J Grid Computing (2022) 20: 18
https://doi.org/10.1007/s10723-022-09606- 1

®

Check for
updates

A Formal Approach for the Identification
of Authorization Policy Conflicts within Multi-Cloud

Environments

Ehtesham Zahoor @ . Asim Ikram -
Sabina Akhtar - Olivier Perrin

Received: 31 August 2021 / Accepted: 17 April 2022 / Published online: 20 May 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract The use of the Cloud computing has been
constantly on the rise. The flexible billing model
coupled with elastic resource provisioning make the
Cloud appealing to consumers. However there are
still many challenges associated with the Cloud limit-
ing its adoption, such as vendor lock-in and security
concerns. One way to address some of these chal-
lenges is to use services from more than one Cloud
providers. This may help in avoiding the case of ven-
dor lock-in and will also allow for the use of multiple
resources available at multiple Clouds. The use of
multi-cloud environments can also assist in the case
of Cloud bursting where a workload in a private cloud
bursts into a public cloud when the need arises. How-
ever, the security concerns in such an environment are
amplified when compared to a single Cloud. In this
paper we address the specification and consistency
management of authorization policies in Multi-Cloud

Ehtesham Zahoor (<) - Asim Ikram
FAST, NUCES, Islamabad, Pakistan
e-mail: ehtesham.zahoor @nu.edu.pk

Asim Tkram
e-mail: 1161022 @nu.edu.pk

Sabina Akhtar
Bahria University, Islamabad, Pakistan
e-mail: sabina.buic@bahria.edu.pk

Olivier Perrin

Université de Lorraine, LORIA, 54506,
Vandoeuvre-les-Nancy Cedex, France
e-mail: olivier.perrin@loria.fr

environments. The problem being address is signif-
icant as an erroneous authorization policy can have
severe consequences on the security of the system
being protected. In a Multi-Cloud environment, it is
difficult to ensure consistency with different Clouds
having authorization models, different implementa-
tions of the same authorization model and different
access control policies. To this end, we have proposed
a formal Event-Calculus based model to model the
aggregated authorization policies from multiple Cloud
providers. The translated Event-Calculus models are
then reasoned upon to identify the policy conflicts.
We have applied our approach on authorization poli-
cies from AWS, GCP and Microsoft Azure. Further,
we have provided tool support to automate the com-
plete verification process and provided detailed per-
formance evaluation results to justify the practicality
and scalability of the proposed approach.

Keywords Cloud - Authorization - Access control -
Event-calculus - Verification - Multi-cloud

1 Introduction

The need for information security has always been
there. It has however amplified in last few decades
thanks to our increasing reliance and widespread
adoption of information systems. At one end, the need
for computing resources exposed the scalability lim-
itations of legacy systems and resulted in the wide

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-022-09606-1&domain=pdf
http://orcid.org/0000-0002-2125-9025
mailto:ehtesham.zahoor@nu.edu.pk
mailto:i161022@nu.edu.pk
mailto:sabina.buic@bahria.edu.pk
mailto:olivier.perrin@loria.fr

18 Page 2 of 22

J Grid Computing (2022) 20: 18

spread adoption of distributed computing architectures
such as Cluster, Grid and the Cloud computing. In this
context, the use of the Cloud computing has been con-
stantly on the rise. The flexible billing model coupled
with elastic resource provisioning make the Cloud
appealing to consumers. Major providers include
Amazon Web Services (AWS), Google Cloud Plat-
form (GCP), Microsoft Azure and IBM Bluemix.
However, reliance on a particular Cloud provider may
result in vendor lock-in making it difficult to port
information systems from one Cloud provider to the
other. Further, an organization may require services
from more than one Cloud provider and this led to
the inception of multi-Cloud environments such as
RightScale Multi Cloud Platform, a cloud broker that
provides multi-Cloud solutions.

The increase in scale has put enormous pressure
to improve our security capabilities needed to secure
these systems. Information security research has thus
been in the mainstream of computing and has been
widely studied research direction for the past few
decades. Security has been one of the most critical fac-
tors limiting Cloud adoption and all major providers,
have well-defined and thorough security capabili-
ties. However, the challenges are further amplified
in the case of multi-Cloud environments as there
is no agreed-upon consistent approach to implement
security principles and it becomes challenging to
aggregate different implementations. There are many
facets and levels to implement security principles in
an organization. One such aspect is the authoriza-
tion process which allows for controlling access to

{ {
“id”: “/subscriptions/28d7b...” “bindings”:[
“properties”: { {

“roleName”: “ExampleRole”,

“description”: "An example.”,
“assignableScopres”: [

“I"l 1

”, u

“members”: [
“serviceAccount:alice-27@alice.
iam.gserviceaccount.com”

the resources. Authorization process is handled by
authorization policies which specify access rules spec-
ifying which subjects can perform specified actions
on the specified objects. As similar to other services,
all major Cloud providers provide authorization pro-
cess as a service. These include Identity and Access
Management (IAM) service provided by the Ama-
zon Web Services (AWS) and Google Cloud Identity
& Access Management (IAM) service provided by
Google Cloud Platform (GCP).

A Multi-Cloud environment with multiple Cloud
providers may result in the use of different authoriza-
tion models and different implementations of the same
authorization model by different Cloud providers.
As an example we consider the case of authoriza-
tion services provided by major Cloud providers. The
Google Cloud Identity & Access Management (IAM)
is the access control service provided by Google
Cloud Platform (GCP). The service uses the Role
Based Access Control (RBAC) model and it allows
to define and assign the required roles to the users.
An example policy is shown in Fig. 1-b. Further,
AWS provides an identity and access management
service (IAM) for managing the authorization and
authentication process. These policies can be either
directly assigned to IAM Users, the UBAC policy
model, or to IAM Groups and AWS thus supports
both UBAC and RBAC. Microsoft Azure, like GCP,
also uses an RBAC model for authorization specifica-
tion. Azure policies consist of actions, not actions, and
assignable scopes [4]. An example policy is shown
in Fig. 1-a. In a Multi-Cloud environment policies

{
“Statement”:[
{
“Sid”: ”Stmt01”,
“Effect”: "Allow”,
“Action”: [
“aws-portal:ViewBilling”

“permissions”: [“role” : “roles/iam.serviceAdmin” 1,

{ }
“actions”: [“*/read”], 1,
“notActions”: [],
“dataActions”: [],
“notDataActions”: [] }

1}

“version”: 1

a) An example Microsoft Azure Policy

Fig. 1 GCP, Microsoft Azure and AWS Policy Examples

@ Springer

b) An example GCP Policy

“Resource”:[

uxn

“etag”: “BwXEbmYO-ek”,]

c) An example AWS Policy

J Grid Computing (2022) 20: 18

Page 3 0of22 18

from multiple Clouds need to be aggregated and this
becomes challenging as their capabilities, expressive-
ness and implementations differ. For instance, AWS
supports UBAC, a model not supported by other Cloud
providers. For the RBAC model, supported by all the
Cloud providers, the implementation of the model dif-
fer such as the support of explicit deny in case of
AWS TAM. Policies aggregation may lead to conflict-
ing access control policies and it becomes challenging
to ensure consistency after aggregation.

In this paper we address the specification and
consistency management of authorization policies in
Multi-Cloud environments. To this end, we have pro-
posed a formal Event-Calculus [13] based model to
model the aggregated authorization policies from mul-
tiple Cloud providers. The translated Event-Calculus
models are then reasoned upon to identify the policy
conflicts. We have applied our approach on authoriza-
tion policies from AWS, GCP and Microsoft Azure.
Further, we have provided tool support to automate the
complete verification process and provided detailed
performance evaluation results to justify the practi-
cality and scalability of the proposed approach. This
paper builds on our approach presented in [29] and
in this work we have throughly improved content,
implementation details and the performance evalua-
tion results. We have also modified and improved the
Event-Calculus models for more expressiveness and
performance. A detailed discussion about changes to
the EC models can be found in Section 5.3 and a
detailed performance evaluation comparison can be
found in Section 8.

The rest of the paper is organized as follows:
Section 2 discusses the traditional approaches for
authorization polcicies management and consistency
verification. Further, in Section 3 we briefly present
how major cloud providers like AWS, GCP and
Microsoft Azure handle the authorization process. We
also introduce a motivating example to highlight the
problem being addressed in this work and our contri-
butions. In Section 4 we provide an overview about the
proposed approach and detail the proposed approach
for policies aggregation in 5. Section 6 discusses the
authorization conflicts in Multi-Cloud environments
categorizing them as syntactic and semantic conflicts.
Further, in Section 7 we present the implementa-
tion details and the performance evaluation results in
Section 8.

