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Abstract During a disaster, Twitter is flooded with
disaster-related information. Among huge disaster-
related Twitter posts, a fraction of them is posted by
the eyewitness of disaster. The post of an eyewitness
of the disaster contains an authentic description of the
disaster. Therefore, eyewitness disaster-related posts
are preferred over all other sources of information to
know the floor reality of the disaster. In this work,
we have used a convolutional neural network (CNN)
with randomly initialized weights to extract features
from the textual contents of the tweets and proposed
three different random neural network-based models.
The feature extracted from the untrained random con-
volutional neural network (RCNN) is passed through
a trainable dense neural network (DNN), echo state
network (ESN), and extreme learning machine (ELM)
to identify eyewitness tweets. The proposed system
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is validated with hurricane, earthquake, flood, and
wildfire datasets. In the extensive experiments with
three different random neural network-based mod-
els such as RCNN-DNN, RCNN-ESN, RCNN-ELM,
and other machine learning and deep learning models
such as KNN, Naive Bayes, Decision Tree, Convo-
lutional neural network, and Dense Neural Network,
the RCNN-DNN model outperformed all the other
models. The RCNN-DNN model achieved impressive
performance with a weighted F1-scores of 0.79, 0.86,
0.79, and 0.85 for hurricane, earthquake, flood, and
wildfire, respectively.
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1 Introduction

Social media have been found to play a significant role
in disaster relief works by potentially saving lives in
various instances [1, 11, 14, 30, 37, 46, 49]. Social
media posts are rapid and contain various useful infor-
mation linked to disasters, but they are equally filled
with irrelevant and misleading information that limits
their authenticity and use [7, 8, 22, 29, 36, 38]. The
post of local citizens and eyewitnesses of a disaster
relay more credible disaster-related information. Thus,
eyewitness knowledge may offer a clearer view of the
disaster. Therefore, content reported by the eyewitness
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is preferred over other sources of information. How-
ever, it is challenging to find eyewitness posts as they
are very limited and buried under huge social media
posts. One straightforward way to get posts from the
disaster-hit area is through geotagged tweets. But geo-
tagged tweets are rare, as only 1-3% of the overall
tweets are geotagged [15, 49, 53].

A good number of works [8, 29, 36, 38, 49] reported
in the past few years used textual contents of the tweets
to train machine learning models for identifying eye-
witness tweets. Zahra et al. [49] trained Random
Forest classifier using domain-specific and TF-IDF
(Term-Frequency-Inverse-Document-Frequency) fea-
tures of the tweets to identify disaster-related eyewit-
ness tweets. Tanev et al. [38] extracted several textual
and meta-data information of the tweets to train Naive
Bayes, Support Vector Machine, and Random Forest
classifiers for eyewitness tweets identification. Sim-
ilarly, Morstatter et al. [29] trained a Naive Bayes
classifier whereas Fang et al. [8] trained Decision
Tree, Random Forest, and Support Vector Machine by
utilizing the textual features of the tweets to identify
eyewitness tweets. Recently, Stefan et al. [36] uti-
lized deep learning-based models such as dense neu-
ral networks and Long-Short-Term-Memory (LSTM)
network to identify eyewitness messages.

Deep learning and machine learning-based mod-
els achieved great success in various natural language
processing tasks [26], malware detection [5], and emo-
tion recognition [10, 25]. Researchers have recently
explored random neural network models because they
are faster and can potentially be used with less compu-
tation than current approaches [4, 43]. Echo State Net-
work (ESN) [16, 27] and Extreme Learning Machine
(ELM) [12, 13] are two popular random neural
network-based models which are efficiently utilized in
number of classification and prediction tasks [17, 28,
40]. The ESN extracts the features of a given input by
performing a dot product between the input and the
randomly generated untrained weight matrix. Interest-
ingly, the features extracted in this way are expressive
enough to recognize the input signal, and thus various
challenging tasks can be solved by using them as an
input to a linear model [24, 42]. Tong & Tanaka [43]
proposed a slightly different approach where they used
untrained CNN to extract features from the images and
used the extracted features to train an ESN to classify
images. They achieved state-of-the-art performance
with the MNIST image dataset. Similarly, Chang &

Futagami [4] also utilized an untrained CNN model to
extract visual features from the images and achieved
significant performance.

The success of randomly fixed-weight models such
as the ESN and ELM motivated us to explore the
usability of various random neural network-based
models for the identification of disaster-related tweets.
In this work, we have utilized the CNN model with
randomly assigned weights to extract features from
disaster-related tweets. Then the extracted features
are used by ESN, ELM, and trainable dense neural
network models to identify eyewitness tweets. The
proposed models are validated with four different
disaster-related events such as earthquake, hurricane,
flood, and wildfire. The overall contribution of the
paper can be summarized below:

– Proposing three different random neural network-
based models such as (i) RCNN-ESN (Ran-
dom Convolutional Neural Network-Echo State
Machine), (ii) RCNN-ELM (Random Con-
volutional Neural Network-Extreme Learning
Machine), and (iii) RCNN-DNN (Random Con-
volutional Neural Network-Dense Neural Net-
work) to identify disaster-related eyewitness
tweets.

