
https://doi.org/10.1007/s10723-024-09745-7

RESEARCH

Cost-efficient Workflow as a Service using Containers

Kamalesh Karmakar · Anurina Tarafdar · Rajib
K. Das · Sunirmal Khatua

Received: 3 October 2023 / Accepted: 12 January 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract Workflows are special applications used
to solve complex scientific problems. The emerging
Workflow as a Service (WaaS) model provides scien-
tists with an effective way of deploying their workflow
applications in Cloud environments. The WaaS model
can executemultipleworkflows in amulti-tenant Cloud
environment. Scheduling the tasks of the workflows in
theWaaSmodel has several challenges. The scheduling
approach must properly utilize the underlying Cloud
resources and satisfy the users’ Quality of Service
(QoS) requirements for all the workflows. In this work,
we have proposed a heurisine-sensitive workflows in a
containerized Cloud environment for the WaaS model.
We formulated the problem of minimizing the MIPS
(million instructions per second) requirement of tasks
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while satisfying the deadline of theworkflows as a non-
linear optimization problem and applied the Lagranges
multiplier method to solve it. It allows us to config-
ure/scale the containers’ resources and reduce costs.
We also ensuremaximumutilization ofVM’s resources
while allocating containers to VMs. Furthermore, we
have proposed an approach to effectively scale con-
tainers and VMs to improve the schedulability of the
workflows at runtime to deal with the dynamic arrival
of the workflows. Extensive experiments and compar-
isons with other state-of-the-art works show that the
proposed approach can significantly improve resource
utilization, prevent deadline violation, and reduce the
cost of renting Cloud resources for the WaaS model.

Keywords Workflow · Cloud computing · Container ·
Deadline · Resource utilization · Resource scheduling

1 Introduction

A workflow consists of several tasks with data and
control dependencies among them. Several fields like
astronomy, biology, geophysics, and others extensively
use Scientific workflows to solve complex scientific
problems. These scientific workflows are for comput-
ing and data-intensive applications that need proper
deployment to get results in a reasonable time. Cloud
computing enables leasing any amount of resources
on demand in a pay-per-use manner. The scalable and
cost-effective nature of the Cloud makes it a preferred
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option for deploying scientific workflows. The tasks of
the workflows submitted by the users run in the virtual
resources, considered as an infinite pool of resources,
provided by the Cloud Service Providers (CSPs). The
workflow deployment requests of the users are sub-
mitted to the Workflow Management System (WMS),
which manages an infinite pool of virtual resources
in CSP’s infrastructure [1–3]. The tasks of the work-
flows are executed in Virtual Machines (VMs), which
are deployed in CSP’s physical infrastructure. Thus,
the users have to pay only as long as they lease the
resources.

Aworkflowconsists of several types of tasks.Hence,
a VM should be instantiated from the VM image con-
taining the required software packages and dependen-
cies to run the task. In traditionalWMS, twoapproaches
are used in VM image preparation: (i) one VM image
containing the necessary software configurations for all
tasks of the workflow, and (ii) multiple VM images for
each type of task of the workflow. In the former case,
the image size becomes too large, and executing multi-
ple workflows for multiple users is almost unsolvable.
Furthermore, it suffers from incompatibility issueswith
different software versions and configurations. Amajor
challenge in the latter case is to prepare and register
a large number of VM images for each distinct type
of task of the workflows. Still, the latter technique is
used in most of the WMS. However, keeping a set of
dedicated VMs for each type of task of the workflows
may lead to under-utilization of resources and increase
resource renting costs [4].

Preparing a suitable schedule for an workflow
involves deciding when to acquire/release the Cloud
resources while satisfying the requirements at mini-
mum cost. Most of the existing works in the literature
consider the scheduling of a single workflow in the
Cloud [5–7] where a single user submits a single work-
flow to the WMS. The WMS schedules the workflow
in the Cloud to satisfy the user’s QoS requirements.
Frequent acquisition and release of the VMs results in
non-negligible launching and termination time which
is reflected as under-utilization of the resources. Intel-
ligent allocation of multiple tasks one after another to
same VM may enhance resource utilization, however,
it causes security issue as tasks of different workflows
of different users may run on same VM and if the VM
is not properly cleaned after completion of each task.
Thus, to avoid security issues, the pre-launched VMs
should be terminated immediately after completion of

the deployed task, even though resource utilization is
compromised.

Containerized application deployment resolves the
issue by creating isolated execution environments
within the same VM and sharing the resources of the
VM. Containers use virtualization at the operating sys-
tem level. They allow the packaging of applications
by providing a virtual environment that contains the
necessary software, libraries, and other resources [8].
Each type of task in a workflow should have a corre-
sponding container image, and its execution requires a
container instance with the specified image. Due to the
low overhead and minimum start-up delay, containers
are becoming the preferred technology for task deploy-
ment in the Cloud. To prevent resource contention and
workload interference, the “service instance per con-
tainer” [9] deployment pattern has become popular. It
allows only one task per container at a time, but a VM
running on a host can have multiple containers. This
model improves the resource utilization of the VMs
and reduces the monetary cost of leasing resources.

The benefits of container-based virtualization moti-
vate us to develop scheduling policies for workflow
deployment on theWorkflow as a Service (WaaS) plat-
form [10,11]. Deployment of workflow applications
on the WaaS platform reduces deployment effort as
the platform is ready to deploy the workflows without
any environment setup. The WaaS service providers
take care of automated environment setup and scalabil-
ity. The WaaS paradigm allows the execution of mul-
tiple workflows by different users and various struc-
tures with different QoS requirements in an isolated
execution environment. It significantly reduces launch
and release times. Furthermore, the size of a container
image is significantly smaller than a VM image, which
helps in quick replication and migration.

Scheduling workflows on a WaaS platform is more
challenging than on a traditionalWMS. The scheduling
strategies should effectively utilize the Cloud resources
and ensure the satisfaction of QoS requirements (like
deadline satisfaction, reduction in makespan, and oth-
ers). Scientific workflows generally differ in structure,
number, and type of tasks [12]. Hence, configuration
selection and management of the containers for proper
scheduling of theworkflows become quite challenging.
Apart from the heterogeneous resource requirements of
the workflows, they also have an unpredictable arrival
rate. Thus, it is difficult to devise strategies for provi-
sioning and auto-scaling resources for the tasks.
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Containerized resources allow more flexibility in
allocating resources to tasks, improve utilization, and
reduce cost. Unlike VMs (which can only be scaled
horizontally), containers allow vertical and horizontal
scaling. Since a container can execute only one task at a
time, we need horizontal scaling of containers depend-
ing on the demand for concurrent tasks. If the number of
parallel tasks increases, more containers are needed to
serve the users, and hence, more instances of the con-
tainers should be available in the system (containers
get instantiated from different container images based
on the type of task). On the other hand, if the demand
decreases, we scale down the number of containers. For
a task allocated to a container, we decide the MIPS and
resource for the container depending on how quickly
we need to complete the task, and accordingly,we verti-
cally scale the container (increase or decrease its MIPS
and memory resources).