2 Related Work

The authorization policies and different policy mod-
els are used to handle the authorization process. In
Role Based Access Control (RBAC) model, users are
assigned roles and are grouped together. Each role
has its defined authorization policies. On the other
hand, in User based access control (UBAC) there is
no concept of roles. The authorization policies are
applied on the individual users. RBAC is the most
commonly used policy model but as the number of
roles increase, it suffers from scalability issues. The
number of roles can surpass the number of users [9]
because different roles are created to address the needs
of diverse permissions. This scenario is called role
explosion problem. Attribute based Access Control
(ABAC) policy model [11] associates some attributes
with the resources, subjects and environment. Autho-
rization policy using ABAC is then considered as a
boolean function on these attributes. ABAC model
provides more flexibility as compared to RBAC mod-
els. It can incorporate other policy models as the user
and the role (as needed for UBAC and RBAC respec-
tively) can be considered as an attribute in an ABAC
model.

A lot of research has been conducted on authoriza-
tion in the Cloud Computing domain. Data storage on
the Cloud based services requires research in the area
of security that includes Attribute-Based Encryption
(ABE) proposed in [26]. In Attribute-Based Encryp-
tion (ABE), data encrypted based on attributes and
only users with the same set of attributes can decrypt
the data. Similarly, the authors in [24] have proposed
a model that uses Ciphertext Policy based ABE (CP-
ABE) to achieve access control in multi-authority
clouds. The authors in [1] have modified the CP-ABE
algorithm to make it more secure and have extended
their approach to multi-cloud authorities as well. The
model proposed by [6] was also concerned with the
improvement of CP-ABE and put forth a model to
revoke permissions by dividing the data after upload-
ing it to the cloud. The approaches used in [25, 31]
address the attribute hierarchies and revocation while
the approach proposed in [21, 22] deals with the
keyword search.

The policy languages used for specification of
authorization policies is another area of research on
authorization in Cloud Computing. Some approaches

@ Springer

18 Page 4 of 22

J Grid Computing (2022) 20: 18

have considered providing formal semantics [7, 12,
16, 23] in XACML (eXtensible Access Control
Markup Language) as it is based on the Attribute
Based Access Control model. An extended version of
XACML is proposed in [14] that handles specifying
an integration policy at its own end before merg-
ing its policies with another entity. In [5], authors
have used a formative work that uses an algebra for
policy composition from multiple domains and it sup-
ports heterogeneous and unknown policies as well. A
method to integrate policies from one cloud to another
cloud is presented in [17] . However their approach
is limited as it only supports homogeneous platforms
and it only supports OpenStack. An algebra for fine-
grained integration of policies focusing on generating
XACML policies is proposed in [19]. A service bro-
kering scheme is introduced by authors in [18] that
satisfies the user requests. In [2], a fine grained access
control mechanism for data sharing in cloud feder-
ations has been proposed. The authors in [8] have
proposed a model to identify policy changes and an
XACML model for policy evaluation. The authors in
[20] have proposed an interesting method concerned
with the conversion of XACML access control poli-
cies to Answer Set Programming and have evaluated
their approach on the Clingo tool.

For distributed environments, the literature mainly
discusses about the formal semantics of XACML and
the problem of policy aggregation. According to our
research and knowledge about the literature, there
exists no formal approach (other than our previous
work [29]) that handles the policy aggregation and
conflicts identification amongst access control poli-
cies in Multi-Cloud environments, focusing on actual
Cloud providers and Multi-Cloud solutions. It is diffi-
cult to ensure consistency in an environment where we
can have multiple Clouds with different authorization
models, different implementations of the same autho-
rization model and different access control policies.
Our work in this paper focuses on an approach for
policy aggregation and have also categorized and pro-
posed an approach to identify policy-conflicts in such
environments.

This paper further builds on our approach presented
in [29] in which we have applied our technique on
actual policies from AWS, GCP and Microsoft Azure.
We have also provided tool support to automatically
fetch policies from the cloud providers and con-
vert them to Event-Calculus [13] models. Our work

@ Springer

explains the design of the Event-Calculus models in
further detail and the proposed models perform bet-
ter as compared to the existing work. It also improves
on the implementation details of our work on Autho-
rization policies. We have also refined the results for
our implementation and provided a comparison of our
approach and tool with another work in the literature.
A detailed discussion about changes to the EC models
can be found in Section 5.3 and a detailed performance
evaluation comparison can be found in Section 8. In
[27] the authors have proposed verification of Intra
and Inter policy conflicts for AWS IAM policies, but
this work focuses on Multi-Cloud environments. In
our work, we present optimized Event-Calculus mod-
els that allow for both design time verification and for
policy evaluation based on actual request.

3 Authorization in the Cloud

In this section we will briefly discuss how major cloud
providers like AWS, GCP and Microsoft Azure han-
dle the authorization using their models and services
including the case of RightScale Multi-Cloud service.
We will also discuss our motivating example that will
highlight our contributions even further.

3.1 IAM Services by Major Providers

The Google Cloud Identity & Access Management
(IAM) is the access control service provided by
Google Cloud Platform (GCP) that is based on RBAC
authorization model. For different services provided
by GCBP, it allows to add the users and assign them the
required roles. You can create new roles by selecting
the permissions or you can also inherit from existing
roles.

An example policy is shown in Fig. 1-b. The com-
ponents of a GCP policy are described below [10].

— Bindings: Associate a list of members with roles

— Roles: Specifies the roles that the users are
assigned. Roles have predefined permissions to
resources.

— Members: Defines the users that are granted the
specified role. Members can be specified by an
email ID, a service account ID, all authorized
users, all users (anyone on the internet), domain,
Oor a user group.

J Grid Computing (2022) 20: 18

Page 5of22 18

Amazon provides Amazon Web Services (AWS)
as a Cloud solution for its users. To handle authen-
tication and authorization of AWS users, it supports
an identity and access management service (IAM).
Policies in IAM are high level descriptions explic-
itly listing the permissions and are stored in a JSON
format. Each policy has a set of statements and each
statement contains a Resource, Action and an Effect.
An Effect refers to the access to resource whether the
resource is allowed or denied. These policies can be
either directly assigned to IAM Users, the UBAC pol-
icy model, or to IAM Groups. AWS supports both
UBAC and RBAC, but RBAC suffers from role explo-
sion. Therefore, AWS imposes some limitations (for
example number of policies attached to a role) but
that is not a convincing solution. An example policy is
shown in Fig. 1-c. The components of an AWS policy
are described below [3].

— Effect: Specifies whether access to resources is
allowed or denied.

— Principal: Specifies the user/account the permis-
sions are granted to.

— Action: Specifies the actions that are allowed on
the resources (* specifies all permissions).

— Resources: Specifies the components on which
the effect is applied.

Microsoft Azure, like GCP, also uses an RBAC
model for authorization specification. Azure policies

Fig. 2 A Multi-Cloud Scenario

consist of actions, not actions, and assignable scopes
[4]. An example policy is shown in Figure 1-a.

— Actions: Define the permissions allowed on a
resource.

— Not actions: Defines actions not allowed on
resources that are included in actions.

— Assignable scopes: Defines the scopes to which
the role can be assigned to.

RightScale Multi Cloud Platform (RightScaleMC)
is a cloud broker that provides Multi-Cloud solu-
tions based on RBAC. They support two types of
accounts that are RightScaleAccounts and CloudAc-
counts. RightScale dashboard and other services are
accessed using RightScaleAccounts. On the other
hand, the CloudAccounts are linked to the cloud
provider account, for instance an AWS account. The
roles provided by the RightScaleMC include admin,
actor and observer and other roles.

3.2 Motivating Example

As a motivating example, consider the case where a
user needs to use resources such as storage and com-
putation from multiple cloud providers (AWS, GCP,
and Azure). Let us consider that the user is named
Alice and she is working on a project MCproject that
is using resources from multiple cloud providers as
shown in Fig. 2. To use resource from multiple cloud

ah1azon

webservices

@ Springer

18 Page 6 of 22

J Grid Computing (2022) 20: 18

providers, the user needs access to those resources.
One case would be to use a cloud broker, such as
RightScale Multi Cloud. RightScaleMC allows users
to get authorization access to multiple cloud providers
using RBAC. For our scenario, the user would first
have to create a project at RightScaleMC (let us call
it mcProject). We would then have to create multi-
ple cloud accounts that give us access to other cloud
providers. Before we can actually add people to work
on the project, we need to create roles. For this pur-
pose, we can create an actor role and add members,
including Alice, to the project.