– The performance of the proposed system is vali-
dated with four different disasters such as hurri-
cane, earthquake, flood, and wildfire.

– The performance of the proposed random neural
network-based models is compared with popu-
lar machine learning and deep learning models
such as K-Nearest Neighbor (KNN), Naive Bayes,
Decision Tree, Dense Neural Network, and Con-
volutional Neural Network.

The rest of the paper is organized as follows:
Section 2 lists the related works, Section 3 discusses
the proposed methodology in detail. Section 4 lists the
findings of the proposed models, Section 5 discusses
the findings and Section 6 concludes the paper.

2 Related Works

The disaster-related social media contents have been
effectively utilized by several researchers [21–23, 34–
36, 49] to disseminate situation awareness in the peo-
ple and to better organize rescue and relief operations.
Among various disaster-related systems, identifica-
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tion of eyewitness contents is one of the important
natural language processing tasks [7, 36, 38, 45, 49,
50]. As the current work is focused on exploring the
random neural network-based models for the identifi-
cation of eyewitness tweets, this section is divided into
two subsections: (i) Eyewitness disaster-related social
media contents identification, and (ii) Random neural
network-based models.

2.1 Eyewitness Disaster-Related Social Media
Contents Identification

Morstatter et al. [29] studied the Boston Marathon
bombing and Hurricane Sandy incidents and observed
various linguistic differences between the tweets
posted from disaster-affected regions and outside the
affected regions. They extracted several features such
as crisis-sensitive features, preposition phrases, and n-
gram. They trained a Naive Bayes classifier to classify
tweets posted from disaster-affected regions and out-
side the affected regions to achieve an F1-score of 0.83
and 0.88 for the Boston bombing and Hurricane Sandy
events, respectively. Doggett & Cantarero [7] devel-
oped a filtering mechanism by utilizing several terms
such as the presence of first-person pronouns, tem-
poral words like now and just, here, and exclamative
or emotive punctuation marks to identify eyewitness
tweets. Fang et al. [8] trained decision tree, random
forest, and support vector machine classifiers on sev-
eral features such as linguistic, crisis sensitive, conver-
sational, and meta-data to identify eyewitness social
media accounts. They got the best F1-score of 0.90
in the case of the support vector machine classifier.
Tanev et al. [38] extracted semantic features, metadata
feature, and n-gram features together. They trained
Naive Bayes, Support Vector Machine, and Random
Forest classifiers to classify disaster-related English
and Italic tweets in eyewitness and non-eyewitness
classes. The random forest classifier was found best
for English tweets with an F1-score of 0.79 whereas,
the Naive Bayes classifier performed best with an
F1-score of 0.69 for Italic tweets.

Zahra et al. [50] labeled disaster-related tweets
into three different classes (i) eyewitness, (ii) non-
eyewitness, and (iii) don’t know. The eyewitness
tweets were further examined and found that the
tweets referencing terms such as feeling, seeing, and
hearing mostly appeared in the direct eyewitness
tweets, while the indirect eyewitness tweets include

prayers, feelings, and thoughts. Zahra et al. [49]
extracted several features such as n-gram features and
domain-specific features from the flood, earthquake,
hurricane, and wildfire tweets. Then they used these
features with Random forest classifiers and achieved
an F1-scores of 0.57, 0.92, 0.60, and 0.40 for flood,
earthquake, hurricane, and wildfire events, respec-
tively. Stefan et al. [36] labeled California wildfire,
Iran-Iraq earthquake, and Hurricane Harvey tweets
and applied Naive Bayes, Logistic regression, and
deep learning-based approaches to classify eyewit-
ness and non-eyewitness tweets. Pekar et al. [31]
applied support vector machines, K-nearest neighbor,
Naive Bayes, and ensemble methods to identify eye-
witness tweets. They found that the identification of
eyewitness tweets is very hard and none of the mod-
els achieved a F1-score of more than 50%. Truelove
et al. [44] extracted bag-of-visual-words features from
the images and applied several machine learning clas-
sifiers to classify images posted from the eyewitness
account or not. They reported that the support vec-
tor machine classifiers achieved the best accuracy of
90.17%.