In this paper, we have proposed a heuristic approach
to schedulemultiple deadline-constrainedworkflows in
a containerized Cloud environment that addresses all
the scheduling challenges discussed above. Our pro-
posed heuristic maximizes the resource usage of the
active VMs and thus reduces the resource rental cost.
Our scheduling and auto-scaling approaches consider
most factors affecting workflow scheduling, such as
data transfer time, container image caching time, and
provisioning delay of containers and VMs. The main
contributions of this work are as follows:

1. We have proposed an algorithm that schedules the
tasks of a workflow in containers deployed in on-
demand VM instances. The computing resources
of the containers are dynamically tuned to consoli-
date amaximum number of containers in a VM.We
have formulated the problem of optimizing com-
putational resources while completing a workflow
within its deadline to a non-linear optimization and
applied the Lagrangesmethod to solve it. This solu-
tion helps to scale the resources of the containers
dynamically. Also, to reduce the network delay,
the schedule tries to allocate tasks on topologically
close VMs if they are dependent (one is a prede-
cessor or a successor of the other).

2. We have proposed an approach to effectively scale
containers and VMs while accommodating newly
arrived workflows at runtime.

3. We have conducted extensive experiments using
benchmark data to validate the efficacy of our

approach in comparison to other state-of-the-art
techniques. Simulation results show that our method
significantly improves resource utilization, reduces
the resource renting cost of Cloud resources, and
prevents deadline violation of the workflows.

The rest of this paper is organized as follows. Section
2 consists of the relatedworks, followed by the problem
definition and system model in Section 3. Section 4
illustrates our proposed workflow scheduling and auto-
scaling approach,while experiments and analysis of the
results appear in Section 5. Finally, Section 6 concludes
the paper with a few future research directions.

2 Review of Literature

Workflow scheduling in the Cloud environment has
drawn significant attention from researchers in the last
few years. A few strategies have evolved to sched-
ule workflows keeping different objectives under con-
sideration like minimization of makespan, monetary
cost, energy consumption, etc. In [13–15], the authors
have proposed algorithms to minimize the makespan
and monetary cost of the workflows. Qin et al. [6]
have used reinforcement learning to reduce the energy
consumption and makespan of the budget-constrained
scientific workflows. Stavrinides et al. [5] have pre-
sented an energy-efficient, cost-effective, and QoS-
aware scheduling strategy for scheduling workflows
that use the DVFS technique to reduce energy con-
sumption. In [16], authors presented a novel work-
flow scheduling approach for reducing the average
makespan of the workflows and resource renting
cost, and improving energy efficiency of the Cloud
resources. However, these scheduling approaches are
for the traditional WMS intended to schedule a single
workflow.

Researchers have also investigated the use of con-
tainers to schedule scientific workflows. For example,
Qasha et al. [17] and Liu et al. [18] have shown the
docker containers to be highly suitable for deploy-
ing scientific workflows for their low overhead and
high flexibility. Rodriguez et al. [8] have considered
the emerging WaaS platform and have proposed an
algorithm for scheduling multiple workflows using
container-based virtualization. Similarly, in [4], the
authors have considered a containerized Cloud envi-
ronment and have proposed an approach to schedule
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workflows to minimize their makespan while satisfy-
ing the budget constraint. Unlike our work, in [4,8],
the authors have deployed only a single containerized
task to a VM. It does not allow scaling of the con-
tainer’s resources depending on the task’s requirements
and leads to under-utilization of resources.

Chen et al. [19] have proposed an uncertainty-aware
online scheduling algorithm (ROSA) to schedule mul-
tiple workflows having deadlines. ROSA controls the
number of tasks waiting on each VM to prevent the
propagation of uncertainties. However, their approach
deploys tasks directly onVMswithout using container-
based virtualization. Moreover, they have not consid-
ered maximizing resource utilization as a scheduling
objective. Burkat et al. [20] have conducted experi-
ments to evaluate the efficacy of containers in deploy-
ing scientific workflows. Their experiments with con-
tainer services like AWS Fargate and Google Cloud
Run clearly show the viability of containers for exe-
cuting scientific workflows. Ranjan et al. [21] have
designed an energy-efficient container-based virtual-
ized model for scheduling workflows. But [19,21] do
not include strategies for auto-scaling of the Cloud
resources.

Even though the above discussion underlines the
presence of several workflow scheduling approaches,
there is a lack of investigations on the problem of
schedulingmultiple workflows in aWaaS platform.We
have proposed a scheduling and auto-scaling approach
for multiple deadline-sensitive workflows in a con-
tainerizedCloud environment. To the best of our knowl-
edge, this is the first approach to optimally scale the
computing resource of every container while satisfy-
ing the deadline constraints. It improves the resource
utilization of the active VMs, enables execution of the
workflow tasks by leasing minimal resources, and con-
sequently reduces the cost of renting resources.

3 Problem Definition and System Model

Our approach to processingmultiple deadline-constrai-
ned scientific workflows in the containerized Cloud
involves resource provisioning, scheduling, and auto-
scaling. The tasks of the workflows run in containers
that are isolated lightweight computing environments
deployed in VMs. These tasks are of different types (as
per the requirements [12]), each requiring a container
instantiated from a specific container image. A con-

tainer image contains the codebase for a task, and the
users prepare and upload the container images to the
service provider’s infrastructure. The WaaS provider
manages these container images characterized by their
codebases and the runtime environments. Table 1 lists
the symbols used in this manuscript for the problem
formulation and illustration of the system model..

We consider a set of workflows WF = { w f1, w f2,
w f3, . . . , w fz} which are associated with deadlines
DL = {dlw f1 , dlw f2 , dlw f3 , . . . , dlw fz }. Let Ti , 1 ≤
i ≤ z, denote the set of tasks in workfloww fi . As these
workflows come to the WaaS platform from different
users, they may differ in structure, size, and input-
output data. A directed acyclic graph,w fh(Th, Eh) rep-
resents the workfloww fh , where Th = {τ1, τ2, . . . , τe}
is the set of tasks and Eh is the set of edges representing
dependencies among the tasks. Dependency of a task
τa on a task τi (represented by τi → τa) indicates that
τa can start only after receiving the output generated
by τi . If τa is dependent on τi , the task τi is called the
immediate predecessor of τa and τa is the immediate
successor of τi . The immediate predecessors and suc-
cessors of τi are represented by pre(τi ) and suc(τi ).
The weight of the directed edge, wi,a , denotes the vol-
ume of data to be transferred from τi to τa .

In a workflow, w fh , the tasks, which are not depen-
dent on any other tasks, are considered initial tasks
represented by a set T in

h . Thus, T in
h ← {τi ∈

Th | pre(τi ) = φ}. Similarly, the set of the
tasks of the workflow, w fh , on which none of the
other tasks are dependent, is considered as the set of
final tasks represented by a set T f in

h and is defined as

T f in
h ← {τi ∈ Th | suc(τi ) = φ}.
Let T denote the set of all the tasks of theworkflows.

Hence,T = {T1∪T2∪. . . Tz} = {τ1, τ2, τ3, . . . , τm} are
to be deployed in the containerizedCloud environment.
The set C I = {ci1, ci2, . . . , cio} is the set of container
images and the set C = {c1, c2, . . . , cn} represents
the set of containers. Each container in the set C is
instantiated with a particular container image from the
set C I . Each container may require different resources
based on the task it executes. The containers run on the
VMs, V = {v1, v2, . . . vq} deployed on the physical
machines (hosts) of the data center.

Thus, the problem statement considered in this
manuscript can be formally defined as follows:

Definition 1 Given a set of deadline-sensitive work-
flows W F = {w f1, w f2, . . ., w fz}, allocate the tasks
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into containers f : τi → c j and determine a con-
tainer deployment schedule g : c j → vk subject to the
constraints of resource availability, that maximizes the
resource usage of the active VMs, reduces the resource
renting cost of the Cloud, and satisfies the deadline of
each of the workflows.