From the example given for RightScaleMC, we can
achieve the purpose of using resources from multiple
cloud providers. However, if we examine the autho-
rization policies provided by RightScaleMC, we find
that they are not fine-grained. Alice might be allowed
to perform actions that would not be allowed to her.
This could be due to different policy specifications
on the cloud providers (RBAC vs. UBAC) or even
different naming conventions on the cloud providers.
To combat this, we could add more roles that would
handle these conflicts but we believe that increasing
the number of roles is not sufficient to handle this
issue. This is because increasing the number of roles
to match those of the cloud providers and to further
handle users/roles at the multi-cloud level would lead

Event Calculus
Based Consolidator

Result < DECReasoner

Fig. 3 Proposed Framework

@ Springer

to role explosion. The problem of role explosion is
especially amplified in the case of multi-clouds since
roles from a number of clouds need to be aggregated
in the correct manner (which in some cases would
lead to the creation of new roles) to provide a cor-
rect authorization model. From this, we can conclude
that using RBAC to handle conflicts in such a diverse
environment as a multi-cloud is not a viable solution
and that we need to propose a model other than RBAC
when aggregating policies from multiple cloud service
providers and identifying conflicts between the poli-
cies. An attribute based access control (ABAC) model
would be preferable in such a scenario as ABAC sub-
sumes both UBAC and RBAC by considering role as
an attribute.

4 Proposed Methodology

The proposed approach relies on the formal Event-
Calculus (EC) models for the identification of con-
flicts in multi-cloud environments. Figure 3 presents
an overview of the proposed approach. The policies
are written by policy designers using services pro-
vided by the Cloud, for instance using Identity and
Access Management (IAM) service of AWS. These
policies may be both syntactically and semantically

Event
Calculus

— m

Event
Calculus

— ﬂ

Event
Calculus

— m

J Grid Computing (2022) 20: 18

Page 70f22 18

different and they are converted to the generic Event-
Calculus models to be reasoned upon and to iden-
tify conflicts. Different models from different Cloud
providers are then aggregated and passed on to the
DECReasoner, which is a tool initially developed by
IBM to reason about Event-Calculus models. The
results provided by the DECReasoner can help iden-
tify the presence (or absence) of the policy conflicts.

Event-Calculus (EC) is a logical language proposed
by Robert Kowalski and Marek Sergot [13] to model
and reason about actions over time as we discuss in
the Section 5. The models are difficult to design and
understand for a policy designer and so is the over-
all reasoning process by the DECReasoner. We have
intentionally designed the models to be highly generic
to model multiple related aspects and this has further
allowed us to automate the reasoning process requir-
ing no knowledge of EC and the reasoning process.
The proposed methodology consists of fetching the
rules from AWS, GCP, and Azure through a web appli-
cation. The web application then converts the rules
to EC based models automatically and aggregates
them to a combined/composite policy. The composite
policy can then be passed to DECReasoner for evalu-
ation. This process is illustrated in Fig. 3. The details
of the EC models and web application are given in
Sections 5, 6, and 7.

5 Policies Aggregation in Multi-Cloud
Environments

There is no standard way of representing authoriza-
tion policies in the Multi-Cloud environments. Each
cloud provider uses its own authorization model sim-
ilarly it will have different implementations of the
model and policy specifications as well. Along with
these restrictions an organization might also have its
own policies, thus complicating the process of policy
aggregation even further. Our approach proposed in
this paper is formal and based on ABAC model as it
subsume RBAC, UBAC as well as other access control
models and it can also handle role explosion.

5.1 Event-Calculus
Event-Calculus (EC) is a logical language introduced

by Robert Kowalski and Marek Sergot [13] to model
and reason about actions over time. In EC, events

represent the actions, .4, and for time-varying prop-
erties called fluents, F, the events trigger the change
in state. In EC, fluents are like variables whose value
can change over time, for example AccessGranted can
be a fluent that may hold or may not hold at certain
time during execution. In this work, we would use
discrete EC [15] as it limits time-points to integer val-
ues and we would use its associated reasoner, called
DECReasoner.

We have several motivations for choosing Event-
Calculus for specification of our models. It is highly
expressive as it allows a detailed model to be cre-
ated. It can also handle the events which are context-
sensitive or have indirect effects. For any given model,
various types of commonsense reasoning can be per-
formed. It has an explicit time structure and can be
used to give temporal representations. Finally, it is
flexible as the same logical model can be used for
verification at both design time and runtime. Due
to limited space, we would only emphasize on core
concepts' and we have used universally quantified
variables, unless explicitly specified, and we have
shortened their names as well.

5.2 Rules Specification

We start our discussion by first presenting the EC
models for the rules construct, which can be used to
specify an access rule. Each rule has a Target and an
Effect. The rule target specifies if the rule applies to
a particular context i.e. is it applicable for a given
request. To model the rule target in EC, we first define
some sorts, such as rule, subject, object and action.
When specifying an actual rule, we will instantiate
these sorts and they can thus be regarded as types.
The state of a rule can be either it is permitted, denied
or not applicable (if the rule target does not hold)
and these states can be modeled using EC fluents,
whose value can change over time. For instance, a
rule is neither permitted or denied at the start and
this can change over time. We have thus defined
fluents RulelsPermitted/Denied/NotApplicable to rep-
resent rule state.

The state of a fluent changes on the occurrence of
events and we have also defined some events, such as
Approve/DenyRule, whose occurrence would change

IComplete models can be found at https://www.icloud.com/
iclouddrive/OcwdSlableSIHOX_NyBRhf5S A#nordsec.zip

@ Springer

https://www.icloud.com/iclouddrive/0cwdSlable8lHOX_NyBRhf5SA#nordsec.zip
https://www.icloud.com/iclouddrive/0cwdSlable8lHOX_NyBRhf5SA#nordsec.zip

18 Page 8 0of 22

J Grid Computing (2022) 20: 18

the state of fluents. Further, EC Initiates/Terminates
axioms link an event with fluent state and specify
how the fluent state is changed on the occurrence of
the event. In our model, Initiate axiom states that if
the event ApproveRule happens at time ¢, the fluent
RulelsPermitted would hold at #+/. Further, we have

Rules Model 1 (Meta-model for IAM Rules)

;Sorts in EC are like types

defined some constraints to restrict events occurrence
and the events can only occur (happen) once specific
condition hold (or does not hold). We then specify the
initial states for the fluents, they do not hold at time O,
and the goal for the reasoner to find a solution to reach
the goal state.

;Their instances represent individual rules and subjects/objects and actions

sort rule, subject, object, action

;Fluents change with time and we define the following
fluent RuleTargetHolds(rule), RuleConditionHolds(rule)

fluent RuleEffectIsPermit(rule),

fluent RulelsPermitted/RulelsDenied/RulelsNotApplicable(rule)
;Events occur at specific time-points and we define the following

event Match(rule), Mismatch(rule),

Approve/DenyRule(rule), RuleDoesntApply(rule)

;These axioms link fluents with events

;Initiates makes fluent hold and Terminates does otherwise

Initiates (Match(rule), RuleTargetHolds(rule), time).

Terminates (Mismatch(rule), RuleTargetHolds(rule), time).
Initiates(Approve/DenyRule(rule), RulelsPermitted/Denied(rule), time).
Initiates(RuleDoesntApply(rule), RulelsNotApplicable(rule), time).

;The conditions below are to restrict even occurrence
;The events can only occur once specific condition hold (or does not hold)

Happens(ApproveRule(rule), time) — HoldsAt(RuleTargetHolds(rule), time) €
& HoldsAt(RuleEffectIsPermit(rule), time).
Happens(RuleDsntApply(rule), time) — !HoldsAt(RuleTargetHolds(rule), time).

;These are the initial states for the Fluents, they do not hold at time 0
!HoldsAt(RulelsPermitted/Denied/NotApplicable(rule),0).

;The goal for the reasoner, it tries to find a solution reach this state
HoldsAt(RuleTargetHolds(rule),1) | !HoldsAt(RuleTargetHolds(rule),1).
HoldsAt(RulelsPermitted/Denied/NotApplicable(rule),2).

In terms of control flow, we need to first check
whether the specific rule being defined is appli-
cable, i.e. rule target holds or not. We include
Match/Mismatch events in the model as they take the
decision of a fluent RuleTargetHolds that whether it
holds or does not hold. If the fluent holds, this means
the decision is based on rule effect to be permitted or

Rules Model 2 (AWS IAM rule specification)

load includes/rules/... ;generic model files

load includes/input.e
subject Alice

object AWSresource
action AnyAction

denied and if the fluent does not hold then rule is con-
sidered to be not applicable, RulelsNotApplicable. We
have made this model as a generic one so that it can
be considered as a meta-model to be included for the
specification. Below, we show an example of using
a generic model for the UBAC based AWS rule and
RBAC based GCP rule.

