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Abstract Water uptake across cell membranes is a prin-

cipal requirement for plant growth at both the cellular and

whole-plant levels. Water movement through plant mem-

branes is regulated by aquaporins. We examined the

expression of the OsAQP gene, encodes a tonoplast intrin-

sic protein (TIP), which was isolated from a rice panicle

cDNA library. Semi-quantitative RT-PCR revealed that the

gene was ubiquitously expressed in rice roots and leaves.

Expression of the gene was up-regulated by drought,

salinity and cold in leaves, down-regulated by these abiotic

factors in roots, and the gene was also induced by the

phytohormones gibberellic acid and abscisic acid in both

leaves and roots. Expression of the gene was inhibited by

salicylic acid, especially in roots. White light decreased

levels of OsAQP transcript, whereas blue light increased

expression of the gene. Given that the OsAQP gene is

strongly expressed in response to drought, salinity, cold,

abscisic acid and gibberellic acid, we propose that OsAQP

is a stress-induced gene and that it plays an essential role in

the defense of rice against several stresses.
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Introduction

Aquaporins (AQPs) are integral membrane proteins that

occur in both prokaryotic and eukaryotic cells (Agre et al.

1995). They serve as channels that permit the rapid bidi-

rectional movement of water through cellular membranes.

In higher plants, AQPs consist of seven subfamilies: the

plasma membrane intrinsic proteins (PIP), tonoplast intrin-

sic proteins (TIP), NOD26-like intrinsic proteins (NIP),

small basic intrinsic proteins (SIP), GlpF-like intrinsic

protein (GIP) from moss Physcomitrella patens, hybrid

intrinsic protein (HIP) and X intrinsic proteins (XIP)

(Bienert et al. 2011). Whereas some AQPs behave as

‘strict’ water channels, several have also been reported to

transport physiologically important molecules, such as

boron, silicon, NH3, H2O2, and CO2. Plant AQPs are

involved in various physiological processes by regulating

rapid transportation of water, including stomatal move-

ment, seed germination, cell division, and cell elongation

(Chaumont et al. 2005; Bienert et al. 2008; Boursiac et al.

2008; Eisenbarth and Weig 2005).

The rice genome encodes 33 AQPs, including 10 tono-

plast intrinsic proteins (TIPs) (Sakurai et al. 2005).

Expression and transport functions of several TIP isoforms

have been reported (Liu et al. 1994; Takahashi et al. 2004;

Li et al. 2008; Forrest and Bhave 2008). However, the

function of each individual TIP isoform and the integrated

function of TIPs under various physiological conditions

remain elusive. Previously, a rice AQP gene OsAQP

(GenBank accession number EF495246), which encodes a

tonoplast intrinsic protein, was isolated by screening a

cDNA library prepared from young rice panicles (Liu and

Liang 2008). Sequence alignment showed that it was

identical to OsTIP1;1 in the cDNA coding region, but

lacked a 44-bp sequence present within the 30 untranslated

region (UTR) of OsTIP1;1. It is known that TIP activity is

regulated by developmental cues as well as environmental

signals, both at the transcriptional and the post-transcrip-

tional levels (Li et al. 2008). Analysis of TIP expression in
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response to abiotic stresses from Arabidopsis and maize

indicated that most TIPs were repressed by drought and

salinity (Zhu et al. 2005; Alexandersson et al. 2005).

Several reports have suggested that TIPs mediate water

exchange between the cytoplasm and vacuolar compart-

ments and might be involved in nearly all vacuolar func-

tions. Nonetheless, reports on the regulation of OsTIP1;1

(also named as c-Tip1) gave inconsistent, and sometimes

even opposite, results (Liu et al. 1994; Forrest and Bhave

2008). The response of TIPs to environmental factors, such

as abiotic stress, light and exogenous phytohormones, has

yet to be systematically analyzed.

