1 cm-1 (Heath and Packer 1968).

The CAT activity determination was performed

according to the method of Beers and Sizer (1952) with

slight modifications. The reaction mixture consisted of

2 ml of sodium phosphate buffer (50 mM, pH 7.0), 0.5 ml

H2O2 (40 mM) and 0.5 ml enzyme extract in a total vol-

ume of 3.0 ml. The decomposition of H2O2 was measured

by decline in absorbance at 240 nm (Tecan infinite M200,

Swit). One unit CAT activity was defined as an absorbance

change of 0.01 units per min and demonstrated as U g-1

FW.

The POD activity was determined by the method of

guaiacol oxidation according to description of Chance and

Maehly (1995) with modifications. The POD reaction

solution (3 ml) contained 50 mM sodium acetate buffer

(pH 5.0), 20 mM guaiacol, 40 mM H2O2, and 0.1 ml

enzyme extract. The reaction mixture in which enzyme

solution was replased with sodium acetate buffer served as

a blank. Readings at 470 nm (Tecan infinite M200, Swit)

were recorded within 3 min after the start of the reaction at

1 min intervals. One unit POD activity was defined as an

absorbance change of 0.01 units per min and was expressed

as U g-1 FW.

The activity of SOD was determined by measuring its

ability to inhibit the photoreduction of nitro blue tetra-

zolium (NBT) following the method of Giannopolitis and

Ries (1977) with slight modifications. The reaction mixture

consisted of 1.5 ml phosphate buffer (50 mM, pH 7.8),

0.3 ml methionine (130 mM), 0.3 ml NBT (750 lM),

0.3 ml EDTA (100 lM), 0.3 ml riboflavin (20 lM) and

0.3 ml enzyme extract in a total volume of 3.0 ml. Test

tubes containing the reaction solution were irradiated under

a light bank (15 fluorescent lamps) at 78 lmol m-2 s-1 for

15 min. The absorbance of the irradiated and nonirradiated

solution at 560 nm was determined with a spectropho-

tometer (Tecan infinite M200, Swit). One unit of SOD

activity was defined as the amount of enzyme that gives

50 % inhibition of NBT photoreduction and was presented

as U g-1 FW.

A separate set of each treatment was maintained for

recording a-amylase activity and total soluble sugar con-

tents at 5 DAS. For a-amylase activity, 1.0 g seedling

sample including shoot and root was ground and mixed

with 100 ml distilled water, and left for 24 h at 4 �C. The
enzyme activity was determined from supernatant liquid by

dinitrosalicyclic acid (DNS) method (Bernfeld 1955). In

order to determine total soluble sugar contents, ground

seedling sample (1.0 g) was mixed with 10 ml distilled

water, and left for 24 h at 25 �C (Lee and Kim 2000).

Mixture was filtered with Whatman No. 42 and the final

volume was made to 10 ml with distilled water. Total

soluble sugar contents were determined by the phenol

sulfuric method (Dubois et al. 1956).
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Field experiment

In order to assess the influence of seed priming on dry direct-

seeded rice under field conditions, a trial was carried out at the

experimental station of Zhangbang Village, Dajin Town,

Wuxue Country, Hubei Province, China (29�510N 115�330E).
The soil of experimental field was silt loam with the propor-

tionof sand, silt and clay as 26, 64 and 10 %, respectively. The

organic matter, total nitrogen, available phosphorus, and

potassium contents of upper 20 cm soil were 30.7,

1.98 g kg-1, 23.5, and 161.5 mg kg-1, respectively.

The experiment was randomized in a split plot design

with four replications. Two rice cultivars (HHZ and YLY6)

were assigned to main plot, while various seed priming

treatments (control, hydropriming, 0.5 % KNO3 priming,

10 % PEG priming, 0.5 mmol L-1 Spd priming) were kept

in subplots. Before sowing, the soil was dry ploughed and

harrowed without puddling. Dry seeds were manually sown

at 20 cm row to row and 5 cm plant to plant distance on

29th June 2014. The seeds were covered with soil imme-

diately after sowing. The soil moisture contents were in the

range of 15–18 % during the course of study.

Emergence of seeds was recorded on daily basis

according to AOSA (1990) and was expressed as percent-

age. At 8 DAS, the seedlings of 1.0 m row were sampled

carefully, washed and kept in a disposable ziplock bag for

subsequent analysis. After measuring shoot length and

maximum root length of 10 randomly selected plants, all

seedlings were dissected into root and shoot for determi-

nation of their fresh weights. All the samples were stored in

liquid N2 and were kept in -80 �C refrigerator for further

analysis of a-amylase activity and total soluble sugar

contents.