;Attributes would be specified in input.e based on the actual request

rule RuleAWS
;Specifying when the rule target holds

[time] Happens(Match(RuleAWS),time) ->

{subject, object, action} subject = Alice & object = AWSresource € action = AnyAction.

time, subject, object, action Happens(Mismatch(RuleAWS), time) ->
subject = Alice | object != AWSresource | action != AnyAction.

HoldsAt(RuleEffectIsPermit(RuleAWS),0).

@ Springer

J Grid Computing (2022) 20: 18

Page 90f22 18

In the model above, we first include the generic
meta-model files and then include a file named
input.e. This file contains the attribute name value
pairs matching the actual authorization request. In
our case Alice is trying to perform AnyAction on the
AWSresource.

For the rule specification, we name the rule as
RuleAWS and define a conditional axiom that the event
Match can only happen if the attribute name value
pairs match. The variables in curly brackets, such
as {subject} are existentially quantified and the first

Rules Model 3 (GCP rule specification)

rule RuleGCP

[time] Happens(Match(RuleGCP),time) ->

axiom essentially says that the event Match can only
happen if there exists a subject named Alice, object
named AWSresource and an action named AnyAc-
tion. We define another axiom stating that the event
Mismatch happens otherwise.

The model is for the UBAC approach as sup-
ported by AWS. However, the proposed approach
is generic and is based on ABAC so we can also
model RBAC, as provided by GCP. This is shown
below:

{subject, object, action} subject = ProjMembers € object = GCPresource & action = Read.

time, subject, object, action Happens(Mismatch(RuleGCP), time) ->
subject = ProjMembers | object != GCPresource | action != Read.

HoldsAt(RuleEffectIsPermit(RuleGCP),0).

In order to reason about the models, we can use
the DECReasoner® which attempts to find a solution
(sequence of events) that leads from initial fluents
state to the goal. The solution shows which events
happen and what fluents hold true (shown with a
plus(+) sign) at specific time-points. When we invoke

DECReasoner on the above AWS model, it shows an
output as shown in evaluation 1. DECReasoner first
encodes the problem into a satisfiability (SAT) prob-
lem and then invokes a SAT solver to reason about the
problem. The solution shows the events that occur and
the fluents that hold true or false at certain time points.

Solution 1 (AWS Rule Evaluation Using DECReasoner (Match))

40 variables and 89 clauses
relsat solver

1 model

model 1:

0
RuleEffectIsPermit(Rule AWS).
Happens(Match(RuleAWS), 0).
1

+RuleTargetHolds(RuleAWS).
Happens(ApproveRule(RuleAWS), 1).
2

+RulelsPermitted(RuleAWS).

3

Evaluation 1 shows the results obtained when
DECReasoner was run on an AWS rule. In this case,
the attribute values in the input file, were intention-
ally kept the same for easier illustration of results.

Zhttp://decreasoner.sourceforge.net/

In practice, the values would be populated based
on actual requests. Since the values were initialized
for the illustration of a match event, the execution
of DECReasoner results in a Match event and the
rule gets permitted. When the attribute values do not
match, a Mismatch event occurs and the rule is not
applicable as shown in evaluation 2.

@ Springer

http://decreasoner.sourceforge.net/

18 Page 10 of 22 J Grid Computing (2022) 20: 18

Solution 2 (AWS Rule Evaluation Using DECReasoner (Mismatch))

64 vartables and 218 clauses
relsat solver

1 model

model 1:

0

RuleEffectIsPermit(RuleAWS).
Happens(Mismatch(RuleAWS), 0).
1

Happens(RuleDoesntApply(RuleAWS), 1).
2

+RuleIsNotApplicable(Rule AWS).
3

event Match or Mismatch should happen) as presented

5.3 Comparison to the existing models) .
in [29] is shown below:

For the specification of rules, the core model for iden-
tification of rule target (if the rule applies and if the

Rules Model 4 (Meta-model for IAM Rules [29])

;Sorts for attributes name/values

sort rule, atname, atvalue predicate AtHasValue (atname, atvalue)
;Fluents for Rules evaluation

fluent RuleTargetHolds(rule), RuleConditionHolds(rule)

fluent RuleEffectIsPermit(rule), RulelsPermitted/Denied/NotApplicable(rule)
;Rest of the model follows ...

We first define some sorts, such as rule, atname attribute name-value pairs. Then when we instanti-
and atvalue, which can be considered as types and ate the model, we specify attribute names/values and
which represent individual rules, attribute names and link them using a predicate AtHasValue as shown
values respectively. The predicate AtHasValue links below.

Rules Model 5 (AWS IAM rule specification [29])
load includes/rules/... ;generic model files

load includes/input.e

atname Subject, Object, Action

atvalue Alice, AWSresource, AnyAction
AtHasValue(Subject,Alice). AtHasValue(Object, AWSresource)...
;Attributes would be specified in input.e based on the actual request

rule RuleAWS

;Specifying when the rule target holds

Happens(Match(rule),time) &

AtHasValue(Subject, atvaluel) & AtHasValue(Object, atvalue2) € AtHasValue(Action,
atvalue3) -> atvaluel = Alice € atvalue2 = AWSresource € atvalue3 = AnyAction.

HoldsAt(RuleEffectIsPermit(Rule AWS),0).

We have identified some limitations of the mod- specify policy relationships. In addition, our model
els as presented in [29] and [27]. Our model does improves performance as universally quantifying mul-
not make use of attribute names and values and can tiple instances of sorts atname and atvalue, as shown

@ Springer

J Grid Computing (2022) 20: 18

Page 11 of 22 18

in the model above, makes the models complex and
less efficient.

We presented EC models for policy shadowing in
[28]. The models for the identification of shadow poli-
cies are different and it is essentially a design time
process. In terms of EC models, however some com-
parison is still possible. In this context, even for the
specification of rules the proposed approach is more
expressive. For instance, it can handle the case when a
subject has multiple identities, i.e. belongs to multiple
groups. In this case the policies need to be evaluated

to cater for any role to which a user belongs and any
matching policy would result in access being granted
(or denied if so is the rule effect). Let us consider the
RuleGCP presented earlier which allows ProjMem-
bers to have read access on some resource named
GCPresource. Let us consider a user named Alice
which belongs to the role named ProjMembers and
also to some other role named Users. In this case the
input request needs to be updated to have all the iden-
tities belonging to a user and then a request needs to
be made as shown in the model below.

Rules Model 6 (The contents of input.e file for a user having multiple identities)

subject Alice, ProjMembers, Users
object GCPresource
action Read

Invoking the DECreasoner after this change would
still grant access to the user Alice, as she belongs
to the ProjMembers group. Building further on this
example however reveals another interesting case
where there is a conflict in the roles assigned to a user.
In the example above, consider the case where the
members of role Users are not allowed to access that
specific resource. These conflicts are not in the scope
of this work but can easily be identified by extending
the proposed models.

5.4 Authorization Composition

In a multi-cloud environment, rules from multiple
clouds may need to be aggregated to provide autho-
rization. Aggregation of rules can cause issues since
each cloud provider has its own implementation of
authorization rules. For example, the rule specifica-
tion of AWS is more high level than that of GCP and
Azure. In AWS, policies contain multiple rules based
on resources and the actions that can be performed
those resources. GCP policies can be considered more
abstract than AWS. They consist of assigning roles to
members. The members are then assigned permissions
based on the roles. GCP does not have the ability to

directly assign permissions to members, it has to do
it in an indirect manner by using roles. Azure also
has policies that are different than AWS and GCP. As
an example, Azure has the ability to specify which
actions are allowed and which actions are explicitly
not allowed on a resource.

The method that we followed to handle the incon-
sistency in the implementation of the policies was to
consider GCP and Azure rules as-is (permissions for
each resource) and consider AWS policies as individ-
ual rules. This approach results in better performance
than combining GCP and Azure rules into policies
since this would involve more constructs.

The reason for the performance degradation in case
of combining rules in policies is that we would first
need to evaluate a rule, then evaluate the policy, and
then the results of the evaluated policy could be passed
to the composite policy. This would add an extra step
to the evaluation process and as such would have a
negative effect on the performance.

Due to disadvantage of combining GCP and Azure
rules in a policy, we have unwrapped AWS poli-
cies as rules and used those rules in our model.
The meta-model for policies is shown in policy
model 1.