In the Cloud, each VM has a resource configura-
tion and an associated monetary cost. The resources
and the associated cost of a VM, vk , is represented by
{Rvk , Mvk } where Rvk = (c, f, r, d) denotes the dif-
ferent resources associated with the VM vk , and Mvk

represents the monetary cost of VM vk per unit time
[22]. Here c, f , r , and d stand for the number of CPU
cores, frequency of each core, size of main memory,
and volume of disk space, respectively. Generally, in
the AWS Cloud1, the VM instances are broadly clas-
sified as compute/memory/storage optimized or gen-
eral purpose. As scientific workflows mostly involve
high-performance computing, they are best suited for
compute-optimized VM instances, which are leased
on-demand in a pay-per-use manner. The tasks of the
workflows are allocated to the containers running in
these VMs.

To prepare the schedule of containers to the VMs
and VMs to the hosts; the allocation of a task, τi to a
container c j at time t is represented by Xi, j,t as

Xi, j,t =
{
1 if τi is allocated to c j at time t
0 otherwise

(1)

To prevent contention for resources, we restrict a
container to execute only one task at a given time. The
allocation of a container c j to a VM vk at time t is
represented by Y j,k,t as

Y j,k,t =
{
1 if c j is allocated to vk at time t
0 otherwise

(2)

The container allocation to the VMs is limited by
its resource availability. Even though the resources of a
VM are immutable in nature, we can tune the resource
capacity of a container during execution as containers
are vertically scalable [23,24].Moreover, themonetary

1 https://aws.amazon.com/ec2/instance-types/

cost is proportional to the number of reserved resources
of the VMs and their reservation time. Thus, to max-
imize the resource utilization of a VM, it should effi-
ciently consolidate its containers. The CPU utilization
of a VM vk at time t can be measured as

utvk ,t =
∑n

j=1(mipsc j ,t · Y j,k,t )

mipsvk
(3)

where mipsvk is the CPU capacity of the VM vk repre-
sented in Million Instructions per second (MIPS) and
mipsc j ,t is the tuned MIPS of the container c j at time
t . Here, mipsvk is directly proportional to the number
of CPU cores c and the frequency f of each core (i.e.
mipsvk ∞ c × f ). The memory and disk size of VMs
constrain the availability of these resources for its con-
tainers.

3.1 Execution Time

As a container executes one task at a time, it can dedi-
cate its entire resources to the task. Container technol-
ogy like docker2 enables us to dynamically scale and
configure the resources that a container can access. In
our approach, we tune a container at the start of a task
and do not alter the configurations until it completes.
However, estimating the length of a task in MI (mil-
lion instructions) is nontrivial, but several models for
this estimation exist [25,26]. Hence, this work assumes
knowledge of the length of the tasks. The execution
time of the task τi allocated to a container c j , denoted
by et (τi , c j ), is calculated as

et (τi , c j ) = miτi
mipsc j

. (4)

where,miτi is the length of the task τi inMI andmipsc j
is the tuned MIPS of the container c j .

3.2 Container Image Caching Time

In Cloud, the container images reside in a repository.
Before instantiating a container c j in a VM vk , the VM

2 https://docs.docker.com/config/containers/resource_
constraints/
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must download the corresponding container image cig .
A VM can also cache container images to avoid delay.
Container image caching time in a VM vk is calculated
as

ic(cig, vk) = cisi zeg

bwvk

(5)

where cisi zeg is the size of the container image cig and
bwvk is bandwidth of the VM vk . If a VM requires
caching multiple images, it does it in a certain order.
We calculate the average utilization of the containers
with the container image cig as

utcig = 1

δt
· 1

|C ′|
t−1∑
t−δt

m∑
i=1

·
∑
c j∈C ′

Xi, j,t (6)

for a window t − δt to t , where C ′ = {c j |c j is instan-
tiated using cig}. We cache the container images in the
order of their utilization. We consider a time window
(t−δt to t) for calculating the utilization of a container
because the average over a longer period of time does
not properly reflect its demand. Rather, the data from
the recent past can predict resource requirements more
accurately.

3.3 Data Transfer Time

In a workflow, the output of the predecessor task goes
as an input to the dependent successor task. Some of
the existing works [4,8] consider the data transfer to
take place using global storage like Amazon S3. How-
ever, this may unnecessarily increase the network traf-
fic. Moreover, it does not seem appropriate to transfer
data via global storagebetween the tasks allocated close
to each other. It would be better to consider direct data
transfer and not via a global storage system. But for
that, we must instantiate the container having the suc-
cessor task before the termination of the predecessor
task. Figure 1 illustrates such a data transfer.

Although container overlapping may increase the
number of active VMs, it provides higher security,
lower network traffic, and lesser transfer time than the
Amazon S3-based shared storage. The data transfer
time from container c j running in VM g(c j ) to con-
tainer cb running on VM g(cb) depends on the band-
width of the VMs g(c j ), g(cb) and also the topological

Fig. 1 Container overlapping for data transfer from container c1
to container c2

distance between the VMs. The topological distance
introduces a multiplication factor γc j ,cb defined as:

γc j ,cb =
⎧⎨
⎩
0 if g(c j ) = g(cb)
ρ1 if g(c j ) 	= g(cb) but h(g(c j )) = h(g(cb))
ρ2 if h(g(c j )) 	= h(g(cb))

(7)

where 0 < ρ1 < ρ2, and h(g(c j )) and h(g(cb)) rep-
resent the hosts in which the VMs g(c j ) and g(cb) are
placed.

The output data transfer time from a container c j
having the task τi to a container cb having task τa =
suc(τi ) is calculated as

dtwt
c j ,cb = dv jb · γc j ,cb

min{bwg(c j ), bwg(cb)}
(8)

where dv jb is the volume of data to be transferred from
c j to cb, g(c j ) and g(cb) indicate the VMs in which the
containers c j and cb are allocated, bwg(c j ) and bwg(cb)

indicate the bandwidth of the corresponding VMs.
If a task has multiple successor tasks, it forwards its

output to all its successors. Hence, the total output data
transfer time from a task τi allocated to a container c j
is

dtwt
c j ,∗ =

∑
cb

dv jb · γc j ,cb

min{bwg(c j ), bwg(cb)}
∀cb ∈ suc(c j )

(9)

Similarly, a task needs input data from all its prede-
cessor tasks to start execution. The input data receive
time of a container c j from a container cb is calculated
as

dtrdcb,c j = dvbj · γc j ,cb

min{bwg(cb), bwg(c j )}
(10)
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The total input data receive time of a container c j is

dtrd∗,c j =
∑
cb

dvbj · γc j ,cb

min{bwg(c j ), bwg(cb)}
∀cb ∈ pre(c j )

(11)

During data transfer from a container to another, the
bandwidth allocation for the data transfer is bounded
by the available bandwidth of the enclosingVMswhere
the containers are deployed. If multiple containers
send/receive data simultaneously and the bandwidth
of the enclosing VM is shared in parallel transfer, the
data transfer time is elongated for all the successors.
Furthermore, the successor tasks can be started after
completion of the data transfer operations as shown in
Fig. 2. Due to parallel transfer, the tasks τ2, τ3 and
τ4 respectively deployed in containers c2, c3 and c4
become ready to execute at the same time.

