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Abstract To investigate the alleviating effects of zinc

(Zn) against gradually increasing cadmium (Cd) stress in

aquatic environment, dry weight, polyamines and proline

contents as well as metabolic enzymes were studied in

Lemna minor L. after 4 days exposure. Dry weight was

significantly decreased as the concentration of Cd

increased. Cd stress also increased the putrescine (Put)

content, while decreasing spermidine (Spd) content,

whereas no significant change was observed in spermine

(Spm) content. Hence, the ratio of (Spd ? Spm)/Put rap-

idly reduced. In addition, the activities of arginine decar-

boxylase (ADC), ornithine decarboxylase and polyamine

oxidase (PAO) enhanced accordingly. Cd treatment also

induced a continuous accumulation of proline. Meanwhile,

pyroline-5-carboxylate synthetase (P5CS) activity

increased initially only to decline later and ornithine

d-aminotransferase (OAT) activity was only significantly

stimulated at 4 lM Cd, while the proline dehydrogenase

(PDH) activity declined. However, Zn supplementation

lowered accumulation of Put and proline contents and

raised the Spd content, via decreasing the activities the

ADC and PAO and keeping the activities of P5CS, OAT

and PDH at the control levels, but failed to generate a

statistically significant difference in content of dry weight.

These results suggested that Zn application can maintain

polyamines and proline homeostasis, thus conferring the

tolerance of L. minor to Cd.

Keywords Zn � Cd � Polyamines � Proline �
Lemna minor L.

Abbreviations

ADC Arginine decarboxylase

Agm Agmatine

DTT Dithiothreitol

EDTA Ethylene diamine tetra acetic acid

FW Fresh weight

OAT Ornithine d-aminotransferase

ODC Ornithine decarboxylase

P5CS Pyroline-5-carboxylate synthetase

PAO Polyamine oxidase

PAs Polyamines

PDH Proline dehydrogenase

PIS-bound Perchloric acid insoluble bound

PLP Pyridoxal phosphate

PMSF Phenylmethylsulfonylfluoride

PS-conjugated Perchloric acid soluble conjugated

Put Putrescine

PVP Polyvinylpyrrolidone

Spd Spermidine

Spm Spermine
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Introduction

Cadmium (Cd) is a kind of toxic heavy metal to most plants

which generates from industrial and agricultural activities

and ubiquitously exists in water (Sun et al. 2009). It is readily

taken up by aquatic plants and is toxic at cellular, physio-

logical, biochemical, andmolecular levels, including growth

retardation, inhibition of photosynthesis, induction and

inhibition of enzymes, disruptions in water relations, and

ultrastructural changes (Ding et al. 2007; Piotrowska et al.

2010; Prasad 1995; Singh et al. 2006; Tripathi et al. 1996;

Yang et al. 2010). The trace metal zinc (Zn) is essential to all

organisms functioning as a co-factor in a variety of bio-

macromolecules, including metabolic enzymes, transcrip-

tion factors and cellular signaling proteins (Mendoza-Cozatl

et al. 2005; Morrissey and Guerinot 2009; Palmer and

Guerinot 2009). Due to chemical similarity between Cd and

Zn, they both can be taken by plants as divalent cations and

therefore moderate Zn supply can alleviate the effect caused

by Cd in plants. Early studies have demonstrated that sup-

plemented with Zn could suppress Cd accumulation,

increase plant biomass, affect energy transfer in photosystem

II and photochemical quenching, lower level of reactive

oxidative species (ROS), protein and DNA damages

(Aravind et al. 2009; Balen et al. 2011; Bunluesin et al. 2007;

Malec et al. 2008).However, less is known about polyamines

and proline metabolism. In Arabidopsis, differential

expression of ADC has been detected under stress conditions

like drought, high salinity, mechanical injury, potassium

deficiency (Alcázar et al. 2006; Hummel et al. 2004; Peréz-

Amador et al. 2002; Urano et al. 2003). In addition, Yang

et al. (2011) and Chen et al. (2001) have demonstrated that

increased level of proline in response to lead and copper

treatment is due to the elevations of OAT or GK activities in

wheat and rice seedlings.