2.2 Random neural Network Based Models

Jayawardene & Venayagamoorthy [17] utilized Echo
State Network and Extreme Learning Machine to
solve high photovoltaic power variability. Katuwal
et al. [18] proposed deep Random Vector Functional
Link and ensemble deep Random Vector Functional
Link neural networks by randomly generating weights
of the hidden layers while training the output weights.
They validated their proposed system with thirteen
different datasets and achieved impressive perfor-
mance. Qiu et al. [32] proposed a hybrid framework
composed of Discrete Wavelet Transform (DWT),
Empirical Mode Decomposition (EMD), and Random
Vector Functional Link network (RVFL) to predict
the short-term electric load. Their proposed system
outperformed non-Empirical Model Decomposition
benchmarks with the confidence of 0.95%. Katuwal
et al. [19] proposed an ensemble-based approach con-
sisting of a decision tree and random vector functional
link network to a multi-class classification problem.
The proposed system was validated with sixty-five
different multi-class datasets. They found their
ensemble-based approach achieved significantly bet-
ter performance in comparison to other state-of-the-art
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models. Tang et al. [39] proposed a novel hierarchi-
cal extreme learning machine (H-ELM) framework for
the multi-layer perception. They tested their proposed
system for computer vision applications and found
that it achieved better performance in comparison to
other models. A two hidden layered extreme learning
network was proposed in [33] by bringing the actual
hidden layer output closer to the expected hidden layer
output. For many problems of regression and classi-
fication, the proposed two hidden layered ELM was
found to outperform the original ELM and several cur-
rent multilayer ELM variants. Cao et al. [3] proposed
a hybrid classifier by using the power of the ELM and
the Sparse Representation Classification (SRC). They
tested their models with handwritten digit recognition,
landmark recognition, and face recognition tasks that
achieved substantial improvement over others.

Tong & Tanaka [43] used untrained CNN to extract
features from the images and used those extracted fea-
tures with an ESN to classify images. They achieved
a state-of-the-art accuracy of 99.25% on the MNIST
image dataset. Chang & Futagami [4] proposed a
model that uses reinforcement learning with convo-
lutional reservoir computing. They extracted visual
and time-series features from the car racing game
dataset using randomly fixed weights of the con-
volutional neural network and reservoir computing
model. They achieved the state of the art perfor-
mance from their model. They also found that the
use of the randomly fixed single layer dense network
also achieved good performance for the reinforce-
ment learning tasks. Bianchi et al. [2] proposed an
unsupervised approach based on reservoir computing
to learn vector representation of a multivariate time
series dataset. Their model performed comparatively
well and achieved comparable computational perfor-
mance compared to other reservoir computing models.
Some excellent surveys of random neural networks
can be found in [41, 47, 48, 51, 52].

The success of random neural network models
such as ESN and ELM motivated us to explore
the usability of these networks for the identification
of disaster-related eyewitness tweets. The proposed
model uses the convolutional neural network model
with randomly assigned weights to extract features
from disaster-related tweets. This strategy can reduce
the overall training time of the network as we do not
have to train these weights through backpropagation.
Then the extracted features are used by Echo State

Network, Extreme Learning Machine, and trainable
dense neural network models to test the efficiency of
these models in the disaster-related eyewitness tweets
identification.

3 Methodology

This section discusses the proposed RCNN-DNN
(Random Convolutional Neural Network-Dense Neu-
ral Network) model in detail. The overall system
diagram for the proposed system can be seen in
Fig. 1. Along with the RCNN-DNN model, we also
explored RCNN-ESN (Random Convolutional Neu-
ral Network-Echo State Network) and RCNN-ELM
(Random Convolutional Neural Network-Extreme
Learning Machine). The detailed description of each
of the models and the datasets used to validate the
models can be seen in the following subsections.

3.1 Data description

The proposed study uses the dataset1 published by
Zahra et al. [49]. Tweets about four separate inci-
dents, such as earthquakes, floods, fires, and hurri-
canes, are included in the dataset. Three different
labels have been assigned to tweets, such as eyewit-
ness, non-eyewitness, and don’t know. They provided
two sets of datasets. In set-1, authors and their groups
labeled the datasets. In set-2, the labeling was done
using crowdsourcing. The wildfire event dataset was
labeled by crowdsourcing only, while for the other
events, both crowdsourced and authors have labeled
the datasets. We have combined event-specific (both
authors labeled and crowdsourced) datasets into one
for earthquake, flood, and hurricane. For training and
testing sets, we divided each dataset into a ratio of
80:20. The overall dataset statistics after merging
similar events can be found in Table 1.

3.2 Randomized Convolutional Neural Network
(RCNN) for Feature Extraction

The overall diagram for the proposed system can be
seen in Fig. 1. To provide the input to the system
each word of the tweets is represented by a real-value

1https://crisisnlp.qcri.org/data/eyewitness tweets annotations
14k public.zip
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Fig. 1 Flow diagram for the proposed model

fixed-dimensional embedding vector. Embedding vec-
tor represents similar word vectors for the words hav-
ing similar contextual meaning. In our case, we used
a pre-trained GloVe2 word embedding vector to map
each word into a 100-dimensional embedding vector.
The use of pre-trained GloVe embedding reduces the
computation overhead and generally leads to better
results because it is trained on a large corpus of texts
[9]. The tweet matrix Ti can be represented by (1).