@ Springer

18 Page 12 0of 22

J Grid Computing (2022) 20: 18

Policy Model 1 (Meta-model for Policies)

sort policy
;Fluents for Policy State/Fvaluation
fluent PolicylsPermitted(policy)
fluent PolicylsDenied(policy)
;Initiates Azioms for Events/Fluents
event ApprovePolicy(policy)

predicate PolicyHasRule(policy, rule)

Initiates(ApprovePolicy(policy), PolicylsPermitted(policy), time).

event DenyPolicy(policy)

Initiates(DenyPolicy(policy), PolicylsDenied(policy), time).

spermit if even one of the rule is permitted - permit overrides
Happens(ApprovePolicy(policy), time) -> {rule} PolicyHasRule(policy, rule) &

HoldsAt(RulelsPermitted(rule), time).
;Deny if all are not applicable

Happens(DenyPolicy(policy), time) & PolicyHasRule(policy, rule) ->
HoldsAt(RulelsDeniged(rule), time) | HoldsAt(RuleIsNotApplicable(rule), time).

;For all events we don’t them to happen again if the fluent is true
HoldsAt(PolicylsPermitted(policy), time) -> !Happens(ApprovePolicy(policy), time).
HoldsAt(PolicylsDenied(policy), time) -> !Happens(DenyPolicy(policy), time).

;Initial conditions for fluents

IHoldsAt(PolicylsPermitted/Denied(policy),0).

First we define a fluent policy that defines a pol-
icy. Next, we define a predicate PolicyHasRule that
defines which rules exist within a policy. We then
define the fluents PolicylsPermitted, PolicylsDenied
that identify whether a policy would be permitted or
denied. Next, we define the events ApprovePolicy and
DenyPolicy. These events are responsible for chang-
ing the state of the fluents. Then we define some
axioms. Initiates(ApprovePolicy(policy), PolicylsPer-
mitted(policy), time) states that if event ApprovePolicy
happens at time ¢ then PolicylsPermitted would hold

Policy Model 2 (Policy Specification)

true at time ¢ + [. Initiates(DenyPolicy(policy), Pol-
icylsDenied(policy), time) states that if DenyPolicy
happens at time ¢ then PolicylsDenied would hold true
attime r + 1.

To illustrate an example of the policy composition,
we populate the policy meta-model with the rules of
AWS, GCP, and Azure. The rules had been defined
as described in the previous section. Policy model 2
shows the model for policy specification. In the model,
we have included the already defined rules for AWS,
GCP, and Azure.

;Load generic models for rules/policies and instantiated rules

load includes/rules/...

load includes/policy/...

load includes/rules/defined/Rule AWS... /RuleGCP/RuleAzure/RuleOrg.e

policy CompositePolicy

PolicyHasRule(CompositePolicy, RuleAWS/RuleGCP/RuleAzure...).

;Goal: Decide if the policy is permitted/denied

HoldsAt(PolicylsPermitted(policy),3) | HoldsAt(PolicylsDenied(policy),3).

First, we include the rule specification for the cloud
providers (in this case, AWS, GCP, and Azure). For
illustration purposes, only one rule from each cloud
service provider was used in the model above, but
any number of rule specifications could be included
in the policy model. Next, we define a sorts Compos-
itePolicy that represents the rules that the combined
policy could represent. We then initialize some predi-
cates. PolicyHasRule(CompositePolicy,RuleAws0) has

@ Springer

a rule from AWS in the composite policy, Poli-
cyHasRule(CompositePolicy,RuleGCP0) adds a rule
from GCP to the composite policy, and PolicyHas-
Rule(CompositePolicy,RuleAzure0) adds a rule from
Azure to the composite policy. Finally, we define the
goal for the reasoner. It decides whether the composite
policy is permitted, denied, or is not applicable.

The result from DECReasoner is shown in evalu-
ation 3. Since the rules for AWS were intentionally

J Grid Computing (2022) 20: 18

Page 13 0of 22 18

created to match with the request for an example, they
result in a Match event. The rules for GCP and Azure
result in a Mismatch event. As the combination algo-

rithm was designed to permit the policy even when
one rule holds, at time point 2 the ApprovePolicy event
happens at the policy gets permitted.

Solution 3 (Policy evaluation result by DECReasoner)

0

RuleEffectIsPermit(RuleAWS/Rule Azure/Rule GCP...).

Happens(Match(Rule AWS), 0).

Happens(Mismatch(RuleAzure/Rule GCP/RuleOrg), 0).
1

+RuleTargetHolds(RuleAWS).
Happens(ApproveRule(RuleAWS), 1).

Happens(RuleDoesntApply(RuleAzure/Rule GCP/RuleOrg), 1).
2

+RulelsPermitted(RuleAWS).

+RuleIsNotApplicable (RuleAzure/Rule GCP/RuleOrg).

Happens(ApprovePolicy(CompositePolicy), 2).
&

+PolicylsPermitted(CompositePolicy).

5.5 Synthesis

As discussed earlier, in Multi-Cloud environments the
authorization policies can constitute of different for-
mats. Due to which, the policy aggregation process
becomes difficult and can also result in conflicting
policies. Our approach focuses on the use of ABAC
model that allows us to easily aggregate the policies
written in RBAC, UBAC or any other access control
models. ABAC model is more adaptable as compare
to other models as it can subsume RBAC and UBAC
models. We can easily represent a role or a user as an
attribute in a policy. For example, Alice as a user or
as a role ProjMembers refer to the same attribute that
represents a Subject.

The Algorithm 1 explains how a policy of GCP,
AWS or Azure that can be of UBAC or RBAC model,
be mapped to ABAC model. The algorithm is generic
and can incorporate policies by any cloud provider.
It takes a policy P to be mapped to ABAC model,
Papac, and the type T of cloud provider. If policy
belongs to GCP or Microsoft Azure, then it follows
RBAC model and the role defines the action that can
be performed on a resource. Then, the role has a bind-
ing with the user that is represented as a member in
GCP or Microsoft Azure policy. Similarly, AWS pro-
vides UBAC model for the policies where principal
represents the user that can be mapped to the sub-
ject in ABAC model. The resource will be mapped
to the object of P4pac and action that is allowed on

the resource will be mapped to action of P4pac. This
generic algorithm can be extended to map policies by
any cloud provider.

Algorithm 1 mapping function for converting an
access control policy to ABAC.

Require: P is the policy that should be mapped to an
ABAC model
Require: T is the type of cloud provider
1: procedure MAPPING(P — Paspac)
2: if T=GCPvVvT=AZURE then

3: Papac.subject = P.member

4: Papac.object = P.role.resource
5 Pspac.action = P.role.action

6: elseif 7T = AWS then

7: Papac.subject = P.principal

8: Papac.object = P.resource

9: Papac.action = P.action

10: end if

11: return Papac

12: end procedure

As we have discussed the IAM services of major
cloud providers in the Section 3.1, they all have basic
components that help us map their policies to our
generic model. For example, if Alice is a user who
has an access to read a resource is mapped to a sub-

@ Springer

18 Page 14 of 22

J Grid Computing (2022) 20: 18

Jject performing an action on an object as shown in
our examples above. Alice can also be represented as
a member of a role and this relationship is clearly
reflected in the input.e file. Therefore, our generic
model ensures the semantic correctness of the policies.

6 Authorization Conflicts in Multi-Cloud
Environments

The authorization conflicts that can arise in multi-
cloud environments can be categorized into syntactic
and semantic conflicts.

6.1 Syntactic Conflicts

Syntactic conflicts consist of namespace conflicts and
full and partial request/ response. Namespace con-
flicts can be handled by syntactically matching poli-
cies from different cloud providers. For example, in
the case of AWS, all resources are prepended with
arn:. This prefix identifies that the resource origi-
nates from AWS. Intra-cloud namespace conflicts are
highly unlikely since each cloud controls its own
policy specification. Conflicts with full and partial

request/response can be handled ABAC as it has the
ability to handle unforeseen circumstances.

6.2 Semantic Conflicts

Semantic conflicts consist of policy conflicts, pol-
icy redundancy, and different authorization models. In
this work we will focus on semantic conflicts.

6.3 Policy Conflicts

Policy conflicts can arise when the decision returned
by a policy is ambiguous, that is, one policy returns
permit and the other returns deny. In the case of each
individual cloud it is unlikely for these conflicts to
occur since they have full control of their resources.
This can be handled by inter and intra-policy conflict
identification as discussed in [27] for AWS IAM. In
the case of multiple clouds however, policy aggrega-
tion may lead to conflicts. A method to handle this is
to alert when policies are conflicting. This can be han-
dled with the model shown in 3. We create an event
InvalidatePolicy and a fluent PolicylsInvalid. We then
specify that the event InvalidatePolicy occurs when
one rule is permitted and the other is denied.