Statistical analysis

Data were analyzed to confirm its variability following

analysis of variance using Statistix 9.0. The differences

between treatments were separated using least significance

difference (LSD) test at 0.05 probability level.

Results

Pot experiment

Significant (p B 0.05) variations in germination of rice

were observed under the influence of PEG-induced drought

stress, seed priming treatments and cultivars (Fig. 1).

Drought stress drastically reduced germination speed and

rate in both rice cultivars. Nevertheless, all the seed

priming treatments significantly (p B 0.05) enhanced the

rice germination compared with control under drought as

well as normal conditions (Fig. 1). Under normal condi-

tions, the maximum germination of HHZ (98.9 %) and

YLY6 (96.7 %) was recorded by Spd priming. Seed

priming with PEG and hydropriming were the 2nd best

treatments for HHZ and YLY6, respectively (Fig. 1).

Under drought stress, HHZ primed with KNO3, PEG, and

Spd recorded 88–93 % germination at 6 DAS, which were

significantly (p B 0.05) higher than that recorded in control

(62 %). Similar was the case for YLY6 and all seed

priming treatments recorded more than 79 % germination

under drought conditions. Seed priming of rice also

enhanced the speed of germination, therefore germination

of primed seeds at 2 DAS under drought stress was in the

range of 13.3–24.4 %, as compared to no germination for

control treatments of both cultivars (Fig. 1).

Drought stress markedly inhibited the early seedling

growth of rice, and considerable reductions in shoot and

root length as well as in their fresh weights were recorded

for both cultivars (Fig. 2). However, different seed priming

treatments assuaged the damaging effects of PEG-induced

drought stress. Averaged across cultivars and seed priming

reagents; shoot length, maximum root length, shoot fresh

weight and root fresh weight of primed rice seeds grown

under drought stress, were increased by 54.1, 32.3, 35.5 and

45.9 %, respectively compared with control. Seed priming

with Spd performed better than all other seed priming

treatments by recording 64.9, 51.8, 36.8 and 76.6 %

increase in shoot length, maximum root length, shoot fresh

weight and root fresh weight, respectively (Fig. 2). Among

all the seed priming treatments, PEG priming was least

effective under drought stress, but it still presented a better

growth than control (Fig. 2). Variations between cultivars

were also apparent regarding their response to different seed

priming treatments under drought stress, and the effects of

seed priming treatments on growth of YLY6 were higher

than that of HHZ. For YLY6, all the priming treatments

significantly (p B 0.05) improved the growth performance

under drought stress as compared with control, while this

was not in the case of HHZ, where only hydropriming,

KNO3 and Spd could significantly (p B 0.05) enhance rice

growth under drought stress (Fig. 2).

Lipid peroxidation was assessed in terms of MDA

contents in rice seedlings. The highest MDA contents in the

seedlings of HHZ (155.5 nmol g-1 FW) and YLY6

(142.3 nmol g-1 FW) were observed in control treatments,

grown under drought stress (Fig. 3). Variations among seed

priming treatments for MDA contents were also observed

even under normal condition and primed seedlings recor-

ded significantly (p B 0.05) lower MDA contents.

Regardless of growing media and cultivars, Spd priming

recorded 25 % lower MDA contents and was the most

effective treatment for reducing lipid peroxidation com-

pared with control (Fig. 3).
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Antioxidant enzymes (SOD, POD and CAT) activities in

rice seedlings varied significantly (p B 0.05) in response to

different seed priming treatments and drought stress in both

cultivars (Fig. 3). Drought stress considerably increased

the antioxidant enzymes activities in both rice cultivars

predominately in HHZ. Moreover, seed priming of both

rice cultivars also increased the activities of SOD, POD,

and CAT compared with control. The maximum activities

of SOD (989.5 U g-1 FW), POD (1069.0 U g-1 FW), and

CAT (903.4 U g-1 FW) were recorded by Spd priming in

HHZ cultivar. Rice cultivars showed different responses to

various seed priming treatments, for example, POD activ-

ities of HHZ seedlings primed with distilled water and

KNO3 were similar (p[ 0.05) with control under normal

conditions. In contrast, all seed priming treatments signif-

icantly (p B 0.05) enhanced the POD activity in YLY6

(Fig. 3).