Ti =

⎡
⎢⎢⎢⎢⎢⎣

W1 W2 W3 ... Wn

x11 x21 x31 . . . xn1

x12 x22 x32 . . . xn2

x13 x23 x33 . . . xn3
...

...
...

...
...

x1k x2k x3k . . . xnk

⎤
⎥⎥⎥⎥⎥⎦

(1)

2http://nlp.stanford.edu/data/glove.twitter.27B.zip

Tweet matrix with n words is represented by Ti . For
the tweets having more than n words, we curtail out to
make it to n words and for the tweets having less than
n words, we padded them to make it of the dimen-
sion of n words. In the tweet matrix, [xn1xn2.....xnk]
represents the embedding vector for word Wn, where
k represented the embedding dimension. In our case,
we fixed the length of the tweets (n) to 30 words and

Table 1 The statistics of the datasets used in this study

Earthquake Flood Hurricane Wildfire

Eyewitness 1,967 775 763 189

Non-eyewitness 521 664 1,299 1,379

Don’t know 1,512 2,561 1,938 432

Total 4,000 4,000 4,000 2,000
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embedding dimension (k) to 100 for the experiments.
To extract features from the tweet matrix, the con-

volutional neural network uses various n-gram filters.
The convolution process involves a filter with the
dimension of (w × k), where w is the number of
the words and k is the word embedding dimension.
The filter applied on a tweet matrix first performs the
element-wise multiplication with the first w words of
the tweet matrix and then the sum of all the multiplied
values is then passed through an activation function to
get a feature map. This operation is repeated for the

next w words of the tweet matrix by leaving the first
word. A simple convolution process with a 3-gram fil-
ter (i.e., size of filter matrix = (3 × k)) is represented
in (2) and (3).

Ti =

⎡
⎢⎢⎢⎢⎣

W1 W2 W3 ... Wn

x11 x21 x31 . . . xn1
x12 x22 x32 . . . xn2
x13 x23 x33 . . . xn3
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

x1k x2k x3k . . . xnk

⎤
⎥⎥⎥⎥⎦

•

⎡
⎢⎢⎢⎢⎣

y11 y21 y31
y12 y22 y32
y13 y23 y33
.
.
.

.

.

.
.
.
.

y1k y2k y3k

⎤
⎥⎥⎥⎥⎦

(2)

⎡
⎢⎢⎢⎢⎢⎣

f m1

f m2

f m3
...

f m(n−w+1)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F {x11y11 + x21y21 + x31y31 + x12y12 + x22y22 + x32y32 + · · · +
x1ky1k + x2ky2k + x3ky3k}

F {x21y11 + x31y21 + x41y31 + x22y12 + x32y22 + x42y32 + · · · +
x2ky1k + x3ky2k + x4ky3k}

F {x31y11 + x41y21 + x51y31 + x32y12 + x42y22 + x52y32 + · · · +
x3ky1k + x4ky2k + x5ky3k}

...

F {x(n−2)1y11 + x(n−1)1y21 + x(n)1y31 + x(n−2)2y12 + x(n−1)2y22+
x(n)2y32 + · · · + x(n−2)ky1k + x(n−1)ky2k + xnky3k}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where, F(x) = max(0, x) represents the ReLu
activation function which maps negative value
to zero. The feature maps obtained by perform-
ing the convolutional process is represented by
[f m1, f m2, f m3, ....., f m(n−w+1)]. This feature
map is then passed through a max-pooling operation,
that pools the maximum value from a window. A
max-pooling operation with the window size of p can
be defined by (4).

ˆf m1 = max(f mi, f mi+1, f mi+2, ......, f mp), i ≥ 1

(4)

The feature maps obtained from the convolutional
and max-pooling operation are then flattened to get the
feature vectors. The obtained feature vectors are used
by the output layer to predict the probabilities for each
of the classes. Recently, Tong et al. [43] and Chang
et al. [4] utilized an untrained convolutional neural
network to extract features from the given input and
achieved state-of-the-art performance to reduce the
burden of the backpropagation algorithms. Motivated
by their studies [4, 43], in this work we have randomly
initialized the weights of the convolutional neural

network using Glorot Uniform3 distribution. The Glo-
rot Uniform distribution draws a sample from the
uniform distribution within (−GUD, GUD), where
GUD can be defined by (5):

GUD =
√√√√√

6
Number of input units in the
weight tensor

+ Number of output units in the
weight tensor

(5)