Policy Model 3 (Updated meta-model for policy conflicts)

fluent PolicylsInvalid(policy) event InvalidatePolicy(policy)
Initiates(Invalidate Policy(policy), PolicylsInvalid(policy), time).

;Policy is invalid if the rule outcome is conflicting
Happens(InvalidatePolicy(policy), time) -> {rulel, rule2}
PolicyHasRule(policy, rulel) € PolicyHasRule(policy, rule2)

& HoldsAt(RulelsPermitted(rulel), time) & HoldsAt(RulelsDenied(rule2), time)

In the model above, first some fluents and events are
defined. The main logic of the model lies in the condi-
tions below these. The condition states that an Inval-
idatePolicy event occurs when a policy has multiple
rules but one rule is permitted while the other is
denied. Since this will check all possible pairs of the

rules, any two conflicting rules will result in an invalid
policy.

Alternatively, we can assign precedence to the policies,
so that whenever a conflict arises between the policies, a
higher priority policy would be applied due to precedence.
For example, the RuleOrg should be given preference.

Policy Model 4 (Updated instantiated model for policy conflicts)

;Policy is permitted iff the rule from the organization says so
Happens(ApprovePolicy(CompositePolicy), time) & PolicyHasRule
(CompositePolicy, RuleOrg) -> HoldsAt(RulelsPermitted(RuleOrg), time)

@ Springer

J Grid Computing (2022) 20: 18

Page 150f22 18

6.4 Policy Relationships

In policy redundancy, we can have conflicts that are
based on syntax or semantics of the policies. The
rules in the policy having same set of subject, object,
effect and contextual information can be checked syn-
tactically for redundancy and can easily be removed.
However, when the redundancy is associated with the
semantic attributes, in such a case syntactic compar-
ison would not be useful. Therefore, a rule that does
not change the consequence of a policy decision can
be marked as redundant rule.

For example if a composite policy has rule that
gives Alice the permission to write on resource R and
there is another rule in the same policy stating that the
role (eg. GlobalAdmin) of Alice provides the user with
the write access on resource R. This means that the
first rule can be considered redundant. This scenario
identifies that the authorization rule had a similarity
between the subject of the two rules that resulted in
redundancy. We can also include actions, objects and
even context to extend the criteria. Identification and
removal of redundant policies is a complicated process
and it is out of scope of our work.

6.5 Authorization Model Conflicts

Heterogeneity in policy models can result in incon-
sistencies. The cloud providers use different types of

authorization models that result in conflicts. For example,
Azure and GCP only provides RBAC model while
AWS supports both UBAC and RBAC. To address this
conflict we have used ABAC model as it subsumes
both UBAC and RBAC. Our ABAC model is explained
in the previous section. Another reason for the policy
aggregation conflicts can be different implementations of
authorization models by different cloud providers. For
instance, Azure, AWS and GCP all provide RBAC but
their semantics and implementations are different. For
example, the concept of Policy is inconsistent in dif-
ferent cloud providers. In Azure, the concept of Policy
is related to resources while in AWS, a Policy contains
authorization rules that is assigned either to a User or
a Role. On the other hand, in GCP it is just a binding
of users (members) to the roles.

Furthermore, in AWS a decision to a rule can be
explicitly specified to either Permit or Deny while in
GCP and Azure it can only be Permit and in case
of Deny, the rule must not be present. To further
complicate rule aggregation, a rule in Azure contains
nonactions that specifies what actions are excluded.
Due to this, our EC models need to be updated such
that if a policy are evaluated as NotApplicable, the
policy is considered as denied.

Policy Model 5 (Updated Rule Combining Algorithm)
;Deny if all the rules are either Denied or NotApplicable
Happens(DenyPolicy(policy), time) & PolicyHasRule(policy, rule) ->
HoldsAt(RulelsDenied(rule), time) | HoldsAt(RuleIsNotApplicable(rule), time).

7 Implementation

Browsing and collecting the policies from Cloud service
providers is a monotonous and error-prone task since they
can be as large as 500 rules for a GCP viewer role. To
automatically process the policies of Cloud providers, we
have developed a Web application® that performs the

3Source code and implementation details are available
at https://www.icloud.com/iclouddrive/OcwdSlableSIHOX _
NyBRhf5SA#nordsec.zip

process of fetching the policies. It has been developed
using Django, python 3.6.2 and Bootstrap 4.0.0.

A cloud service provider is selected at the start of
the Web application. At this step, Add Provider but-
ton is available for the user to add a provider. On
the click of this button, a popup dialog box appears
where a dropdown menu provides different options
for the available cloud service providers as shown in
Fig. 4. Once the user selects the required cloud ser-
vice provider, the web application dynamically loads
the next step as follows:

@ Springer

https://www.icloud.com/iclouddrive/0cwdSlable8lHOX_NyBRhf5SA#nordsec.zip
https://www.icloud.com/iclouddrive/0cwdSlable8lHOX_NyBRhf5SA#nordsec.zip

18 Page 16 of 22

J Grid Computing (2022) 20: 18

Fig. 4 Selecting a cloud
service provider

— AWS: Web application requires access key and
secret key from the user.

— GCP: Resource ID and API key are required from
the user.

— Azure: Tenant ID, client ID, key, and subscription
ID are required from the user.

On the click of Fetch and Convert Policy button, it
fetches all the policies from the cloud service provider
and displays them in their native format as shown in
Fig. 5. This steps also converts the fetched policies to
EC models and displays the translated polices in their

Amazon Web Services

Access Koy Microsoft Azure
AKI
Tenant ID
Secret Key
206
voP Resource ID
Key
alice
SYzZ
Access Key

Alz

[{"Effect": "Allow", "Action":
"Effect": "Allow", "Resource Rules

"arn:aws:apigateway:*::/ap
{"AcrPush": [["Microsot

"Microsoft.ContainerRt Rules
Service Contributor": [|
"Microsoft.Authorizatio
"Microsoft.ResourceH¢

"arn:aws:apigateway:*::/ap
[*lauthorizers/*", "arn:aws::
"arn:aws:apigateway:*::/ap
[*/integrations”, "arn:aws:a
"arn:aws:apigateway:*::/ap
"arn:aws:apigateway:*::/ap
"arn:aws:apigateway:*::/ap

Mavncmrsinsanicatasmu ke lan

"Microsoft.Resources/«
IresourceGroups/read'
[["Microsoft.Containerf
["Microsoft.Containerf
[["Microsoft.Containerf

Multi-Cloud Policy Aggregator and Evaluator

Add Provider

Add Provider

Select Provider ~

Amazon Web Services

Google Cloud Platform

l Microsoft Azure

respective text-boxes as shown in Fig. 6. As policies
are made up of rules, the textboxes show the rules that
the policy is comprised of (the structure of the poli-
cies is defined by the cloud service provider and is
described in Section 3.1). The user can aggregate and
view the aggregated policy by clicking the Aggregate
Policy button. On the click of Invoke DECReasoner
button, the aggregated policy is sent to DECReasoner
and the result is displayed in a separate text box. These
steps have been shown in Fig. 7. For illustration pur-
poses, Fig. 7 shows the aggregation and results of only
two policies from each cloud service provider.

Google Cloud Platform

Fetch and Convert Policy

{"roles/owner": ["accessapproval.requests.approve",
"accessapproval.requests.dismiss", "accessapproval.requests.get",
"accessapproval.requests.list", "accessapproval.settings.delete",
"accessapproval.settings.get", "accessapproval.settings.update”,
"accesscontextmanager.accesslLevels.create",
"accesscontextmanager.accesslLevels.delete",
"accesscontextmanager.accesslLevels.get",

WA ArArantinaDAnA~ | ACCESSCONtextmanager.accesslLevels.list",
"accesscontextmanager.accesslLevels.replaceAll",
"accesscontextmanager.accesslLevels.update”,

Fig. 5 Fetching rules from the cloud service providers

@ Springer

e DAlinina Arantall 4

J Grid Computing (2022) 20: 18

Page 17 0f 22 18

rule Azurel0

rule Gepl4
[time] Happen:
AZAcrImageSi
= Write.

rule Aws37
[time] Happens

object = Acces
[time, subject,

AZAcrImageSi

1= Write.
Alice | object !=

[time] Happens(Match(Aws37),time) -> {subject, object, action} subject = Alice &
[time, subject, (object = ApplicationautoscalingdescribeScheduledActions & action = Allow.