Starch metabolism in rice seedlings was assessed in

terms of a-amylase activity and total soluble sugar contents

(Fig. 4). Exposure of drought stress reduced the total sol-

uble sugar contents in both cultivars, while a-amylase

activity in HHZ. Nevertheless, all seed priming treatments

significantly (p B 0.05) improved the a-amylase activity

(Fig. 4a, c) and soluble sugar contents (Fig. 4b, d) in both

cultivars under drought as well as normal conditions.

Averaged across cultivars and seed priming reagents, a-
amylase activity and total soluble sugar contents of primed

rice seedlings were increased by 103.6 and 44.4 % com-

pared with control. Both cultivars responded differentially

to drought stress and seed priming treatments. Drought

stress significantly (p B 0.05) reduced a-amylase activity

(Fig. 4a, c) and total soluble sugar contents (Fig. 4b, d) in

HHZ and Spd priming was the most effective treatment in

improving these two traits under drought as well as normal

conditions. In contrast, increase in a-amylase activity

expect for PEG primed seedlings and decrease in total

soluble sugars under drought were observed in YLY6.

Although, all the seed priming treatments increased the a-
amylase activity and total soluble sugars in YLY6 as

compared with control, yet hydropriming and KNO3 were

relatively more effective for these attributes.

Field experiment

Temporal data regarding emergence of dry direct-seeded

rice under drought stress were presented in Fig. 5.
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Fig. 1 Germination dynamics in primed and non-primed seeds of HHZ and YLY6 under normal (a, b) and PEG-induced drought stress (c, d) in
a pot experiment. Error bars represent the standard error
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Consistent with pot experiment, all seed priming treatments

notably enhanced emergence of both rice cultivars. When

averaged across cultivars, the emergence in control plots at

6 DAS was only 4 %, while average emergence of primed

seeds was 31 %. The Spd priming showed the highest

emergence in both cultivars followed by PEG priming.
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Whilst hydropriming and KNO3 priming were moderately

effective regarding emergence of dry direct-seeded rice

(Fig. 5).

Seed priming treatments depicted significant (p B 0.05)

improvement in early seedling growth of dry direct-seeded

rice in both cultivars (Fig. 6). Furthermore, response of two

cultivars to seed priming treatments also varied for early

seedling growth attributes. In HHZ, the highest values for

shoot length (4.8 cm), maximum root length (6.0 cm),

shoot fresh weight (29.2 mg seedling-1) and root fresh
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weight (13.4 mg seedling-1) were observed by Spd prim-

ing (Fig. 6). Seed priming with KNO3 was least effective in

HHZ for these attributes. In YLY6, Spd priming was more

beneficial in terms of seedling growth but it was similar

(p[ 0.05) with PEG and KNO3 priming for root growth

attributes (Fig. 6).

Different seed priming treatments also significantly

(p B 0.05) enhanced a-amylase activity and total soluble

sugar contents in seedlings of both cultivars under dry

direct-seeded rice system (Fig. 7). Averaged across culti-

vars, the a-amylase activity in control was only

5.27 mg g-1 min-1, while in different seed priming treat-

ments; it ranged from 10.18 to 19.17 mg g-1 min-1.

Likewise, total soluble sugar contents in different seed

priming treatments were 55–79 % higher than that of con-

trol. Seed priming with Spd recorded higher a-amylase

activity and total soluble sugar contents than all other seed

priming treatments (Fig. 7).

Discussion

Present study demonstrated that seed priming efficiently

improved emergence and seedling growth performance of

dry direct-seeded rice under water deficit conditions.

Exposure of drought stress in field conditions or in PEG

solution culture resulted in impaired and unsynchronized

germination as well as poor seedling establishment

(Figs. 1, 5). Previously, Kaya et al. (2006) reported that

reduced germination and poor seedling stand is the first and

foremost response of plants to water shortage. While

studying on pea, Okcu et al. (2005) reported hampered

germination and early seedling growth of five tested cul-

tivars under drought stress. Moreover in alfalfa crop,

reduced germination potential, lower hypocotyl length, and

less shoot and root fresh weights were recorded by PEG-

induced drought stress (Zeid and Shedeed 2006).