After initializing weights randomly from the uni-
form distribution, the CNN network is directly used
to extract features from the tweet matrix without any
training (see Fig. 1). For extracting the features, we
used three CNN layers with 32 filters of 2-gram,
3-gram, and 4-gram and perform the convolutional
operation on the (30×100) dimensional tweet matrix.
After that, the values are passed through the ReLu
activation function and max-pooling operation with a
window size of 5. Finally, the obtained feature vec-
tor is used by the trainable dense neural network

3https://www.tensorflow.org/api docs/python/tf/keras/
initializers/GlorotUniform
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(DNN), echo state network (ESN), and extreme learn-
ing machine (ELM) to classify tweets into eyewitness,
not-eyewitness, and don’t know classes, as can be seen
in Fig. 1.

3.3 Random Convolutional Neural Network-Dense
Neural Network (RCNN-DNN)

In the RCNN-DNN network, the features extracted
by the untrained convolutional neural network passed
through a dense layer containing 128 neurons fol-
lowed by an output layer with a softmax activation
function. The dense connection of the RCNN-DNN
model (i.e., last two layers) is trained using Adam
[20] backpropagation algorithm. We used categorical
crossentropy as a loss function, the learning rate of
0.001, batch size of 100 and trained this network for
the 100 epochs.

3.4 Random Convolutional Neural Network-Echo
State Network (RCNN-ESN)

In the RCNN-ESN network, the features extracted
from the untrained convolutional neural network are
used by the echo state network (ESN) to predict the
probabilities for each of the classes. The Echo State
Network (ESN) consists of a network of sparsely
connected neuron nodes as a reservoir. A temporal
sequential signal drives the reservoir and creates spa-
tiotemporal patterns in high-dimensional space. To
produce the outputs, these spatiotemporal patterns are
transformed by a linear mapping. Equations 6 and 7
represent the states of the reservoir nodes and those of
the output nodes.

pt = (1 − μ).pt−1 + μ.φ(Win.ut + Wrec.pt−1) (6)

qt = Wout .pt (7)

where, t represents the time steps, pt is a vector which
represents states of the nodes of reservoir at time t , qt

is the output vector at time t, ut is the input vector at
time t, φ represents the element-wise sigmoid activa-
tion function, and μ (0 < μ ≤ 1) is the parameter for
controlling the speed of the state update. The weight
matrices Win, Wrec, and Wout represent the weight
between the input and reservoir, recurrent connection
weights between the nodes within the reservoir, and
trainable weights between the reservoir and output,
respectively. The weight matrices Win and Wrec are

initialized randomly and fixed during the training pro-
cess. For the echo state network, the weight matrix
Wout training can be performed by solving a sim-
ple regression problem. To train the weight parameter,
the mean square error between the actual out to the
reservoir output is minimized using (8).

Wout = QP T (PP T + λ.I )−1 (8)

where I represents the identity matrix, λ represents the
regularization factor, P is the matrix of all the states
of the reservoir nodes in response to all the training
input data, and Q represents the matrix of desired out-
put for all the training data. The detailed description of
the echo state network can be seen in [27]. In our case,
we have performed extensive experiments by varying
the number of reservoir processing units. The model
performed best with the 1,000 reservoir processing
units.

3.5 Random Convolutional Neural Network-Extreme
Learning Machine (RCNN-ELM)

In the RCNN-ELM network, the features extracted
from the untrained convolutional neural network are
used by the extreme learning machine to classify
disaster-related tweets into different classes. Similar
to the echo state network, the parameters of hidden
nodes and input weights are randomly assigned to the
network. The output weight is calculated by a simple
generalized inverse operation. The output of the hid-
den layer of the extreme learning machine can be
defined by (9).

Hout = Activation(Win.x + b) (9)

where, Win and b are the input weights, x is the input
batch, Activation is the activation function, and Hout

represents the hidden output. The output of the ELM
can be represented by yout = Hout .β, where β is the
output weights. β can be calculated on the labeled
target ‘T’ using (10).

β = (Hout .H
t
out )

−1.H t
out .T (10)

where (Hout .H
t
out )

−1.H t
out the pseudo-inverse of the

matrix Hout . The detailed description of the extreme
learning machine can be seen in [13]. In our case,
we have extensively performed the experimentation by
varying the number of hidden layers for the ELM. We
achieved the best performance when we used 8,000
hidden layers in the ELM network.
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Table 2 Results for each of the models