Hence, instead of performing parallel data transfer
to the successors, sequential data transfer operations
provide benefit in minimizing idle time of the contain-
ers, shown in Fig. 3. Here, a task can be started imme-
diately after receiving data from the predecessors. In
this example the successor tasks are ordered as τ2, τ3
and τ4 which are deployed in containers c2, c3 and c4
respectively.

It depicts that sequential transfer significantly reduces
processing time of the containers. Thus, in this exper-
iment, we have chosen sequential data transfer while
send or receive operations involve inter-VM commu-
nication. If data is being transferred among a pair of
containers residing in same VM, the bandwidth of the
VM is not in use for the particular communication.
Thus, before initiating data transfer to the successors,
the transfer requests are ordered to ensure sequential
transfer. Furthermore, a task can be started after receiv-
ing data from all the predecessors. The starting time of
a container is determined depending on the scheduled

data receive times of the container. The container needs
to be started in advance by initialization time of the ear-
liest scheduled data receive time.

3.4 Task Processing Time in a Container

The processing time of a task τi is dependent on many
factors, like task initialization time i t (τi ), input data
receive time dtrd∗,c j , execution time et (τi , c j ) and out-

put data transfer time dtwt
c j ,∗. Thus, the processing time

pt (τi , c j ) of a task τi in a container c j is measured as

pt (τi , c j ) = i t (τi ) + dtrd∗,c j + et (τi , c j ) + dtwt
c j ,∗ (12)

where initialization time is defined as

i t (τi )=
⎧⎨
⎩
0, if c j ∈ C
it (c j ), if c j is instantiated in an existing VM
i t (c j ) + i t (vk), if c j and vk are instantiated

(13)

If a task is deployed on an existing container, then
its initialization time is negligible. If the container is
instantiated after the arrival of the task, then it will
involve a container instantiation time of i t (c j ). This
i t (c j ) will also include the container image caching
time if the corresponding image is not present in the
VM. If the VM is launched after the task arrival, then
an additional VM instantiation time of i t (vk) will be
required.

Though task processing time in a container includes
input read time (dtrd∗,c j ) and output write time (dtwt

c j ,∗),
the data transfer time between a pair of containers is
counted once. The input data reading time of a con-
tainer and the output data write time of its predecessor
are overlapped, as the proposed system model consid-
ers direct data transfer from one container to another

Fig. 2 Parallel data transfer
to successor tasks
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Fig. 3 Sequential data
transfer to successor tasks

instead of writing the output of the predecessor to sep-
arate storage (like S3) and reading the data from that
location afterward. Thus, even after a task is complete
in a container, it should continue running until the com-
pletion of the transfer of data to the containers consist-
ing of successor tasks. Also, containers with successor
tasks should be running while the data transfer is in
progress.

3.5 Pricing of VMs

One of the primary objectives of workflow schedul-
ing is the minimization of monetary cost, which is
directly associated with the VM deployment cost.
The cost of running a VM instance is the product of
(t t (vk)−st (vk)) and cost per unit time for that instance
where st (vk) and t t (vk) represents the start time and
termination time of the VM vk respectively. In this sim-
ulation, we calculate the cost of VM reservation assum-
ing AWSEC2 instance pricing on Per-Second Billing3.
To determine the long-term cost of running multiple
workflows, we consider a window of 5 hours and com-
pute the cost of all VMs active in that window.

4 Proposed Solution

In this section, we have discussed our proposed algo-
rithms to solve the problem defined in the previous
section. Our approach to minimize the cost of VM
deployment while satisfying the deadline comprises
three major steps:

1. To minimize the number of VMs while complet-
ing the workflow within its deadline, we need to
maximize the number of containers in the VMs.

3 https://aws.amazon.com/ec2/pricing/

Each VM has a capacity in MIPS, and the contain-
ers executing it had to be run at a specific MIPS to
satisfy the deadline for the workflow. In this con-
text, we try to minimize the total MIPS taken by all
containers in the critical paths of the workflow. We
solve this problem by formulating an NLP (nonlin-
ear program) and get an approximate solution using
the Lagrange Multiplier Method.

2. While solving the NLP, we assume data transfer
occurs in parallel. During the actual schedule, we
assume serial data transfer to calculate the start time
of a task when the finish times of its precedent tasks
are already known. If the start time changes from
the previous estimated value, the MIPs of the con-
tainer are scaled accordingly.

3. Finally, we have an algorithm to auto-scale the con-
tainers and VMs to optimize resource usage.

Initially, we have to deploy several running contain-
ers to serve the upcoming requests without delay. This
process must ensure the deployment of enough con-
tainers in VMs to run all kinds of tasks. Algorithm 1
initiates this process.

The environment initialization process launches
containers from each container image to enable the
immediate scheduling of a new workflow and instanti-
ates a few VMs to accommodate the containers. Since
we do not know the average workload in advance, we
instantiate only those many VMs to accommodate one
container instance of every container image type. In this
regard, the workflows initially arriving may be delayed
maximally by the instantiation time of the VMs, con-
tainer image caching time, and container instantiation
time.

Algorithm 1 receives the set of container images
(C I ) and a set of demand of average container
instances of each container image type (I D), assum-
ing it knows or can predict the set I D. The function
isDeployable(c j , vk) checks if VM vk has sufficient
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Algorithm 1: Environment initialization.
input : Container Images, C I = {ci1, ci2, ci3, . . . , cio}

Instance Demand, I D = {id1, id2, id3, . . . , ido}
output: Containers, C = {c1, c2, . . . , cn}; VMs,

V = {v1, v2, . . . , vq }; Allocation map, Y
/* Initialization */

1 initialize set of VMs, V ← φ

2 initialize set of containers, C ← φ

3 foreach container image cig do
4 for i = 1 to idg do
5 set flag is Allocated ← f alse
6 foreach vk ∈ V do
7 if isDeployable(c j , vk) then
8 update flag is Allocated ← true
9 break;

10 if is Allocated = f alse then
11 instantiate a new VM, vk
12 update V ← V ∪ vk

13 create container c j having maximum, mipsmax
c ,

on vk based on cig
14 set Y j,k,t ← 1
15 C ← C ∪ c j

resources required for the container c j . The Algorithm
launches a new VM if the container is not deployable
in the existing VMs. During environment initialization,
we consider every container to have a MIPS capac-
ity equal to mipsmax

c , the maximum MIPS of the con-
tainer. Afterward, the MIPS values of the containers
are tuned using our proposed policy presented in the
following subsection. Though during environment ini-
tialization, ignoring data transfer requirements may not
place the cooperating containers at topological prox-
imity, the information related to data transfer would be
available during workflow scheduling and will be of
use during auto-scaling of the resources (presented in
Section 4.4).

4.1 Critical-Path based MIPS Tuning for the
Containers

Dynamic tuning of the MIPS of the containers enables
effective consolidation of the containers in theVMsand
improves the resource utilization of the VMs. This sub-
section presents the proposed deployment policy based
on critical paths for a deadline-constrained workflow.
Here, we determine the optimum MIPS requirement
of each task and ensure that the workflow completes
within its deadline. The workflow spans till its deadline

to reduce the peak resource demand of the VMs. The
process of finding optimal MIPS for all tasks involves
the following steps,

1. Identifying the critical paths.
2. Finding MIPS for all tasks in disjoint critical paths

assuming maximum data transfer time.
3. Finding MIPS for all other tasks assuming maxi-

mum data transfer time.
4. Further tuning of MIPS taking into account actual

data transfer time.