We have studied the expression of OsAQP, which was

not previously described. The gene is ubiquitously

expressed in rice leaves and roots, and the abundance of

OsAQP transcripts in the guard cells of rice leaves, which

was verified by RNA in situ hybridization (Liu et al. 2008),

raised the necessity of characterizing the new rice TIP in

order to understand the water transport mechanism medi-

ated by OsAQP in rice stomatal regulation. In the present

work, we have focused on the expression profile of the TIP

isoform that was confirmed to be expressed throughout rice

development, and the molecular basis of the physiological

response to various environmental factors. We used semi-

quantitative RT-PCR to investigate OsAQP expression in

leaves and roots under different stresses, as well as in

phytochrome mutants under different light conditions. We

discuss the significance of these expression patterns in the

response of rice to environmental stresses.

Materials and methods

Plant materials

The japonica Rice (Oryza sativa) cultivar Nipponbare was

used in this study. The rice phytochrome mutants phyA,

phyB and phyAphyB are all Nipponbare background. The

mutants seeds were kindly provided by XIE Xian-zhi from

Shandong Academy of Agricultural Sciences.

Enzymes and reagents

Taq DNA polymerase, RNAprep Total RNA Extraction kit

and DNA Marker were purchased from TIANGEN,

MMLV First Strand cDNA Synthesis kit was purchased

from Promega.

Plant treatments

Rice was cultured hydroponically in a phytotron with

photon flux density of 350–400 lmol/m2/s, 16/8 h day–

night, 28 �C and 60–80 % relative humidity. Shoots and

roots at 5, 10, 15 days by blue light (400–550 nm) and

darkness treatment, 7 days by red light (620–770 nm) and

darkness treatment were collected. Plants at the three-leaf

stages were treated with salt (addition of 1 % NaCl in the

hydroponic culture medium), cold (exposure of plants to

4 �C) and drought (addition of 30 % polyethylene glycol

6000 in the hydroponic culture medium), followed by

sampling at the designated time. The phytohormones

treatment were 100 lmol/L abscisic acid (ABA), 5 mg/L

gibberellic acid (GA), and 500 lmol/L salicylic acid (SA)

also at the three-leaf stages. Rice shoots and roots were

sampled at every 0.5–2 h during treatments.

Total RNA extraction and the first chain cDNA

synthesis

Total RNA were isolated from rice leaves and roots using

RNAprep Total RNA Extraction kit (TIANGEN). cDNA

templates were synthesized using MMLV First Strand

cDNA Synthesis kit (Promega) according to the manufac-

turer’s instructions. 1 lg total RNA were used to synthe-

sized the cDNA first strand which initiated with the

Oligo(dT)18 primer.

Effects of abiotic stresses

After abiotic stress treatment, the cDNA of these samples

treated with NaCl, PEG6000 and 4 �C, respectively at 0, 1,

3, 6 and 12 h were obtained using the method described

above. The constitutively expressed rice actin gene OsAct1

was used to normalize samples. The primers of OsAct1

were P1 (50-CATGCTATCCCTCGTCTCGACCT-30) and

P2 (50-CGCACTTCATGATGGAGTTGTAT-30). The PCR

was carried out as follows: predenaturation at 94 �C for

3 min; then 23 cycles of 94 �C for 1 min, 55 �C for 1 min

and 72 �C for 1 min; and the final extension at 72 �C for

7 min. The primers of OsAQP were P3 (50-AG-

CCTTCTGCTCAACCTATC-30) and P4 (50-CACCGAAC

CAACTGCTTTAC-30). The thermocycler program had an

initial 94 �C denaturation step followed by 24 cycles

consisting of denaturation at 94 �C for 45 s, annealing at

58 �C for 30 s, and extension at 72 �C for 30 s, and then

with a final extension at 72 �C for 5 min. 10 ll PCR

products were electrophoresed on 1.5 % agarose gel. All

treatments were repeated three times with similar results.

Effects of phytohormones

The rice leaves and roots after treated with plant hormones

were collected as followed, 0, 0.5, 1, 1.5 and 2 h after

treated with ABA; 0, 2, 5, 10 and 24 h after treated with

SA; 0, 1, 6, 12 and 18 h after treated with GA3. The RT-

PCR was conducted as described above, and the PCR
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amplification cycles were 26 and 28 for OsAct1 and

OsAQP, respectively.