Hurricane Earthquake Flood Wildfire

Class P R F1 P R F1 P R F1 P R F1

RCNN-DNN Eyewitness 0.67 0.52 0.59 0.89 0.88 0.89 0.69 0.56 0.62 0.75 0.47 0.58

Not-eyewitness 0.82 0.83 0.82 0.92 0.78 0.85 0.82 0.63 0.71 0.87 0.96 0.91

Don’t know 0.82 0.89 0.85 0.80 0.85 0.82 0.82 0.93 0.88 0.86 0.72 0.79

Weighted Avg. 0.79 0.80 0.79 0.86 0.86 0.86 0.80 0.80 0.79 0.86 0.86 0.85

RCNN-ESN Eyewitness 0.64 0.37 0.47 0.84 0.88 0.86 0.65 0.35 0.46 0.69 0.24 0.35

Not-eyewitness 0.72 0.74 0.73 0.92 0.76 0.83 0.74 0.59 0.66 0.84 0.93 0.88

Don’t know 0.75 0.88 0.81 0.76 0.76 0.76 0.78 0.94 0.85 0.70 0.66 0.68

Weighted Avg. 0.72 0.73 0.71 0.82 0.82 0.82 0.74 0.76 0.73 0.79 0.80 0.78

RCNN-ELM Eyewitness 0.52 0.50 0.51 0.85 0.84 0.85 0.59 0.51 0.55 0.78 0.47 0.59

Not-eyewitness 0.76 0.77 0.76 0.95 0.80 0.87 0.72 0.67 0.70 0.85 0.94 0.89

Don’t know 0.79 0.80 0.80 0.75 0.80 0.77 0.82 0.88 0.85 0.77 0.68 0.72

Weighted Avg. 0.73 0.73 0.73 0.83 0.82 0.82 0.76 0.77 0.76 0.83 0.83 0.82

DNN Eyewitness 0.65 0.51 0.57 0.83 0.85 0.84 0.52 0.42 0.45 0.54 0.44 0.49

Not-eyewitness 0.80 0.81 0.80 0.73 0.75 0.74 0.67 0.72 0.74 0.84 0.89 0.86

Don’t know 0.81 0.87 0.84 0.73 0.71 0.72 0.79 0.89 0.84 0.71 0.67 0.69

Weighted Avg. 0.77 0.78 0.77 0.78 0.79 0.79 0.71 0.75 0.73 0.78 0.80 0.79

CNN Eyewitness 0.66 0.51 0.58 0.88 0.87 0.87 0.67 0.54 0.60 0.73 0.45 0.56

Not-eyewitness 0.82 0.83 0.82 0.90 0.79 0.84 0.81 0.61 0.70 0.84 0.93 0.88

Don’t know 0.81 0.87 0.86 0.78 0.87 0.82 0.80 0.91 0.85 0.83 0.70 0.76

Weighted Avg. 0.78 0.78 0.78 0.85 0.86 0.85 0.78 0.78 0.77 0.83 0.83 0.82

KNN Eyewitness 0.59 0.48 0.53 0.72 0.95 0.82 0.53 0.35 0.42 0.37 0.42 0.40

Not-eyewitness 0.77 0.72 0.74 0.81 0.77 0.79 0.75 0.55 0.63 0.78 0.93 0.84

Don’t know 0.77 0.87 0.81 0.86 0.47 0.61 0.78 0.93 0.85 0.78 0.31 0.44

Weighted Avg. 0.73 0.74 0.73 0.78 0.76 0.74 0.72 0.74 0.72 0.74 0.73 0.71

Naive Bayes Eyewitness 0.30 0.47 0.36 0.75 0.69 0.72 0.38 0.50 0.43 0.37 0.58 0.45

Not-eyewitness 0.63 0.62 0.63 0.46 0.78 0.58 0.62 0.55 0.58 0.83 0.81 0.82

Don’t know 0.73 0.56 0.63 0.72 0.64 0.68 0.78 0.73 0.75 0.47 0.40 0.43

Weighted Avg. 0.61 0.56 0.58 0.71 0.69 0.69 0.67 0.65 0.66 0.70 0.69 0.69

Decision Tree Eyewitness 0.51 0.46 0.48 0.81 0.83 0.82 0.50 0.38 0.43 0.50 0.34 0.41

Not-eyewitness 0.73 0.77 0.75 0.72 0.74 0.73 0.66 0.60 0.63 0.82 0.88 0.85

Don’t know 0.80 0.81 0.81 0.73 0.69 0.71 0.78 0.87 0.82 0.67 0.61 0.64

Weighted Avg. 0.72 0.72 0.72 0.77 0.77 0.77 0.70 0.72 0.71 0.75 0.77 0.76

Bold indicates “Best performance”

Along with three different random neural network-
based models such as RCNN-DNN, RCNN-ESN, and
RCNN-ELM, we implemented K-nearest neighbor,
Naive Bayes, Decision tree, fully trained 3-layered
DNN (DNN), and fully-trained 2-layered CNN (CNN)
model to compare the performance of the proposed

random neural network-based models. We extracted
TF-IDF (Term Frequency and Inverse Document Fre-
quency) features from the tweets and used it as an
input to the K-nearest neighbor, Naive Bayes, Deci-
sion tree, and DNN models to classify tweets into
eyewitness, not-eyewitness, and Don’t know classes.
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Fig. 2 ROC curve for RCNN-DNN for hurricane event