4.1.1 Identifying critical paths

Determination of the Critical Paths of a workflow
requires finding the execution time of the individual
tasks along with their earliest and latest start times and
earliest and latest finish times. Equation (4) gives the
execution time of each task τi assumingmipsmax

c is the
CPU capacity of the container. The earliest start time
of τi is:

est (τi ) =

⎧⎪⎨
⎪⎩
0, if τi ∈ T in

h
max

τa∈pre(τi )
{est (τa) + et (τa, c f (τa )) + dtrdca ,ci },

otherwise

(14)

where c f (τa) represents the container where τa is allo-
cated and dtrda,i represents data transfer time from task
τa to task τi . The earliest finish time of the task τi is:

e f t (τi , c j ) = est (τi ) + et (τi , c j ). (15)

The latest start time of the task τi is:

lst (τi ) =

⎧⎪⎨
⎪⎩
msh − et (τi , c j ), if τi ∈ T f in

h
min

τa∈suc(τi )
{lst (τa) − �ti,a − et (τi , c j )},

otherwise

(16)

where msh is the minimum makespan of the workflow
w fh . The latest finish time lst (τi ) of the task of the
workflow is:

l f t (τi ) = lst (τi ) + et (τi , c j ). (17)

A task τ belongs to a critical path if l f t (τ ) =
e f t (τ ). We find the set of critical paths (CP =
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{cp1, cp2, . . . , cpy}). Then the problem of minimiz-
ing the total MIPs of all tasks satisfying the dead-
line constraint of the workflow w f is formulated as
a non-Linear Program (NLP) where mipsτi , the MIPs
assigned to task τi are the decision variables.

4.1.2 Finding MIPS of all tasks in disjoint critical
paths

Let < τa, . . . , τb > be a sequence of tasks, each one
predecessor of the next. We call such a sequence a sub-
path. If there is another subpath < τc, . . . , τd >, such
that τx = pre(τa) = pre(τc) and τy = suc(τb) =
suc(τd), the execution time of these subpaths should be
same to minimize the total MIPS (completing one ear-
lier than the other does not help reduce the makespan).
Let Sp(τx , τy) denote all subpaths going from τx to τy
and let S denote the set of all such Sp(τx , τy) for dif-
ferent (τx , τy). Then, the NLP to find optimal MIPs is
as follows:

NLP All tasks : minimize
∑

τ∈w f

mipsτ (18)

subject to the following constraints

(i)
∑
τ∈P

miτ
mipsτ

≤ dlw fh ∀ P ∈ CP

(i i) for each pair of subpaths (p, q) ∈ Sp

∑
τ∈q

miτ
mipsτ

=
∑
τ∈p

miτ
mipsτ

∀Sp ∈ S

(i i) mipsτ > 0 ∀ τ ∈ w f

Since the above NLIP would take a very long time
to solve, we try an approximate solution by applying
Lagrange’s multiplier for each disjoint (not sharing any
common task) critical path P as follows:

NLP single CP : minimize
∑
τ∈P

mipsτ (19)

subject to the constraints

∑
τ∈P

miτ
mipsτ

≤ dlw fh

where the critical path P have tasks τ1, τ2, . . . , τm′ with
deadline dlw fh .

But we need to include in the constraints the data
transfer delay from container to container. As we do
not know the exact delay (depends on the bandwidth
of VMs on which containers run and the topological
distance of the VMs) while formulating the problem,
the delays in the constraints are as for parallel trans-
fer among VMs that are farthest apart. Later, during
the tuning of MIPS, we assume sequential transfer, as
shown in Fig. 3.

The updated constraint after taking this data transfer
time into account is:

∑
τ∈P

(
miτ

mipsτ
+ dtτ

)
= dlw fh (20)

where dtτ is calculated as dtτ = dtrd∗,c j , considering
τ is allocated to c j . (we do not need to consider both
read time and write time – when one task reads the data
from its predecessor tasks, its predecessor tasks are also
writing to it)

The objective function (19) and the constraint (20)
together give the following Lagrangian :

L =
∑
τ∈P

mipsτ + λ

(∑
τ∈P

(
miτ

mipsτ
+ dtτ

)
− dlw fh

)

(21)

where λ is Lagrange’s multiplier. After differentiating
L w.r.t each τ ∈ P and equating to 0, we get

mipsτ = √
λ · miτ ∀τ ∈ P

Now,
∑
τ∈P

miτ
mipsτ

= dlw fh − ∑
τ∈P

dtτ

∴
√

λ =
∑

τ∈P
√
miτ

dlw fh−∑
τ∈P dtτ

Then, the MIPS of task τ is :

mipsτ =
∑
τ∈P

√
miτ

dlw fh − ∑
τ∈P

dtτ
.
√
miτ (22)

The MIPS of all tasks in disjoint critical paths are
obtained by Algorithm 2 with start time 0 and finish
time dlw f .
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Algorithm 2:MIPS distribution among the tasks
of a path.
input : A path pg =< τ1, τ2, . . . , τm′ >;

start time stg and finish time f tg of pg ;
output: Tuned MIPS of the containers
/* calculate mips of the tasks on

path pg */
1 foreach τi ∈ pg do

2 mipsτi ←
∑√

miτi
( f tg−stg)−∑

τi ∈pg dtτi
.
√
miτi

4.1.3 MIPS of all tasks

To find the MIPS of all tasks, we execute the following
steps:

1. Take from the list of critical paths one CP at a time,
find the MIPs by applying Algorithm 2 with start
time 0 and finish time dlw fh .

2. Remove the CPs from the list with tasks whose
MIPS are already determined.

3. If theQ is empty, find theMIPSof tasks in subpaths.

But we observe that the total MIPS gets reduced if
we process the CPs by sorting them in decreasing order
of the number of tasks in them. Algorithm 3 does this
by putting all CPs in a priority queue Q where the CP
with the most number of tasks gets the highest priority.

4.1.4 Start time and Finish times of subpaths

A subpath spg is a sequence of tasks < τa . . . , τb >

where we know the actual end time of predecessors of
τa and actual start time of successors of τb. The start
time stg of subpath spg is:

stg = max
τx∈pre(τa)

aetτx . (23)

Similarly, the finish time f tg of the path spg is cal-
culated as follows:

f tg = min
τx∈suc(τb)

astτx . (24)

Since the deadline for the tasks in subpath spg is
f tg−stg , Algorithm2 substitutes dlw f in (22) by f tg−
stg to find the MIPs of the tasks τa . . . , τb.