Polyamines are polybasic aliphatic amines that play a

major role in various physiological and developmental

processes in plants (Martin-Tanguy 2001). They may work

as an antioxidant, a free radical scavenger and a membrane

stabilizer (Larher et al. 2003; Velikova et al. 2000) and

contribute in enhancing tolerability (Alcázar et al. 2006;

Groppa and Benavides 2008). Moreover, it was found that

aquatic plants may accumulate PAs as cellular reducing

agents in response to the increase in ROS production

triggered by Cd (Verbruggen et al. 2009). Proline has also

been widely reported presenting a remarkable accumula-

tion in response to heavy metal exposure among plants

(Chen et al. 2001; Radic et al. 2010; Zengin and Munz-

uroglu 2005). Simultaneously, proline accumulation was

demonstrated that it is positively correlated with Put, Spd

and titers of total polyamines in Cd-treated pear shoots

(Wen et al. 2011).

Lemna minor L., a member of the duckweed family,

lives in many types of fresh water ecosystems (Bog et al.

2010). In particular, it has been commonly used as a test

organism in ecotoxicological and environmental studies

(Horvat et al. 2007; Khellaf and Zerdaoui 2010), owing to

the physiological properties (small size, high multiplication

rates and vegetative propagation). Therefore, we chose it as

the experimental material and polyamines (Put, Spd, Spm

and (Spd ? Spm)/Put) and proline contents as well as

critical metabolic enzymes (ADC, ODC, PAO, P5CS, OAT

and PDH) were investigated in detail, aiming to further

explore mitigative strategies of Zn on Cd-induced stress

responses.

Materials and methods

Plant material and treatments

Lemna minor were collected from unpolluted freshwater

bodies in Nanjing, China, washed with distilled water, and

acclimated in 1/10 Hoagland solution. They were cultured

in a totally enclosed incubator (Forma 3744, UK) at a day/

night temperature of 24 ± 2 �C for more than 2 weeks.

The illumination procedure consisted of a 16/8 light/dark

cycle and aphoton flux density of 50 lmol m-2 s-1 (Hor-

vat et al. 2007). Plant materials were treated as follows: (1)

control: 1/10 Hoagland solution; (2) Cd treatment: 1/10

Hoagland solution containing 1, 2, 3, 4 lM Cd; (3) Zn

treatment: 1/10 Hoagland solution containing 20 lM Zn;

(4) Cd ? Zn treatment: 1/10 Hoagland solution containing

1 lM Cd ? 20 lM Zn, 2 lM Cd ? 20 lM Zn, 3 lM
Cd ? 20 lM Zn, 4 lM Cd ? 20 lM Zn. After 4 days

treatment, the whole plants were sampled. All experiments

were performed in triplicate.

Determination of dry weight

The plant samples were thoroughly washed with tap water,

rinsed with distilled water and oven-dried to constant

weight at 85 �C as described by Chatterjee et al. (1998).

The dry weight was expressed as mg g-1 fresh weight.

Determination of polyamine

1.5 g fresh weight (FW) of L. minor was homogenized in

4 mL of 6 % (v/v) cold perchloric acid (PCA), kept on ice

for 1 h, and then centrifuged (4 �C) at 21,0009g for

30 min. The pellet was extracted twice with 2 mL 5 % (v/

v) PCA and centrifuged again. The three supernatants were

pooled and used to determine the contents of free and PS-

conjugated polyamines, whereas the pellet was used to

determine the contents of PIS-bound polyamines. The
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pellet was re-suspended in 5 % (v/v) PCA and hydrolyzed

for 24 h at 110 �C in flame-sealed glass ampoules after

being mixed with 12 N HCl (1:1, v/v). The hydrolyzates

were filtered, dried at 70 �C, and then re-suspended in

1 mL of 5 % (v/v) PCA for analysis of PIS-bound poly-

amines. For PS-conjugated polyamines, 2 mL of the

supernatant were mixed with 2 mL of 12 N HCl and

hydrolyzed for 24 h at 110 �C in flame-sealed glass

ampoules. The supernatant, hydrolyzed supernatant and the

pellet were then benzoylated (Aziz and Larher 1995).