Fig. 3 ROC curve for RCNN-ESN for hurricane event

Fig. 4 ROC curve for RCNN-ELM for hurricane event

Fig. 5 ROC curve for RCNN-DNN for earthquake event

Fig. 6 ROC curve for RCNN-ESN for earthquake event

Fig. 7 ROC curve for RCNN-ELM for earthquake event
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Fig. 8 ROC curve for RCNN-DNN for flood event

Fig. 9 ROC curve for RCNN-ESN for flood event

Fig. 10 ROC curve for RCNN-ELM for flood event

Fig. 11 ROC curve for RCNN-DNN for wildfire event

Fig. 12 ROC curve for RCNN-ESN for wildfire event

Fig. 13 ROC curve for RCNN-ELM for wildfire event
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Fig. 14 Models comparison for hurricane event

DNN model contains 512, 256, and 3 neurons at the
first, second, and third layers, respectively. In the case
of CNN, the tweet matrix is used as an input to the
model. The CNN model contains 32 filters of 2-gram,
3-gram, and 4-gram filters at the first CNN layer
whereas at the second CNN layer, 16 filters of 2-gram,
3-gram, and 4-gram filters were used. To train DNN
and CNN models, Adam as the optimizer, categorical
crossentropy as a loss function, a learning rate 0.001,
a batch size of 100, and epoch of 100 was used.

4 Results

The performance of the proposed models is evaluated
using precision, recall, F1-score, and Receiver Operat-
ing Characteristic (ROC) curve. The detailed descrip-
tion of each of the evaluation metrics can be seen in
[6]. The extensive experiments were performed with
the hurricane, flood, earthquake, and wildfire disaster-
related datasets. We performed our experimentation
with eight different models: (i) RCNN-DNN, (ii)

Fig. 15 Models comparison for earthquake event

Fig. 16 Models comparison for flood event

RCNN-ESN, (iii) RCNN-ELM, (iv) K-nearest neigh-
bor, (v) Naive Bayes, (vi) Decision tree, (vii) Dense
Neural Network (DNN), and (viii) Convolutional Neu-
ral Network (CNN).

The performance of each of the models with four
different disaster datasets is listed in Table 2. The ROC
curves for all the three random neural network-based
models, RCNN-DNN, RCNN-ESN, RCNN-ELM
for hurricane event can be seen in Figs. 2, 3, and 4,
respectively. For the earthquake event, ROC curves for
RCNN-DNN, RCNN-ESN, RCNN-ELM can be seen
in Figs. 5, 6, and 7, respectively. For the flood event,
ROC curves for RCNN-DNN, RCNN-ESN, RCNN-
ELM can be seen in Figs. 8, 9, and 10, respectively.
Similarly, for wildfire event, ROC curves for RCNN-
DNN, RCNN-ESN, RCNN-ELM can be seen in
Figs. 11, 12, and 13, respectively. For hurricane event,
RCNN-DNN, RCNN-ESN, RCNN-ELM, DNN,
CNN, KNN, Naive Bayes, and Decision tree achieved
a weighted F1-scores of 0.79, 0.71, 0.73, 0.77,
0.78, 0.73, 0.58, and 0.72, respectively. The compa-
rison of all the implemented models for a hurricane

Fig. 17 Models comparison for wildfire event
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Fig. 18 Confusion matrix for RCNN-DNN for hurricane event

event in terms of weighted F1-score is plotted in
Fig. 14. For earthquake event, RCNN-DNN, RCNN-
ESN, RCNN-ELM, DNN, CNN, KNN, Naive Bayes,
and Decision tree achieved a weighted F1-scores of
0.86, 0.82, 0.82, 0.79, 0.85, 0.74, 0.69, and 0.77,
respectively. The comparison of all the implemented
models for an earthquake event in terms of weighted
F1-score is plotted in Fig. 15. For flood event, RCNN-
DNN, RCNN-ESN, RCNN-ELM, DNN, CNN, KNN,
Naive Bayes, and Decision tree achieved a weighted
F1-scores of 0.79, 0.73, 0.76, 0.73, 0.77, 0.72, 0.66,
and 0.71, respectively. The comparison of all the
implemented models for a flood event in terms of

Fig. 19 Confusion matrix for RCNN-DNN for earthquake
event

Fig. 20 Confusion matrix for RCNN-DNN for flood event

weighted F1-score is plotted in Fig. 16. For wild-
fire event, RCNN-DNN, RCNN-ESN, RCNN-ELM,
DNN, CNN, KNN, Naive Bayes, and Decision tree
achieved a weighted F1-scores of 0.85, 0.78, 0.82,
0.79, 0.82, 0.71, 0.69, and 0.76, respectively. The
comparison of all the implemented models for the
wildfire event dataset in terms of weighted F1-score
is plotted in Fig. 17. Among all the implemented
models, RCNN-DNN outperformed other models in
all the disaster-related datasets. We have plotted the
confusion matrix for the best performed RCNN-DNN
model in Figs. 18, 19, 20, and 21 for hurricane,
earthquake, flood, and wildfire events, respectively.