Algorithm3: Path basedMIPS tuning of the con-
tainers.
input : An workflow w fh = (Th, Eh)

output: Tuned MIPS of the containers
1 initialize T ′ ← φ

2 calculate the set of critical paths, CP
3 sort the critical paths in the order of number of tasks in
it, in descending order and put in Q

4 while Q not empty do
5 take out from Q a critical path cpg ;
6 Calculate MIPs of the tasks on path cpg , using

Algorithm 2
7 foreach τ ∈ cpg do
8 calculate execution time et (τ ) based on

obtained mips
9 update actual start time astτ and actual end time

aetτ
10 update T ′ ← T ′ ∪ τ ∈ cpg
11 remove from Q all critical paths having τ

12 while |T ′| < |T h | do
13 find a subpath spg having task τ /∈ T ′
14 determine start time stg and finish time f tg of path

spg
15 calculate mips of the tasks on the sub-path spg using

Algorithm 2
16 foreach τ ∈ cpg do
17 calculate execution time et (τ ) based on

obtained mips
18 update actual start time astτ and actual end time

aetτ
19 update T ′ ← T ′ ∪ {τi | ∀ τi ∈ spg}

4.1.5 Considering actual data transfer time

The initial computation of MIPs assumes parallel data
transfer. As sequential data transfer is preferable, we
find the aet (actual end time) considering a sequential
transfer. Then the order in which a task τ ’s outputs go
to its successor plays a role in determining the data
transfer time. We divide the successors of a τ into two
groups - those reading data from some other containers
and those ready to accept data from τ . Data transfers to
the latter group are ordered based on a priority value,
where the priority value is:

ρ(τi ) = dtwt
ca ,c j

max
c j∈suc(ca)

dtwt
ca ,c j

· mic j
max

c j∈suc(ca)
mic j

(25)

This way, a successor task requiring a higher volume
of input data and longer execution time gets higher pri-
ority. After completion of each transfer, any successor
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in the first groupmay become ready. Then it comes into
the latter group. After finding the time for sequential
data transfer, if the successor task’s actual start time
differs from the one estimated by parallel transfer, the
MIPs of the successor is scaled to accommodate the
time gained.

4.2 Container Management

A task τi allocated to a container c j reserves the con-
tainer instance for its lifetime (represented by the task
processing time). The task processing time consists of
the initialization time i t (c j ), execution time et (τi , c j )
and the data transfer time dt (c j ) as shown in (12).
During this task processing time, the scheduling algo-
rithm tunes the container’sMIPS to the optimumMIPS
requirement obtained using the Algorithm 3.

After the completion of a task, its output goes to its
successors. A container c j does not terminate imme-
diately after completion as more than one task may be
scheduled to execute in it. Each container uses a reser-
vation schedule to manage all the tasks allocated to it.
Each entry in the reservation schedule of a container c j
is denoted as rsc j =< τi , astτi , aetτi ,mipsτi , dtτi >,

where astτi and aetτi represent the actual start time and
the actual end time of the task τi in c j respectively, and
dtτi is the data transfer time. This data transfer time
dtτi has two parts, reading input data dt

rd∗,c j and writing

output data dtwt
c j ,∗ as shown in (11) and (9). Thus, the

container c j for task τi must be in a ready state at least
dtrd∗,c j unit time before the starting of execution of task
τi . In the same context, the container should exist at
least dtwt

c j ,∗ unit time after the completion of execution
of its task.

4.3 Online Multiple Workflow Deployment

The Algorithm 4 deals with the dynamic arrival of the
workflow jobs. It is executed periodically to schedule
all the workflows submitted in that scheduling clock.
Given a set of workflows WF , we first determine the
optimumMIPS requirement of each task in everywork-
flow using Algorithm 3. The set T consists of all sub-
mitted workflows’ tasks sorted in topological order.
Then, taking them one at a time from the set T , we

Algorithm 4: Workflow task allocation to con-
tainers.
input : Workflows, WF = {w f1, w f2, w f3, . . . , w fz};

Container Images, C I = {ci1, ci2, ci3, . . . , ciq };
Containers, C = {c1, c2, . . . , cn}; VMs,
V = {v1, v2, . . . , vo};

output: Task allocation to the containers, A
1 foreach workflow w fh ∈ WF do
2 determine the optimum MIPS requirement of each

task in w fh using Algorithm 3

3 initialize the set of tasks, T ← ⋃z
h=1 Th and rearrange

the tasks T using Topological ordering
4 foreach task τi ∈ T do
5 select the containers Cg running in V and

instantiated using the container image cig where τi
can be deployed

6 calculate container affinity of τi for all the
containers in Cg using (26)

7 rearrange containers Cg in descending order of
affinity

8 set c′ ← null; set actual start time τ asti ← τ lsta
9 foreach c j ∈ Cg do

10 calculate execution time li ← miτi /mipsc j
11 if c j has free slot li from τ asti to τ

a f t
i then

12 calculate start time st ′ based on availability
in reservation table of c j

13 if st ′ < τ asti update c′ ← c j ; τ asti ← st ′;

14 if c′ 	= null then
15 allocate τi to c j and update reservation table of

c j and update τ esta , τ e f ta , τ lsta and τ
l f t
a ,

∀τa ∈ suc(τi )

16 else
17 failed to allocate

18 Auto-Scale Containers and VMs using Algorithm 5

try to allocate them to a suitable container. A workflow
has tasks of different types, each needing a specific con-
tainer image with the necessary codebase and runtime
environment. Thus, a task τi can be allocated only to
a container deployed with a suitable container image
cig . The setCg represents the containers deployed with
the image cig . A container c j in Cg is eligible for allo-
cation of the task τi if it satisfies the following two
criteria. First, c j must have a free slot from est (τi ) to
lst (τi ) + et (τi , c j ) in its reservation schedule. If not,
the algorithmcan shift the tasks in its reservation sched-
ule to create a free slot. Second, the CPU capacity of
the container must be greater than the MIPS require-
ment of the task, and if it is not, the underlying VM
must have sufficient resources to enable tuning the con-

123

Journal of Grid Computing (2024) 22:40 Page 13 of 21 40



tainer’s MIPS to the required value. During task allo-
cation, we give preference to the containers already
having the necessary free slot and thus do not disturb
the existing entries in the reservation schedules of the
containers.

If multiple containers are eligible to execute a task
τi , the container c j best selected for the task depends on
its resource affinity. For container selection, our prime
objective is to consolidate the containers into a mini-
mumnumber of VMs that results inmaximum resource
utilization of the active VMs. The container affinity of
task τi is calculated as:

ζτi ,c j = α · 1

μvh − utg(c j ),t
+ (1−α) · 1∑

b γc j ,cb
(26)

where 0 < α < 1, and μvh is the upper threshold of
CPU utilization of a VM. Here g(c j ) indicates the VM
vk on which the container c j is allocated, and utg(c j ),t
is the CPU utilization of the VM at time t , and γc j ,cb (7)
determines the communication delay between c j and
cb (cb is the container where τi ’s predecessors would
run). Finally, the container c j having the highest affin-
ity value ζτi ,c j gets the task τi and the MIPS of the
container is tuned as discussed in Section 4.1.

4.4 Auto-Scaling of Containers and VMs

At the end of every scheduling period, the algorithm
analyzes the CPU utilization of containers of differ-
ent types (based on the container image type) and
decides to scale (up/down) resources discussed as fol-
lows. The upper threshold of CPU utilization μch and
lower thresholds of CPU utilization μcl of the contain-
ers act as configurable parameters. Similarly, upper and
lower thresholds of resources of the VMs are μvh and
μvl . The containers and the VMs are scaled if their
CPU utilization violates the upper or the lower thresh-
old (Algorithm 5).