The benzoyl derivativeswere separated and analyzedusing

a HPLC system (Agilent 1100, USA) equipped with an UV

detector under the following conditions: 200 mm 9 4.6 mm

C18 reverse-phase column (Kromasil, Sweden); particle size,

5 lm; column temperature, 30 �C; mobile phase, 64 % (v/v)

methanol; a flow rate of 0.8 ml min-1, a detected wavelength

of 254 nm. The internal standard was 1,6-hexanediamine.

Analysis of ADC, ODC and PAO activities

The ADC and ODC activities were determined according

to Zhao et al. (2003) with some modifications. 1.5 g fresh

plant material was homogenized in 50 mM phosphate

buffer (pH 6.3) containing 0.1 mM phenylmethylsulfo-

nylfluoride (PMSF), 40 lM pyridoxal phosphate (PLP),

5 mM dithiothreitol (DTT), 5 mM ethylene diamine tetra

acetic acid (EDTA), 20 mM ascorbic acid (Vc) and 40 lM
polyvinylpyrrolidone (PVP). The homogenates were cen-

trifuged at 12,0009g for 40 min and the supernatants were

used for the enzyme assay. For ADC and ODC measure-

ment, Reaction mixture (1.5 mL) consisted of 1 mL of the

assay buffer with 100 mM Tris–HCl (pH 8.5), 5 mM

EDTA, 40 lM pyridoxal phosphate and 5 mM DTT,

0.3 mL of either the ADC or ODC enzyme extract and

0.2 mL of 25 mM L-arginine (L-ornithine). The reaction

mixture was incubated at 37 �C for 60 min, and centri-

fuged (4 �C) at 3,0009g for 10 min after which 0.5 mL of

the supernatant was mixed with 1 mL of 2 mM NaOH, and

then 10 lL benzoyl chloride was added to the mixture and

stirred continuously for 20 s. After the reaction proceeded

at 25 �C for 60 min, 2 mL of saturated NaCl and 2 mL of

ether were added to the reaction mixture and stirred thor-

oughly, then centrifuged (4 �C) at 1,5009g for 5 min,

1 mL of ether phase was collected and evaporated at

50 �C. The remainder was dissolved in 0.5 mL of methanol

(HPLC grade), and its absorption value at 254 nm was

measured by a spectrophotometer (Thermo GENESYS 10,

USA) for ADC (the solution was diluted into 20 mL fords

before measuring) and an HPLC system (Agilent 1100,

USA) for ODC respectively. A standard curve with Agm-

atine (Agm) or Put was used to calculate the activity of

ADC (ODC). ADC and ODC activities were expressed as

lmol Agm g-1 FW h-1 (U) and lmol Put g-1 FW h-1

(U) respectively.

PAO activity was determined by the improved method of

Smith (1972) described by Wang et al. (2004) with some

modifications. 0.5 g fresh plant material was ground on ice,

in 1.6 mL phosphate buffer (0.1 mM, pH 6.5); then sepa-

rated centrifugally at 10,0009g for 20 min at 4 �C. The
supernatants were used to assay enzyme activity. For PAO

measurement, 3 mL of reaction mixture consisted of 2.5 mL

phosphate buffer (pH 6.5), 0.2 mL chromogenic reagent

[25 mLN,N-dimethylaniline and 10 mg 4-aminoantiprine in

100 mL phosphate buffer (0.1 mM, pH 6.5)], 0.1 mL

horseradish peroxidase (250 U mL-1) and 0.2 mL enzyme

extract. Then 0.1 mLPAs (10 mMSpd ? 10 mMSpm)was

added. The reaction was conducted at 25 �C for 30 min, and

measured spectrophoto-metrically at 550 nm where 0.001

DA550 g
-1 FW min-1 was equal to one enzyme activity unit

(U).