[time, subject, object, action] Happens(Mismatch(Aws37), time) -> subject !=
Alice | object != ApplicationautoscalingdescribeScheduledActions | action !=

HoldsAt(RuleE All
HoldsAt(RuleE " "

HoldsAt(RuleEffectlsPermit(Aws37),0).

Fig. 6 Translated rules

8 Performance Evaluation

In order to measure performance and and scalability of
our approach, we have created different test cases and
evaluated them on Amazon EC2 c5.2xlarge instance
having 8 vCPUs and 16 GiB memory. The Ama-
zon Machine Image (AMI) used was Ubuntu Server
20.04 LTS (HVM), EBS General Purpose (SSD) Vol-
ume Type. We then setup the modified and improved

DECReasoner version as proposed in [30] on the
instance using scp to copy files over the ssh connec-
tion and using ssh to run the test cases. The proposed
approach can be both used for design-time identifica-
tion of the policy conflicts and for the access control
decisions based on the actual requests, as evident
by very encouraging performance evaluation results.
For the test cases, we increased the number of rules
and measured the time taken by the DECReasoner to

Aggregate Policies

Aggregation
Aggregated Policy Results
load includes/rules/defined/Gcp0.e (r)nodel L
load includes/rules/defined/Gepl.e U e D
load includes/rules/defined/Azure0.e dieEtiectis erm?t(WD)
RuleEffectisPermit(Aws1).

load includes/rules/defined/Aws0.e
load includes/rules/defined/Aws1.e
load includes/rules/defined/Azurel.e
load includes/rules/rulesgoal.e

load includes/policy/sorts.e
load includes/policy/core.e

load includes/inputs.e

policy CompositePolicy

RuleEffectlsPermit(Azure0).
RuleEffectisPermit(Azurel).
RuleEffectisPermit(Gcp0).
RuleEffectisPermit(Gepl).
Happens(Mismatch(Aws0), 0).
Happens(Mismatch(Aws1), 0).

e DR Happens(Mismatch(Azure0), 0).
[Voxe Sa=0nEl Happens(Mismatch(Azurel), 0).

Happens(Mismatch(Gep0), 0).
Happens(Mismatch(Gep1), 0).

il

Happens(RuleDoesntApply(Aws0), 1).
Happens(RuleDoesntApply(Aws1), 1).

Fig. 7 Aggregating policies and invoking DECReasoner for the aggregated policies

@ Springer

18 Page 18 of 22

J Grid Computing (2022) 20: 18

o Encoding time (DECreasoner)

A Solution computation (relsat solver)

Time (Seconds)
(4]

Performance evaluation results, Proposed approach

A

Consistency verification

Access request decision

—dh

80

160

240

320 400 480 500

Number of rules within a Policy

Fig. 8 Performance evaluation results - Proposed approach

encode the models in a SAT problem and then the
time taken by the SAT solver for solution finding.
We also noted the number of variables and clauses in
the encoded SAT problem to compare the complex-
ity of the models. The performance evaluation results
are shown in Fig. 8 with x-axis showing the number
of rules and the y-axis showing the time taken. The

solution time is closer to zero for the simpler mod-
els and scales well. Similarly, the encoding time also
shows promising results, increasing steadily with the
increase in the number of rules within a policy.

When compared to previous work [29], we have
updated the EC models as discussed in Section 5.2.
This both results in a more expressive model and

1T
Performance evaluation results, Zahoor et al. [24]
10+
9 L
8l
» 7t
g o Encoding time (DECreasoner)
o 6t
3 A Solution computation (relsat solver)
() 5t
S
F 4T
Consistency verification
3
Access request decision
2
1 e ——h
O $ + } 1
10 80 160 240 320 400 500

Number of rules within a Policy

Fig. 9 Performance evaluation results [29]

@ Springer

J Grid Computing (2022) 20: 18

Page 19 of 22 18

Zahoor et al. [24]
Proposed approach

Time (Seconds)

Encoding time for consistency verification (DECreasoner)

10 50 100 150 200

250 300 350 400 450 500

Number of rules within a Policy

Fig. 10 Comparison of encoding time for consistency verification (DECreasoner)

significantly improves performance. The performance
evaluation results for the same test cases on the same
EC2 instance for the models presented in [29] are
shown in Fig. 9, again with x-axis showing the number
of rules and the y-axis showing the time taken.

As evident from the performance evaluation
results, the proposed approach achieves performance

120,000 T
105,000 1+
90,000 1

75,000 1

Zahoor et al. [24]

60,000 Proposed approach

Time (Seconds)

45,000 1

30,000 1

15,000 +

Number of encoded clauses for consistency verification

improvement when compared to the existing work.
This is further highlighted in Figs. 10 and 11 justify-
ing that the proposed approach is more efficient when
compared to [29].

Our work can also be compared to [20]. However
the approach used in [20] used XACML policies and
translated them to Answer Set Programming (ASP)

10 80 160

240 320 400 500

Number of rules within a Policy

Fig. 11 Number of encoded clauses for consistency verification

@ Springer

18 Page 20 of 22

J Grid Computing (2022) 20: 18

Conversion Time for Policies

1.6 1 —e— Amazon Web Servies
—#— Google Cloud Platform

1.4 —— Microsoft Azure

1.24

1.04

0.8

Time (Milliseconds)

0.2 4

0.0 A

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000
Number of Rules in a Policy

Fig. 12 Translation Time

problems. Our approach instead uses the actual poli-
cies from major Cloud provides and reasons about
them.

In addition to the results described previously, we
also evaluated the performance of our web applica-
tion and calculated the overhead that was incurred
for translation and the aggregation of policies. All
tests were run 10 times and the time was calculated
using the mean of the 10 runs. Figure 12 shows the
time taken for the rules of AWS, GCP, and Azure to
be translated to Event-Calculus models. Translation

time is very reasonable since for all three cloud
providers, the time taken for translation is in a few
milliseconds. The increased time for AWS is caused
due to the unpacking of policies to rules. Figure 13
shows the time taken to aggregate the modeled rules
into a composite policy. From the graph, we can see
that the aggregation time only takes a few microsec-
onds and as such is reasonable. Aggregation mostly
consists of file writing operations and the anomalous
pattern can be explained by writing operations on the
disk.

Aggregation Time for Policies

17.54

15.0 A

= =
o N
o 5

N
5
L

Time (Milliseconds)

5.0

2.5

0.0 *—& @ &

—8— Aggregation Time

0 1000 2000

3000 4000 5000

Number of Rules in a Policy

Fig. 13 Aggregation Time

@ Springer

J Grid Computing (2022) 20: 18

Page 21 of 22 18

9 Conclusion

Our work on authorization policies in Multi-Cloud
environments focuses on the consistency manage-
ment and their specification. The proposed approach
provides aggregation of authorization policies for
real-world cloud service providers having different
authorization models or similar models with different
implementations and different authorization policies
having possible conflicts. The work in this paper
presents a formal and generic approach based on
ABAC model that can address different authorization
models. It also identifies and categorizes the policy
conflicts that include conflicts related to Authoriza-
tion model, policy and policy relationships. During
our emphasis on challenges and contributions, we con-
sistently used different scenarios from AWS, GCP,
Microsoft Azure and RightScale. To justify that our
approach is scalable and practical, we have presented
the performance evaluation results using our tool as
well. The evaluation results are very encouraging and
prove the scalability of our work. Furthermore, the
performance evaluation of the web application have
also been discussed.

Acknowledgments We would like to thank AWS educate for
providing AWS Credits for carrying out this research.

Declarations Please consider following sub-title declarations
as part of the submission process.

Availability of data and materials The datasets generated
during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Competing interests
competing interests.