Fig. 21 Confusion matrix for RCNN-DNN for wildfire event
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5 Discussion

The major finding of this work is that the randomly
initialized untrained weights with a convolutional neural
network (RCNN) extract enough expressive features
from the disaster-related tweets to identify eyewit-
ness tweets. The extracted features from the RCNN
network with a one-layered trainable dense network
performed best throughout all the event datasets. The
extracted features from the RCNN with echo state
network (ESN) and extreme learning machine (ELM)
performed comparatively better than the conventional
machine learning classifiers such as KNN, Naive
Bayes, and Decision tree. The confusion matrix of
the best performed RCNN-DNN model for the hur-
ricane event can be seen from Fig. 18, which shows
recall values of 0.52, 0.83, and 0.89 for eyewitness,
not-eyewitness, and don’t know classes, respectively.
The confusion matrix of the best performed RCNN-
DNN model for the earthquake event can be seen
from Fig. 19, which shows recall values of 0.88, 0.78,
and 0.85 for eyewitness, not-eyewitness, and don’t
know classes, respectively. Similarly, the confusion
matrix for flood and wildfire events can be seen from
Figs. 20 and 21, respectively. The confusion matrix
for the flood event shows recall values of 0.56, 0.63,
and 0.93 for eyewitness, not-eyewitness, and don’t
know classes, respectively. The confusion matrix for
the wildfire event shows recall values of 0.42, 0.96,
and 0.72 for eyewitness, not-eyewitness, and don’t
know classes, respectively. As our target is to iden-
tify disaster-related eyewitness tweets, the recall for
the eyewitness class in the case of the RCNN-ELM
model achieved comparable results in comparison to
the RCNN-DNN model as can be seen from Table 2.
But, RCNN-ESN models fail to perform well for the
eyewitness class as can be seen from Table 2. It means
the features extracted from the randomly initialized
untrained weights from the convolutional neural net-
work, RCNN-DNN and RCNN-ELM learned better
than the RCNN-ESN.

In identifying eyewitness tweets, the proposed
RCNN-DNN network only uses textual content from
disaster-related social media posts, so this framework
can be easily incorporated with any social media web-
site. An android application can also be made to rec-
ognize eyewitness disaster-related tweets from the live
streaming of Twitter posts with the proposed RCNN-
DNN model to help people become more aware of

the situation during the disaster. The proposed frame-
work can be used effectively in a wide variety of
applications, such as better event identification, reli-
able information detection, and in journalism, to find
relevant first-hand information. The limitation of this
work is that the proposed system is trained with
English-language tweets only, but during the crisis, a
significant number of tweets are also posted in other
regional languages. In such situations, the proposed
model is yet to be evaluated.

6 Conclusion

The identification of crisis-related social media eye-
witness posts provides the floor reality of the disas-
ter. In this work, we have extracted textual features
from the tweets using randomly initialized untrained
weights for the convolutional neural network (RCNN)
and proposed three different random neural network-
based models such as RCNN-DNN, RCNN-ESN, and
RCNN-ELM to identify disaster-related eyewitness
tweets. The proposed models were validated with four
different disaster-related datasets such as hurricane,
earthquake, flood, and wildfire. The RCNN-DNN
model outperformed RCNN-ESN, RCNN-ELM, and
other conventional machine learning and deep learn-
ing models such as KNN, Naive Bayes, Decision tree,
DNN, and CNN. The proposed RCNN-DNN model
achieved a weighted F1-scores of 0.79, 0.86, 0.79,
and 0.85 for hurricane, earthquake, flood, and wildfire
events, respectively.

Other random neural network-based models such as
random vector functional link (RVFL) and liquid state
networks (LSN) can also be explored in the future for
the eyewitness identification task. In the current work,
we did not verify the authenticity of the posted tweets
in the proposed work, which is another limitation of
the proposed work. Therefore, a method can be used
to analyze the authenticity of the posted tweets in the
future and a multi-lingual framework can be devel-
oped to solve the multi-linguality issue. The proposed
RCNN-DNN network uses only textual contents of the
tweets to identify eyewitness messages. Therefore, in
the future, the other clues such as images, videos, and
meta-data information of the social media post can be
integrated to extract features from the RCNN to inves-
tigate the roles of other clues in identifying eyewitness
social media messages.
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