Effects of light and photoreceptors

The blue light treated rice leaves and roots were collected

at 5, 10 and 15 days, the RT-PCR were conducted as

described above. The rice leaves of phytochrome mutant

phyA, phyB and phyAphyB in 7 days were collected after

treated, the internal control was ubiquitin (UBI),the primer

were P5 (50-ATCACGCTGGAGGTGGAGT-30) and P6

(50-AGGCCTTCTGGTTGTAGACG-30). The PCR was

carried out as follows: predenaturation at 94 �C for 3 min;

then 23 cycles of 94 �C for 30 s, 55 �C for 30 s and 72 �C

for 1 min; and the final extension at 72 �C for 3 min. The

RT-PCR was conducted as described above.

Results

Sequence analysis of OsAQP

The 945-bp OsAQP cDNA comprises a 753-bp open

reading frame (ORF), an 18-bp 50-UTR, and a 174-bp 30-
UTR. Blast search and multiple alignment results showed

that OsAQP and OsTIP1;1 contain the same cDNA coding

region, the sequence difference between them being a

44-bp sequence (50-AACTGTGCATGCATTTGCCTGAG

TTCCTTCGTTTTTTCCTAGTC-30) that is present only in

the 30-UTR of OsTIP1;1, and may result from tissue-spe-

cific or developmentally regulated differences in splicing.

A BLAST search of the rice genome database revealed that

the 1,507-bp coding region of the gene maps to chromo-

some 3, and that the gene comprises two exons and one

intron. The OsAQP protein is predicted to encode 250

amino acids, with a molecular mass of 25.7 kDa and a pI of

6.02, as predicted using the ExPASy—Compute pI/Mw

tool (http://www.expasy.org/tools/pi_tool.html). Two con-

served NPA motifs, which are characteristic of plant AQPs,

are found at amino acid positions 85–87 and 198–200.

Abiotic stresses on the expression of OsAQP

To analyze OsAQP expression under conditions of abiotic

stress, rice seedlings were exposed to 1 % NaCl (high salt),

30 % PEG (simulated drought) and 4 �C (low tempera-

ture), respectively. Levels of OsAQP mRNAs in seedling

subjected to these treatments were detected using semi-

quantitative RT-PCR (Fig. 1). Time-course assays showed

that the expression of the gene was up-regulated by

drought, salt and cold in leaves, with a noticeable strong

accumulation in 3 h after salt treatment, but the levels of

OsAQP transcript in roots was all decreased following

exposure to these stresses.

Phytohormones and the expression of OsAQP

Given the well-documented roles of phytohormones in

responses to various stimuli, we next investigated the

effects of ABA, GA and SA on levels of OsAQP tran-

scripts. As shown in Fig. 2, levels of OsAQP mRNA were

significantly induced by ABA, with transcript accumula-

tion evident within 0.5 h of treatment. A similar quickly

change occurred in leaves and roots treated with GA, but

OsAQP expression in leaves and roots declined 1 h after

the treatment, and then recovered slowly, reaching a

maximum around 18 h after treatment. But the response to

SA seems much slower, levels of OsAQP mRNAs in roots

declined significantly up to 24-h after the treatment, but no

obviously change observed in leaves.

Our observations that OsAQP was up-regulated by ABA

and GA, but down-regulated by SA, suggest that OsAQP

may be involved in stress responses controlled by the ABA,

GA and SA signaling pathways.

Effects of light quality on the expression of OsAQP

and the roles of phytochrome photoreceptors

Light is a critical environmental factor for plant growth and

development, and the phytochrome and cryptochrome

photoreceptors are critical for perceiving the quantity and

Fig. 1 Expression profile of

OsAQP gene (upper panel)
under abiotic stress, rice actin

(lower panel) was used as a

loading control. In salt, PEG

and cold treatments, the leaves

and roots were separately

analyzed
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spectral quality of light. To investigate the regulation of

OsAQP expression by light, we analyzed the distribution of

OsAQP mRNAs under various light conditions and com-

pared the expression profiles in wild-type rice with those of

three phytochrome mutants. We analyzed the accumulation

of OsAQP mRNAs in 7-day-old rice seedlings of wild type

rice and phyA, phyB and phyAphyB phytochrome mutants.