In our auto-scaling approach, if the average CPU
utilization utcig of the containers deployed with the
image cig exceeds the upper threshold μch , then

(utcig − μch) ∗ |Cg|� number of containers are instan-
tiated in the VMs, and they form the setCg . We first try
to launch a container in one of the existing VMs in V .
If none of the existing VMs have sufficient resources

Algorithm 5: Auto-scaling of containers and
VMs.
input : VMs, V ; Containers, C ; Reservation table of

containers, RT ; Container allocation vector, B
output: VMs (V ); Containers (C)

1 based on historical data, calculate t ′ as average length of
workflows
/* VMs shall be scaled up in 2 min.

advanced as instantiation takes
1.5-2.0 min. */

2 calculate average workload during (t − t ′) to t where t is
current clock
/* auto scaling of containers */

3 for g = 1 to o do
4 select the containers Cg , intantiated using container

image cig running on VMs V
5 calculate average utilization utcig during (t − t ′)

based on the reservation tables
6 if utcig ≥ μch then

/* need to scale up if
utilization exceeds
high-threshold */

7 add 
(utcig − μch) ∗ |Cg |� number of containers
in C ′

g , which are to be deployed
8 rearrange V in descending order of utilization
9 foreach c j ∈ C ′

g do
10 set f lag ← f alse for vk ∈ V do
11 if utvk + mipsc j /mipsvk < μvh and vk

has sufficient memory and storage then
12 instantiate c j in vk ;
13 update f lag ← true

14 if f lag = f alse then
15 instantiate a new VM and add it to V

16 else
17 while utcig < μcl and more free containers in

Cg do
18 remove the a container from Cg in which

tasks are not allocated;
19 update utcig

for the container, then only a new VM is launched and
added to the set V . The newVMgets the container with
image cig . Again, if utcig is lower than μcl , some idle
containers are terminated by sorting them in decreas-
ing order of their idle period. Similarly, if the average
CPU utilization utV of the VMs in V exceedsμvh , then

(utV − μvh) ∗ |V |� number of VMs are to be instan-
tiated and added to V . Again, if utV is lower than μvl ,
the idleVMs are terminated to reduce the resource rent-
ing cost. In this way, auto-scaling after every schedul-
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ing period reduces the waiting time for the tasks and
improves the schedulability of the workflows.

5 Performance Evaluation

For analysis of the results of our experiments, we
focus on the following performance metrics: i) aver-
age makespan, ii) average number of active VMs, iii)
resource wastage of active VMs, and iv) VM deploy-
ment cost. The first three are computed by taking their
average over a window of a specific size, and the last
one is the sum of costs for all VMs deployed during the
window.

Average Makespan The makespan of a task is the
time from its submission to its completion. We mea-
sure the make-span of all tasks completed within the
window and then compute their average.

Resource Wastage The resource wastage of an
active VM expressed in percentage is 100 minus its
average utilization over its lifetime. For example, if the
utilization is 90%, the resource wastage is 10%. We
compute the average resource wastage as the average
resource wastage of all VMs active for some time in
the window.

The metrics - number of active VMs and cost of
deployment are closely related to resource wastage.
Running VMs at higher utilization allows the comple-
tion of tasks with fewer active VMs and reduces costs.

We compare the performance of the proposed policy
with two other works dealing with workflow schedul-
ing on WaaS platforms –Elastic resource Provisioning
and Scheduling (EPSM) [8] andDynamicDeadline and
Budget-aware Workflow Scheduling (DDBWS) [27].

EPSM [8] presents a dynamic and scalable algo-
rithm to schedule multiple multi-tenant Workflows on
WaaS platforms to minimize the total cost of resource
reservation while meeting the individual deadline of
workflows. This scheduling technique uses a uniform
ranking based on time and costs. The DWS [28] pol-
icy schedules multiple workflows dynamically submit-
ted by different users in a WaaS while minimizing the
execution cost and fulfilling the deadline constraints.
As DWS does not consider the multi-resource packing
scheme or the budget and does not take advantage of
containerization, it is unsuitable for comparison with
our work. DDBWS [27] is a heuristic-based schedul-
ing algorithm that reduces execution costs by packing

multiple tasks onto a single VM (like our proposed
method) using containerized deployment.

5.1 Simulation

The simulation has been carried out on a Laptop having
Intel(R) Core(TM) i3-7100U CPU @ 2.40GHz 2.40
GHz and 4 GB main memory. We use Java to design
the simulator.

Due to the unavailability of the required dataset,
we use a dataset synthesized from standard scientific
workflows like Montage, Epigenomics, SIPHT, LIGO,
and CyberShake. These workflows are heterogeneous
- their makespans vary from 5 minutes to 2 hours.
Inspired by Silva’s work, [29], in the dataset prepa-
ration, we assume that the workflows arrive randomly
following Poisson distribution.

Influenced by the works in [8,30], we take the aver-
age bandwidth for VMs as 500 Mb/s and the mean
container size as 600 MB. We set the container pro-
visioning delay to 10 seconds [8] and the VM provi-
sioning delay to 100 seconds [31]. Pegasus’s workflow
generator tool4 generates synthesized real-life traces
[32,33] for workflows. A workload combines different
types of workflows with different sizes. We assume the
simulation environment has sufficient hosts to deploy
VMs. These VMs are homogeneous in CPU and mem-
ory resources - all have 4-core CPUs and 4GB ofmem-
ory.

5.2 Analysis of Results

We ran the experiment in a long-running environment
and measured the performance metrics over a window
of 5 hours duration. The scheduling clock length is
1 minute (scheduling decisions are taken at 1-minute
intervals).

We have compared the performance of the proposed
algorithm with EPSM and DDBWS [27] in two differ-
ent contexts. In one, we set the deadlines to values spec-
ified by the users. On the other, we use the makespans
obtained by DDBWS [27] as deadlines. For both con-
texts, we take results by i) varying the number of tasks
of the workflows keeping the arrival rate fixed and ii)
varying the arrival rate of the workflows keeping the
size of workflows fixed.

4 https://workflowhub.eu/
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The results plotted in the figures are the aver-
ages from several simulations, each with a window
of 5 hours (long-running environment). We calculate
the monetary cost assuming Amazon on-demand VM
instances with per-second billing5. The experimental
results are presented in Figs. 4, 5, 6 and 7

As mentioned in subsection 4.1.3, we get improved
performance if we process the critical paths after pri-
oritizing them according to their number of tasks. To
underline this point, we present the result for both ver-
sions. The version Proposed (B) prioritizes the critical
paths as per Algorithm 3, and the version Proposed (A)
does not.

5.2.1 Satisfying user specified deadline

In workflow deployment, meeting deadlines is of
utmost importance to ensure the successful completion
of the goals as it critically impacts the overall effective-
ness and efficiency of workflows. Here, we present the
resultswhere the proposed algorithm and others strictly
satisfy the deadline specified by the users.

Varying size of the workflows Figure 4 depicts the
results of the simulations where the arrival rate of
workflows is 100 per scheduling clock, and the size
of the workflow varies from 50 to 1000 tasks. Figure
4a shows the monetary cost of VM provisioning, and
Fig. 4b, the average active VM instances. Both indi-
cate an increasing trend with the increase in the size of
workflows. Whereas the variation in workflow size has
little impact on the makespan (Fig. 4d) and wastage of
VM resources (Fig. 4c). As the workflows arrive at the
same rate with more tasks per workflow, they require
more resources, causing an increase in the number of
active VMs and monetary costs. As the containers and
VMs are scaled up to accommodate larger workflows,
the makespan, and average utilizations almost remain
the same. Among the existing policies, DDBWS [27]
gives the best performance, and both proposed poli-
cies (A and B) have significantly lower monetary cost,
average active VM instances, and resource wastage of
VMs compared to DDBWS. However, the difference is
more pronounced for Proposed B that process the crit-

5 https://cloud.google.com/compute/vm-instance-pricing#
billingmodel

ical paths in increasing order of their tasks. In terms of
makespan), Proposed A and Proposed B give identical
results and have values slightly more than those using
EPSM orDDBWS. However, having longer makespans
is not a demerit of the proposed policy. Rather, they uti-
lize the full extent of the specified deadlines to optimize
the number of active VMs and monetary costs.