Determination of proline

Proline content was estimated using ninhydrine acid reagent

according to Bates et al. (1973). Plant samples (0.5 g) were

homogenized with 5 mL sulfosalicylic acid (3 %, w/v) in a

cold mortar and pestle. The homogenate was centrifuged

(4 �C) at 10,0009g for 15 min, and 2 mL of the supernatant

was mixed with 2 mL of glacial acetic acid and 2 mL of acid

ninhydrine. After agitation, the reaction mixture was incu-

bated at 100 �C for 30 min. After cooling, 4 ml of toluene

was added to each tube and vortexed for 30 s. The chromo-

phore containing toluene was separated and absorbance was

taken at 520 nm in spectrophotometer against toluene blank.

The concentration of proline was quantified using the stan-

dard curve of L-proline and expressed as lg g-1 FW.

Analysis of P5CS, OAT and PDH activities

P5CS activity was assayed by the method of Smith et al.

(1984) with some modifications. 2.0 g fresh plant material

was grounded in 2 mL TD buffer containing 50 mM Tris–

HCl buffer (pH 7.0), 1 mMdithiothreitol and 10 % glycerol.

After centrifugation (4 �C) at 14,0009g for 20 min, the

supernatant was collected and precipitated by adding solid

ammonium sulfate (40 % saturation). Then, the soluble

fraction obtained by centrifugation (14,0009g for 20 min at

4 �C) was saturated with dry ammonium sulfate to a con-

centration of 80 %. After centrifugation at 14,0009g for

15 min at 4 �C, the pellet was collected and completely

dissolved with 1 mL TD buffer. The crude enzyme solution

was obtained after a 24 h dialysis against TD buffer at 4 �C.
A total volume of 1 mL assay mixture containing 50 mM

glutamate, 10 mM ATP, 20 mM MgCl2, 100 mM oxam-

monium hydrochloride, 50 mM Tris–HCl buffer (pH 7.0)
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and an appropriate amount of enzyme was incubated at

37 �C for 30 min and then the reaction was stopped by

adding 1 mL stop solution (5.5 % FeCl3, 2.0 %HClO4, 2 M

HCl). The precipitate was removed by centrifugation, and

the absorbance of the supernatant at 535 nm was recorded

against a blank identical to the one mentioned above but

lacking ATP. 0.01 DA535 h
-1 at 535 nm was defined as one

unit (U) of P5CS activity.

OAT activity was assayed with ninhydrin according to

Kim et al. (1994). 1.0 g fresh plant material was immedi-

ately homogenized in 100 mM potassium phosphate buffer

(pH 7.9) containing 1 mM EDTA, 15 % glycerol and

10 mM b-mercaptoethanol. The homogenate was centri-

fuged at 14,0009g for 15 min at 4 �C and the supernatant

was collected for OAT activity measurement. 1 mL of the

reaction mixture consisted of 50 mM Tris–HCl (pH 8.0),

50 mM L-ornithine, 5 mM b-ketoglutarate, 0.05 mM pyr-

idoxal phosphate and the appropriate amount of crude

enzyme extract was incubated at 37 �C for 20 min. After

the addition of 0.3 mL of 3 M perchloric acid and 0.2 mL

of 2 % ninhydrin, the reaction was stopped by boiling for

5 min. The precipitate was collected by centrifugation

(14,0009g, 30 min, 4 �C) and completely dissolved with

1.5 mL of ethanol, and the absorbance of 0.01 at 510 nm

was defined as one unit (U) of OAT activity.

PDH activity was measured as described by Rena and

Splittstoesser (1975) with a slight modification. 0.5 g fresh

plant material was homogenized in the ice-cold extraction

buffer (100 mM sodium phosphate, 1 mMcysteine, 0.1 mM

EDTA, pH8.0). After centrifugation at 14,0009g for 10 min

at 4 �C, the supernatant was used as crude enzyme prepa-

ration for measurement of PDH activity. The crude extrac-

tion was incubated in the reaction buffer [100 mMNa2CO3–

NaHCO3, 10 mM nicotinamide adenine dinucleotide

(NAD), 20 mM L-proline, pH 10.3] at 32 �C for 5 min, and

then PDH dependent NAD reduction was monitored at

340 nm for 4 min. 0.001 DA340 min-1 was defined as one

unit (U).