As shown in Fig. 3, levels of OsAQP mRNAs were always

higher in darkness than after exposure of wild-type seed-

lings or any of the mutants to light. This suggests that light

inhibits expression of the gene even in the absence of both

phytochromes A and B. A failure to detect significant

changes between materials treated with white light and red

light implies that light with a longer wavelength had little

effect on the accumulation of OsAQP mRNA. Levels of

OsAQP expression in the phytochrome double mutant

phyAphyB were higher than that in the two single mutants.

This suggests that the regulation of OsAQP by light was

not limited to phytochromes A and B, and that these two

rice phytochromes may be functionally redundant.

In order to identify the effects of blue light, we used RT-

PCR to analyze OsAQP expression in 5-, 10- and 15-day-

old rice seedlings exposed to blue light or darkness. The

results showed that blue light decreased OsAQP expression

in roots, but increased accumulation of OsAQP mRNA in

shoots relative to the same plant parts from seedlings

exposed to darkness (Fig. 4).

Discussion

Aquaporins belong to the family of major intrinsic proteins

and are best known for their ability to facilitate water flow.

Over the past several years, several reports have described

the participation of AQPs in responses to a large variety of

environmental stresses, although some of the conclusions

differ. The relationships between TIPs, water status and

plant tolerance of abiotic stress remain unclear (Wang et al.

2011). In this report, we used semi-quantitative RT-PCR to

study the effects of plant hormones and environmental

factors, such as drought, salinity, chilling/freezing, and

light, on the expression of OsAQP in wild-type rice and

three rice phytochrome mutants.

Drought, salinity and low temperature are common

stress conditions that adversely affect plant growth and

crop production, because these stress conditions can affect

water status in plants and inflict osmotic stress. Plant tol-

erance of these stresses depends largely on the regulation

of water status. Nonetheless, reports demonstrating the

effect of TIPs on plant tolerance to abiotic stresses remain

limited (Peng et al. 2007; Sade et al. 2009). Some reports

showed that osmotic stress and ion toxicity appear to be

common consequences of exposure to abiotic stresses.

Osmotic adjustment during the stress response appears to

play a major role in the maintenance of osmotic homeo-

stasis (Hauser and Horie 2010; Fricke and Peters 2002;

Huang et al. 2012). Until now, studies concerning the

regulation of stomatal movements focused more on extra-

cellular stimulation, signal transduction, osmoregulatory

compounds, ion channels and the cytoskeleton (Netting

2000; Yang and Wang 2001; Lu et al. 1995; Hwang et al.

1997; Ritte et al. 1999; Talbott and Zeiger 1996) than on

role of the availability of water (Takase et al. 2011). The

present study showed that drought, cold and salt stress

increase levels of OsAQP mRNAs in leaves, whereas

inhibit the accumulation of OsAQP transcripts in roots.

This suggests that OsAQP may contribute to osmotic

adjustment during rice responses to abiotic extremes by

Fig. 2 Expression of the

OsAQP gene (upper panel) in

leaves and roots following

ABA, SA and GA treatments.

Rice actin (lower panel) was as

a loading control

White light darkness red light darkness 

WT phyA phyB phyAphyB WT phyA phyBWT phyA phyB phyAphyB WT phyA phyB

Fig. 3 Expression of OsAQP (upper panel) in wild-type rice and phytochrome mutants exposed to white light, red light or darkness. Rice

ubiquitin (lower panel) was used as a loading control
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accelerating the flow of water in leaves. But for roots, the

plant water absorption organs, the underlying mechanism is

more complex. Because unlike animals, plants are sessile

and may be subjected to diverse environmental stresses

throughout their life cycle. By decreasing the expression

level of OsAQP in roots, plants may protect themselves from

the stress damages by reducing water flow and decreasing

rates of metabolism in the abiotic stress responses.