In both studies (pot and field), seed priming treatments

improved germination and early seedling growth perfor-

mance of rice particularly under drought stress. Better

ability of primed seeds to complete the germination process

in a short time and cope with water-limited conditions

might be attributed to readily available food for germi-

nating seedlings. Wahid et al. (2007) stated that seed

priming enhances the germination rate, speed and unifor-

mity even under less than optimum conditions thus

enabling the uniform and vigorous crop stand. Further-

more, early and uniformed stand establishment enables the

crop to complete the other phonological events in crop

ontogeny well in time (Farooq et al. 2009). Harris et al.
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(2002) observed that in drought-prone areas, primed rice

seeds recorded better and uniform germination as well as

faster seedlings growth resulting in higher yield.

Our results depicted that Spd priming was more effective

for most of the studied characteristics than all other seed

priming treatments. Our results are in agreement with Tang

and Newton (2005), who indicated that seed priming with

Spd improves cell membrane stability, increases antioxi-

dant enzymes activities, decreases stress-induced growth

inhibition, and enhances stress tolerance ability in plants.

Yang et al. (2007) also pointed out that endogenous pro-

duction of Spd was associated with improved drought tol-

erance in rice. While studying on hybrid sunflower, Farooq

et al. (2007) observed that seed priming with Spd was

effective in improving the emergence and seedling growth.

In pot study, PEG-induced drought stress led to higher

MDA accumulation, whilst seed priming treatments

effectively reduced it in both rice cultivars compared with

control (Fig. 3). Gill and Tuteja (2010) noted that plants

exposed to various abiotic stresses exhibited higher lipid

peroxidation due to the generation of ROS. In present

study, primed seedlings showed lower lipid peroxidation in

normal as well as drought conditions (Fig. 3). The lowest

MDA levels in Spd primed seedlings may justify the

highest growth of these seedlings among all seed priming

treatments. Therefore, lowering of ROS levels and conse-

quently lipid peroxidation might be a major factor in the

drought tolerance attained by primed seedlings. Decreased

integrity of biological membranes, principally due to the

oxidative damage is another intricate effect of drought

stress (Farooq et al. 2009) and production of ROS, espe-

cially H2O2 is a major cause of such effects (Munné-Bosch

and Penuelas 2003). The ROS in plants are scavenged by a

variety of antioxidant enzymes including SOD, POD, and

CAT (Khaliq et al. 2015). Antioxidant activity was

increased in both rice cultivars in response to PEG-induced

drought stress (Fig. 3), which could be involved in scav-

enging ROS produced under stress conditions. The SOD

plays a key role in catalysing the dismutation of O2
-, while

CAT and POD mainly scavenge H2O2 (Foyer et al. 1994).

Ostrovskaya et al. (2009) argued that increased SOD

activity under stress conditions is considered a protective

mechanism against the formation of superoxide. Further-

more, increase in POD (Liu and Huang 2000) and CAT

(Demiral and Turkan 2004) in response to abiotic stresses

has also been documented. All the seed priming treatments

enhanced the activities of SOD, CAT, and POD under

normal as well as drought conditions (Fig. 3), which is in

line with the results of Goswami et al. (2013).

The ability of plants to degrade starch into soluble

sugars under water limited conditions probably plays a key

role in their ability to survive and grow faster under stress.

In rice, amylase activity is highly induced during germi-

nation (Hussain et al. 2015b); however, this activity begins

to appear even earlier, during seed maturation. Present

study highlighted the importance of a-amylase activity and

total soluble sugar contents during germination and early

seedling growth under drought conditions. Drought stress

considerably decreased the total soluble sugars in both

cultivars and a-amylase activity in HHZ, which could be

explained by the fact that decrease in water availability

slowed down the starch degradation under drought stress.

Therefore, delay in germination/emergence and slow

seedling growth was observed under drought stress.

Seed priming treatments recorded pronounced increase

in a-amylase activity and total soluble sugar contents under

normal and drought conditions (Figs. 4, 7). Higher a-
amylase activity in primed seedlings was consistent with

the better germination/emergence and faster growth com-

pared with that in control (Figs. 1, 5, 6). Furthermore,
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greater a-amylase activity in primed seeds was also

reflected through higher soluble sugar concentrations

(Figs. 4, 7) and faster rate of starch breakdown in germi-

nating primed seeds, which presumably provided the sub-

strates necessary for generating the energy required for

growth and maintenance processes (Hussain et al. 2015b).

Conclusively, studies conducted under controlled and

field conditions revealed that seed priming can alleviate the

negative effects of drought stress on emergence as well as

seedling establishment and growth of dry-direct seeded

rice. Seed priming with Spd was found to be more effective

among all treatments to thrive under drought. Better

emergence and vigorous seedling growth due to seed

priming was associated with increased a-amylase activity

in primed seedlings.
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