Statistical analysis

All values are expressed as mean ± standard deviation

from three individual experiments. The data were subjected

to an analysis of variance in SPSS Statistics 17.0. The

correlation coefficients were expressed using r values.

Results

Effects of Zn on contents of dry weight under Cd stress

As shown in Fig. 1, The dry weight of L. minor decreased

markedly in response to single Cd concentration compared

with the control (r = 0.9889, P\ 0.01). In contrast, the

application of Zn weakened the decline to a certain extent,

but no significant change was observed.

Effects of Zn on levels of polyamines under Cd stress

In comparison to the control plants, single Cd stress induced

a massive accumulation of Put (Fig. 2a, b) (rput = 0.8857,

P\ 0.05; rspd = - 0.9884, P\ 0.01). When plants were

treated with 4 lMCd, the content of Put reached the peak at

849.74 nmol g-1 FW, and it was 57.06 % higher than con-

trol plants. The content of Spd reduced dramatically under

single Cd stress (rspd = -0.9746, P\ 0.01), and it was only

293.80 nmol g-1 FW, 79.34 % of the control, when the

fronds were grown in 4 lM Cd. However, as the concen-

tration of Cd continued to rise, no outstanding changes were

observed in Spm content (Fig. 2c). Therefore, due to the

combined action of Put, Spd and Spm under induced Cd

stress, the ratio of total (Spd ? Spm)/Put decreased fiercely

with the increase of the Cd concentrations (Fig. 2d). Zn

addition significantly decreased the content of Put and

increased the content of Spd (Fig. 1a), except for the 1 lM
Cd treatment, but failed to generate a statistically significant

difference in the content of Spm. So, application of Zn

restored the Cd-induced decline in the (Spd ? Spm)/Put

ratio (Fig. 2).

Effects of Zn on the activities of ADC, ODC and PAO

under Cd stress

It can be seen from Fig. 2a that ADC activity increased

markedly under Cd treatment (r = 0.8818, P\ 0.05)

Fig. 1 Effects of Zn on contents of dry weight under Cd stress in

L. minor. Data were expressed as mean ± SD of triplicates. Value

designated over the bars in different letter are significant different at

P\ 0.05
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(Fig. 3a). When plants were treated with 3 lM Cd, ADC

activity reached the peak at 22.22 U g-1 FW, and it was

1.61-fold higher than control plants. ODC and PAO

activity changed in a similar pattern as ADC activity under

single Cd stress (Fig. 3b, c). The maximum inductions

were being 270.55 and 150.01 %, respectively, following

the application of 4 and 3 lM Cd. However, Zn application

distinctly weakened the enhancement of ADC and PAO

activities, while there was no statistically significant dif-

ference in ODC activity (Fig. 3).

Effects of Zn on level of proline under Cd stress

As shown in Fig. 4, the proline content of L. minor

increased conspicuously with the increase of the Cd con-

centrations, reaching its peak value at 3 lM Cd. However,

it decreased when fronds were treated with 4 lM Cd.

Compared to single Hg-treated fronds, the application of

Zn dramatically reduced the proline content, but there is no

remarkable difference among Zn added groups (Fig. 4).

Effects of Zn on the activities of P5CS, OAT and PDH

under Cd stress

P5CS activity increased initially, reaching peak values at

2 lM Cd. However, as the concentration of Cd continued

to rise, it declined afterwards (Fig. 5a). However, OAT

activity was only significantly stimulated at 4 lM Cd,

which was 1.18-fold higher than that of control plants

(Fig. 5b). In contrast, PDH activity was inhibited with

increasing Cd concentration (Fig. 5c). Application of Zn

displayed a significant decrease in P5CS activity, except

for the 4 lM Cd treatment. When the fronds were treated

with 4 lM Cd, P5CS activity was slightly increased

whereas OAT activity was decreased progressively com-

bined with Zn addition. Additionally, Zn supplementation

failed to generate a statistically significant difference in

PDH activity compared to the Cd treatments only (Fig. 5).