The authors declare that they have no

References

1. Al-Dahhan, R.: Efficient ciphertext-policy attribute based
encryption for cloud-based access control. Ph.D. the-
sis, Liverpool John Moores University. https://doi.org/10.
24377/LIMU.t.00011013. http://researchonline.ljmu.ac.uk/
id/eprint/11013/ (2019)

2. Alansari, S., Paci, F., Sassone, V.: A Distributed Access
Control System for Cloud Federations. In: International
Conference on Distributed Computing Systems (2017)

3. AWS: http://docs.aws.amazon.com/[AM/latest/UserGuide/
access_policies.html

4. Azure: https://docs.microsoft.com/en-us/azure/role-based-
access-control/custom-roles

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Bonatti, P.A., di Vimercati, S.D.C., Samarati, P.: An alge-

bra for composing access control policies. ACM Trans.
Inf. Syst. Secur. 5(1), 1-35 (2002). https://doi.org/10.1145/
504909.504910

. Bouchaala, M., Ghazel, C., Saidane, L.A.: Toward Cipher-

text Policy Attribute Based Encryption Model: a Revocable
Access Control Solution in Cloud Computing. In: Kallel,
S., Cuppens, F., Cuppens-Boulahia, N., Hadj Kacem,
A. (eds.) Risks and Security of Internet and Systems,
pp. 193-207. Springer International Publishing, Cham
(2020)

. Bryans, J.: Reasoning about Xacml Policies Using Csp. In:

SWS, pp. 28-35 (2005)

. Dang, T.K., Ha, X.S., Tran, L.K..: Xacs-dypol: Towards

an xacml-based access control model for dynamic security
policy (2020)

. Elliott, A., Knight, S.: Role explosion: Acknowledging the

problem. In: Proceedings of the 2010 International Con-
ference on Software Engineering Research & Practice,
SERP 2010, July 12-15, 2010, Las Vegas, Nevada, USA, 2
Volumes, pp. 349-355 (2010)

Google: https://cloud.google.com/iam/reference/rest/v1/
Policy

Hu, V.C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin,
K., Miller, R., Scarfone, K.: Guide to attribute based access
control (abac) definition and considerations. NIST Special
Publication 800, 162 (2014)

Kolovski, V., Hendler, J.A., Parsia, B.: Analyzing Web
Access Control Policies. In: WWW, pp. 677-686 (2007)
Kowalski, R.A., Sergot, M.J.: A logic-based calculus of
events. New Generation Comput. 4(1) (1986)

Mazzoleni, P., Crispo, B., Sivasubramanian, S., Bertino,
E.: XACML policy integration algorithms. ACM Trans.
Inf. Syst. Secur. 11(1), 4:1-4:29 (2008). https://doi.org/10.
1145/1330295.1330299

Mueller, E.T.: Commonsense reasoning. Morgan kaufmann
publishers inc., CA USA (2006)

Nguyen, T.N., Thi, K.T.L., Dang, A.T., Van, H.D.S., Dang,
T.K.: Towards a Flexible Framework to Support a General-
ized Extension of Xacml for Spatio-Temporal Rbac Model
with Reasoning Ability. In: ICCSA (5) (2013)

Pustchi, N., Krishnan, R., Sandhu, R.S.: Authoriza-
tion federation in iaas multi cloud. In: Proceedings of
the 3rd International Workshop on Security in Cloud
Computing, SCC@ASIACCS ’15, Singapore, Repub-
lic of Singapore, April 14, 2015, pp. 63-71 (2015).
https://doi.org/10.1145/2732516.2732523

Ramya, P., Saraswathy, S., Sharmila, S.: Sivakumar, S.: T-
Broker- a Trust-Aware Service Brokering Scheme for Mul-
tiple Cloud Collaborative Services. In: IEEE Transactions
on Information Forensics and Security (2015)

Rao, P, Lin, D., Bertino, E., Li, N., Lobo, J.: An
algebra for fine-grained integration of XACML poli-
cies. In: Proceedings of the 14th ACM Symposium
on Access Control Models and Technologies, SACMAT
2009, Stresa, Italy, June 3-5, 2009, pp. 63-72 (2009).
https://doi.org/10.1145/1542207.1542218

Rezvani, M., Rajaratnam, D., Ignjatovic, A., Pagnucco,
M., Jha, S.: Analyzing XACML policies using answer
set programming. Int. J. Inf. Sec. 18(4), 465-479 (2019).
https://doi.org/10.1007/s10207-018-0421-5

@ Springer

https://doi.org/10.24377/LJMU.t.00011013
https://doi.org/10.24377/LJMU.t.00011013
http://researchonline.ljmu.ac.uk/id/eprint/11013/
http://researchonline.ljmu.ac.uk/id/eprint/11013/
http://docs.aws.amazon.com/IAM/latest/UserGuide/access{_}policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access{_}policies.html
https://docs.microsoft.com/en-us/azure/role-based-access-control/custom-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/custom-roles
https://doi.org/10.1145/504909.504910
https://doi.org/10.1145/504909.504910
https://cloud.google.com/iam/reference/rest/v1/Policy
https://cloud.google.com/iam/reference/rest/v1/Policy
https://doi.org/10.1145/1330295.1330299
https://doi.org/10.1145/1330295.1330299
https://doi.org/10.1145/2732516.2732523
https://doi.org/10.1145/1542207.1542218
https://doi.org/10.1007/s10207-018-0421-5

18

Page 22 of 22

J Grid Computing (2022) 20: 18

21.

22.

23.

24.

25.

26.

217.

Sukmana, M.LLH., Torkura, K.A., Graupner, H., Cheng,
F., Meinel, C.: Unified Cloud Access Control Model for
Cloud Storage Broker. In: 2019 International Conference
on Information Networking (ICOIN), Pp. 60-65 (2019).
https://doi.org/10.1109/ICOIN.2019.8717982

Sun, W.,, Yu, S., Lou, W,, Hou, Y.T., Li, H.: Protecting
your right: Verifiable attribute-based keyword search with
fine-grained owner-enforced search authorization in the
cloud. IEEE Trans. Parallel Distrib. Syst. 27(4), 1187-1198
(2016). https://doi.org/10.1109/TPDS.2014.2355202
Tsankov, P., Marinovic, S., Dashti, M.T., Basin, D.A.:
Decentralized Composite Access Control. In: POST (2014)
Wei, J., Liu, W., Hu, X.: Secure and efficient attribute-
based access control for multiauthority cloud storage. IEEE
Syst. J. 12(2), 1731-1742 (2018). https://doi.org/10.1109/
JSYST.2016.2633559

Yang, K., Jia, X.: Expressive, efficient, and revocable
data access control for multi-authority cloud storage. IEEE
Trans. Parallel Distrib. Syst. 25(7), 1735-1744 (2014).
https://doi.org/10.1109/TPDS.2013.253

Yu, S., Wang, C, Ren, K., Lou, W.: Achieving
secure, scalable, and fine-grained data access control in
cloud computing. In: INFOCOM, pp. 534-542 (2010).
https://doi.org/10.1109/INFCOM.2010.5462174

Zahoor, E., Asma, Z., Perrin, O.: A Formal Approach for
the Verification of AWS IAM Access Control Policies.

@ Springer

28.

29.

30.

31.

Publisher’s Note

European Conference on Service-Oriented and Cloud Com-
puting (2017)

Zahoor, E., Bibi, U., Perrin, O.: Shadowed authorization
policies - A disaster waiting to happen? 11881, 341-355.
https://doi.org/10.1007/978-3-030-34223-4_22 (2019)
Zahoor, E., Ikram, A., Akhtar, S., Perrin, O.: Authorization
Policies Specification and Consistency Management within
Multi-Cloud Environments. In: Gruschka, N. (ed.) Secure
IT Systems - 23Rd Nordic Conference, Nordsec 2018,
Oslo, Norway, November 28-30, 2018, Proceedings, Lec-
ture Notes in Computer Science, Vol. 11252, pp. 272-288.
Springer, Oslo, Norway (2018)

Zahoor, E., Perrin, O., Godart, C.: An Event-Based Rea-
soning Approach to Web Services Monitoring. In: ICWS
(2011)

Zhu, Y., Huang, D., Hu, C., Wang, X.: From RBAC
to ABAC: constructing flexible data access control for
cloud storage services. IEEE Trans. Services Computing
8(4), 601-616 (2015). https://doi.org/10.1109/TSC.2014.
2363474

Springer Nature remains neutral with

regard to jurisdictional claims in published maps and institu-
tional affiliations.

https://doi.org/10.1109/ICOIN.2019.8717982
https://doi.org/10.1109/TPDS.2014.2355202
https://doi.org/10.1109/JSYST.2016.2633559
https://doi.org/10.1109/JSYST.2016.2633559
https://doi.org/10.1109/TPDS.2013.253
https://doi.org/10.1109/INFCOM.2010.5462174
https://doi.org/10.1007/978-3-030-34223-4_22
https://doi.org/10.1109/TSC.2014.2363474
https://doi.org/10.1109/TSC.2014.2363474

	Identification of Authorization Policy Conflicts within Multi-Cloud Environments
	Abstract
	Introduction
	Related Work
	Authorization in the Cloud
	IAM Services by Major Providers
	Motivating Example

	Proposed Methodology
	Policies Aggregation in Multi-Cloud Environments
	Event-Calculus
	Rules Specification
	Comparison to the existing models
	Authorization Composition
	Synthesis

	Authorization Conflicts in Multi-Cloud Environments
	Syntactic Conflicts
	Semantic Conflicts
	Policy Conflicts
	Policy Relationships
	Authorization Model Conflicts

	Implementation
	Performance Evaluation
	Conclusion
	References