Algorithm 3, optimally tunes the MIPS of contain-
ers, enablingmore containers in a VM and reducing the
average demand of active VMs. In comparison with
EPSM, the DDBWS policy reduces average demand
for VM resources by 5.48 to 10.92 %. Furthermore,
the average demand for VM resources is reduced by
11.41 to 15.16 % using Proposed (A) policy and 13.95
to 18.56 % using Proposed (B) policy (Fig. 4b) in com-
parison with EPSM. Fewer active VMs result in lower
monetary costs. FromFig. 4a, we observe that themon-
etary cost of VM provisioning, in comparison with
EPSM, is lower by 5.43 to 9.85 for DDBWS, by 12.32
to 16.91% for Proposed (A) and by 15.52 to 19.85 %
for Proposed B. Algorithm 5 performs auto-scaling of
containers andVMs and keeps the utilization of VMs at
high values close to the upper threshold μvh , thereby
reducing the average resource wastage. Compared to
EPSM, the average resource wastage of the VMs is
lower by 2.29 to 3.81 % in DDBWS, 4.89 to 5.81
% in Proposed (A), and 5.49 to 6.81 % in Proposed
(B).

Varying arrival rate of the workflows The results taken
by varying the arrival rate of the workflows (from 50
to 150 per scheduling clock) are presented in Fig. 5. It
shows that the monetary costs (Fig. 5a), and average
number of active instances (Fig. 5b) increase signifi-
cantly with an increase in arrival rate but the makespan
(Fig. 5d) and resource wastage (Fig. 5c) do not change
that much. The reason is that to complete the tasks
within their deadlines when the arrival rate increases
(the workflows have fixed sizes), the scheduling algo-
rithms have to deploy more VMs during the same win-
dow. As for the case with varying workflow sizes, the
proposed policy has significantly lower monetary cost,
average number of active VMs, and resource wastage
than EPSM and DDBWS.

The results presented in Fig. 5 show that the mon-
etary cost of VM reservation (Fig. 5a) decreases by
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Fig. 4 Performance of
workflow deployment
algorithm for user-specified
deadline. The workflows
vary in size but have a fixed
arrival rate of 100 per
scheduling clock

10.33 to 14.64% for Proposed (A) in comparison with
EPSM. For Proposed (B), the corresponding reduction
is 15.03 to 17.75%. The average peak demand of active

VMs (Fig. 5b) gets reduced by 6.84 to 8.40% for Pro-
posed (A) and 9.19 to 10.69% for Proposed (B) (in
comparison with EPSM). The resource wastage of the

Fig. 5 Performance of
workflow deployment
algorithm for user-specified
deadline. The arrival rate of
workflows varies from 50 to
150 per scheduling clock
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Fig. 6 Simulation results of
workflows deployment in
containerized cloud
environment varying
workflow size while arrival
rate of workflows is 100 per
scheduling clock. The
simulation window size is 5
hrs

active VMs in Proposed (A) and Proposed (B) poli-
cies in comparison with EPSM are 4.51 to 6.21% and
5.78 to 7.55% respectively. The monetary cost, active

VMs, and resource wastage for DDBWS are lower by
5.61 to 8.75 %, 3.40 to 5.59%, and 2.20 to 3.51% in
comparison to EPSM.

Fig. 7 Performance of
workflow deployment
algorithm varying arrival
rate of the workflows
between 50 to 150 per
scheduling clock
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5.2.2 Deadlines set to minimum makespans

The results with user-specified deadlines are somewhat
biased in favor of the proposed algorithms as they give
longer makespans, though within the deadline. Hence,
to make a fairer comparison, we set the deadlines to
the makespans given by DDBWS ( it gives the short-
est makespans among all algorithms) and study the
other performance metrics like monetary cost, aver-
age active VMs and wastage of active VMs. As all the
policies complete the workflows within the minimum
makespan, we do not plot the makespan.

Varying size of the workflows Figure 6 shows that the
monetary cost of VM reservation (Fig. 6a) decreases by
12.86 to 16.26% for Proposed (A) in comparison with
EPSM. For Proposed (B), the corresponding reduction
is 16.51 to 21.94%. The average peak demand of active
VMs (Fig. 6b) gets reduced by 11.31 to 15.07% using
the Proposed (A) policy (in comparison with EPSM).
The corresponding figures for Proposed (B) are 14.86
to 18.44%. The average number of active VMs, mone-
tary cost and resource wastage of the active VMs, com-
pared to EPSM, is lower nearly by 5.61 to 8.15%, 5.30
to 6.53%, and 3.48 to 4.58% for DDBWS, Proposed
(A) and Proposed (B) policies respectively as shown in
Fig. 6c.

We also ran many simulations considering different
deadlines (from minimum makespan to user-specified
deadline). However, we do not include those results in
this manuscript as they depict similar graphs.

Varying arrival rate of workflows Figure 7 shows
the results when the arrival rate of workflows varies
between 50 to 150 per scheduling clock, and each
workflow has 50 to 1000 tasks. The figures show that
DDBWSperforms better than EPSM, and the proposed
policies (A and B) do better than DDBWS. Compared
to EPSM, DDBWS gives average active VMs, mone-
tary cost and average resource wastage of active VMs
lower by 2.60 to 4.91%, 6.11 to 8.75% and 2.32 to
4.42%. The proposed (A) policy reduces the number
of active VMs by 5.71 to 7.48%, the cost by 11.31 to
14.64% and the resource wastage of the active VMs by
4.88 to 7.21%. Corresponding reductions for the Pro-
posed (B) policy are 8.08 to 10.05%, 15.98 to 17.75%
and 6.70 to 8.76%.

We observe that even by setting the minimum
makespans given by DDBWS, the proposed policies A

and B perform better than EPSM and DDBWS but to a
lesser extent compared to the case of the user-specified
deadline.

6 Conclusion

This paper proposes resource-aware scheduling poli-
cies for deadline-sensitive workflows in the Cloud
environment where containers in VMs execute work-
flow tasks. They use non-linear optimization using
Lagrange’smultiplier tominimize theMIPSof contain-
ers while ensuring the execution of workflows within
the deadline (user-specified or minimum makespan).
This way, VMs can accommodate more containers
reducing energy andmonetary costs. The proposed pol-
icy (B), which processes the critical paths in order
of the number of tasks, performs better than policy
(A). We also scale the containers and VMs to handle
the dynamic situation where multiple workflows arrive
and terminate. Experimental results validate the effi-
cacy of the proposed policy compared to other state-
of-art workflow scheduling techniques. We measure
the performance metrics by experimenting with vari-
ations in the number of tasks and the arrival rate of
the workflows. DDBWS performs best among the ear-
lier works aiming to minimize cost and has a smaller
makespan than the proposed policies. For a fair com-
parison, we have set the deadlines of workflows to
the makespans obtained by DDBWS and measured the
other performancemetricswhereweobserve adecrease
in cost in the range of around 15% for Proposed (A)
and 20% for proposed (B). Under the same deadline
constraints, the proposed policies fare better than the
other existing ones in terms of the average peak demand
of active VMs and the resource wastage of the active
VMs.

As for future research, it would be interesting to
investigate if the use of prediction of workflow arrivals
gives improved schedules. We also intend to design
workflow scheduling in a multi-cloud environment.
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