Discussion

Reduction in biomass production is general response of

higher plants to heavy metal toxicity (Ouariti et al. 1997).

In our experiments, dry weight of L. minor was

bFig. 2 Effects of Zn on levels of polyamines under Cd stress in

L. minor. a Put content. b Spd content. c Spm content. d (Spd ?Spm)/

Put ratio. Data were expressed as mean ± SD of triplicates. Value

designated over the bars in different letter are significant different at

P\ 0.05
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significantly inhibited. Similar results have been shown by

plant dry weight of rice, ryegrass and Vetiveria zizanioides

(Hassan et al. 2005; Xu et al. 2006, 2009). However, a

decline in dry weight was weakened by Zn addition in the

present study (Fig. 1), suggesting that Zn addition con-

tributes to an increased tolerance capacity to Cd poisoning.

The homeostasis of inner polyamines metabolism in

plants is essential for cell division, growth and death (Al-

cázar et al. 2010). In plants, polyamines levels depend not

only on their synthesis but also on their degradation. The

initial step in polyamines biosynthesis is the decarboxyl-

ation of arginine or ornithine to produce Put by ADC or

ODC activities. Then, Spd and Spm synthesize on base of

Put (Martin-Tanguy 2001). In addition, PAO activity which

oxidizes Spd and Spm at their secondary amino groups

participates in the polyamines degradation (Alcázar et al.

2010). Early studies had pointed out polyamines homeo-

stasis was disturbed by Cd stress in H. dubia and P. crispus

(Yang et al. 2010, 2013), and the results of our study are in

accordance with the idea, which revealed that Cd stress

resulted in a sharp increase in Put content and a significant

decrease in Spd content and (Spd ? Spm)/Put ratio

(Fig. 2). However, Spm content remained constant with the

increasing concentration of Cd. This could be a result of

increases in ADC, ODC and PAO activities (Fig. 3), which

accelerated the synthesis of Put and degradation of Spd, as

suggested by a number of reports (Groppa et al. 2007;

Moschou et al. 2008; Yang et al. 2010). Nevertheless, Zn

addition effectively maintained the polyamines metabolism

balance. It decreased Put content and increased Spd con-

tent, via reducing ADC and PAO activities. Unfortunately,

no changes in Spm content and ODC activity were shown.

Fig. 3 Effects of Zn on the activities of ADC (a), ODC (b) and PAO

(c) under Cd stress in L. minor. Data were expressed as mean ± SD

of triplicates. Value designated over the bars in different letter are

significant different at P\ 0.05

Fig. 4 Effects of Zn on levels of proline under Cd stress in L. minor.

Data were expressed as mean ± SD of triplicates. Value designated

over the bars in different letter are significant different at P\ 0.05
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As a result, the (Spd ? Spm)/Put ratio was elevated com-

pared to single Cd treatments. Endogenous Put content is

generally considered that it may affect the redox state and a

mass accumulation of Put is toxic in plants (Górecka et al.

2007; Groppa et al. 2001; Panicot et al. 2002). Spd acts as a

protectant for the plasma membrane against stress damage

by maintaining membrane integrity, preventing the acti-

vation of superoxide-generating NADPH oxidases and/or

inhibiting protease and RNase activity (Roussos and Pon-

tikis 2007; Roy et al. 2005). The elevation of the

(Spd ? Spm)/Put ratio is confirmed as a criterion of tol-

erance properties in plants regarding salt, osmotic, heat,

chilling and heavy metals stresses (Bouchereau et al.

1999). So, it is safe to draw a conclusion that the

decreasing of Put and the increasing of Spd and

(Spd ? Spm)/Put ratio were critical in improving Cd tol-

erance of L. minor, which also would be in agreement with

the idea of a protective role for Zn against Cd stress.