Light regulates various developmental and movement

responses, including de-etiolation, phototropic bending,

cotyledon opening, photoperiodic flowering, chloroplast

movement, stomatal opening, leaf flattening, and leaf

positioning (Cashmore et al. 1999; Voicu et al. 2009; Inoue

et al. 2008). Plants perceive diverse light signals from their

environment by using a family of plant photoreceptors that

includes the phytochromes, cryptochromes, and phototro-

pins. The phytochromes regulate the expression of a large

number of light-responsive genes, and thus influence many

photomorphogenic events (Neff et al. 2000; Quail 2002a,

b; Wang and Deng 2003). Rice has only three phytochrome

genes—PHYA, PHYB and PHYC (Kay et al. 1989; Dehesh

et al. 1991; Basu et al. 2000)—and rice mutants deficient in

these photoreceptors have been isolated by Tos17-tagged

knockout and c-ray irradiation(Takano et al. 2001, 2005).

In the present study, we compared expression patterns of

OsAQP in three phytochrome mutants and wild type rice.

Our results showed that white light inhibited expression of

the OsAQP gene compared with that in shaded leaves, the

levels of OsAQP mRNAs were comparable in leaves

exposed to red light compared with leaves from plants left

in darkness, and that levels of OsAQP transcript were

higher in leaves exposed to blue light than in shaded

leaves. These findings suggest that OsAQP is mainly reg-

ulated by blue light, and that the perception of red light by

phytochrome probably does not play a role in the light-

mediated regulation of hydraulic conductance at the level

of OsAQP transcript accumulation. This is consistent with

the conclusion that blue light has a greater effect than red

light on the induction of stomatal opening (Sharkey and

Raschke 1981).

Plant hormones are crucial signaling molecules that

coordinate all aspects of plant growth, development and

defense. The role of ABA in regulating several aspects of

plant development, including seed development, desicca-

tion tolerance of seeds and seed dormancy, is well docu-

mented. Accordingly, ABA plays a crucial role in plant

responses to both abiotic stresses, such as drought, salinity,

cold, and hypoxia, as well as biotic stresses (Wan and

Li 2006; Chinnusamy et al. 2008; Wang et al. 2011). Cross-

talk between molecular responses to salt stress and

ABA signaling has been demonstrated (Uno et al. 2000;

Chinnusamy et al. 2004). Our study also showed that salt

and ABA both induced the transcriptional activation of

OsAQP. Salicylic acid plays an important regulatory role in

multiple physiological processes, including plant defense

responses. In recent years, SA has been the focus of

intensive research owing to its role as an endogenous signal

that mediates local and systemic plant defense responses

against pathogens. It has also been found that SA regulates

plant responses to abiotic stresses, such as drought, chill-

ing, heavy metal toxicity, heat, and osmotic stress (Rivas-

San and Plasencia 2011). Our observation that levels of

OsAQP transcripts are down-regulated by SA suggests that

the abiotic stresses regulation network in the context of

phytohormones is complex. There may be condition-specific

positive and/or negative interactions among the phytohor-

mones. Although each plant hormone has its specific and

indispensable role in the regulation of plant physiological

processes, every plant response is usually modulated by the

action of more than one hormone, and the mechanisms

of crosstalk among the hormone signaling pathways are

still poorly understood (Shan et al. 2012). Although GAs

commonly oppose ABA action, for instance during seed

germination, there is remarkably little evidence for this

antagonism in the regulation of guard cell behavior.

Application of GA to the deseeded pericarps of pea fruits

increased levels of c-TIP mRNA (Ozga et al. 2002), and

identified its relative contributions to cell division. It can be

deduced that the expression of OsAQP may act as a qual-

itative marker for expanding tissue during rice early

growth, which is regulated by GA. The GA-induced growth

may, however, change the water status of cells, which in

turn affects TIP abundance.

Our results reveal that expression of the rice TIP gene

OsAQP is controlled by multiple pathways involved in the

responses to abiotic stresses, and likely plays a critical role

in the stress-tolerance response that maintains homeostasis

under adverse environmental conditions. Identifying the

function of OsAQP and better understanding the mecha-

nisms underlying its regulation are of considerable poten-

tial value for stabilizing crop performance.
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