Though consensus had not been achieved on the exact

roles of proline, it was agreed that the proline accumulation

is a common physiological response to various metal ions

(Verbruggen and Hermans 2008). A similar result was

observed in the present study in relation to proline content

under single Cd stress (Fig. 4). The coordinate regulation

of proline biosynthesis is achieved via two different path-

ways from either glutamate or orinithine/ariginine and

proline degradation (Szabados and Savouré 2010). The

rate-limiting step in glutamate pathway is P5CS enzyme

activity, while in the ornithine pathway is OAT activity

(Kishor et al. 2005). Meanwhile, PDH activity participates

in the proline catabolism (Kishor et al. 2005). The present

data in L. minor suggest that Cd induced effect on proline

accumulation may be explained partially by the glutamate

pathway involved in the elevation of P5CS activity (except

for 4 lM Cd treatment) and the ornithine pathway involved

in the sole stimulation of OAT activity under 4 lM Cd. A

decline seen in PDH activity also participated in suppres-

sion of proline catabolism (Fig. 5). Nonetheless, Zn sup-

plementation performed a suppressive effect on proline

accumulation in L. minor exposed to Cd, by modulating

P5CS and OAT activities and inhibiting the reduction in

PDH activity. Consequently, application of Zn contributed

to the proline level intrinsic balance, indicating that it is

closely implicated in the protection of L. minor from Cd

stress. In plants, proline accumulation was also closely

linked with polyamines catabolism in plants exposed to

abiotic stresses (Aziz et al. 1998; Bouchereau et al. 1999),

owing to the reason that proline and Put share a common

substrate, glutamate (Seki et al. 2007; Sharma and Dietz

2006; Simon-Sarkadi et al. 2006). In the present study,

synchronous changes of proline and Put were observed in

single Cd stress and Zn added groups, which were in good

Fig. 5 Effects of Zn on the activities of P5CS (a), OAT (b) and PDH

(c) under Cd stress in L. minor. Data were expressed as mean ± SD

of triplicates. Value designated over the bars in different letter are

significant different at P\ 0.05
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agreement with the viewpoint. Simultaneously, this effect

supported this standpoint that proline and polyamines

metabolism might exert mutual regulatory mechanism

(Aziz et al. 1998).

In conclusion, Cd altered the dry weight, polyamines

and proline contents as well as metabolic enzymes,

inducing metabolic disturbances in L. minor. Application

of Zn alleviated Put and proline accumulation, increased

the dry weight and Spd contents and the (Spd ? Spm)/Put

ratio, which indicated that Zn were involved in the adap-

tation of L. minor to Cd-induced stress.
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Balen B, Tkalec M, Šikić S et al (2011) Biochemical responses of

Lemna minor experimentally exposed to cadmium and zinc.

Ecotoxicology 20:815–826

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free

proline for water-stress studies. Plant Soil 39:205–207

Bog M, Baumbach H, Schween U et al (2010) Genetic structure of the

genus Lemna L. (Lemnaceae) as revealed by amplified fragment

length polymorphism (AFLP). Planta 232:609–619

Bouchereau A, Aziz A, Larher F et al (1999) Polyamines and

environmental challenges: recent development. Plant Sci

140:103–125

Bunluesin S, Pokethitiyook P, Lanza GR et al (2007) Influences of

cadmium and zinc interaction and humic acid on metal

accumulation in Ceratophyllum demersum. Water Air Soil Pollut

180:225–235

Chatterjee C, Jain R, Dube BK, Nautiyal N (1998) Use of carbonic

anhydrase for determining zinc status of sugarcane. Trop Agric

(Trinidad) 75:1–4

Chen CT, Chen LM, Lin CC et al (2001) Regulation of proline

accumulation in detached rice leaves exposed to excess copper.

Plant Sci 160:283–290

Ding BZ, Shi GX, Xu Y et al (2007) Physiological responses of

Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium

stress. Environ Pollut 147:800–803
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