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Abstract Aiming at the problem that it is quite hard
to guarantee the real-time requirements of medical
users with high efficiency and low latency in the
current Internet of Medical Things (IoMT), we inves-
tigate the task offloading for collaborative cloud-edge-
end computing in mobile networks. Non-orthogonal
multiple access (NOMA) is suitable for wireless net-
works with higher spectral efficiency, faster speed,
and larger capacity, while the existing cloud-edge-
end cooperative computing ignores the advantages of
NOMA. Therefore, by exploiting NOMA for improv-
ing the efficiency of radio transmission, we integrate
collaborative cloud-edge-end computing and NOMA
to propose a novel network communication model,
which can provide medical users with energy-efficient
and low latency services. Specifically, considering the
energy consumption, transmission delay, and qual-
ity of service, we jointly optimize the offloading
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decision and its radio resource allocations for NOMA-
transmission to reduce the system cost (the weighted
sum of consumed energy and delay) in the IoMT
of cloud-edge-end computing networks supported by
NOMA. Although the joint optimization problem is
non-convex, we use its hierarchical structure and
propose a collaborative computing offloading algo-
rithm based on deep learning to find the optimal
offloading solution. Through extensive simulations,
it is shown that the proposed algorithm stably con-
verges to its optimal value, provides approximately
25.2% and 79.2% lower system cost than schemes
such as only using edge computing and fully local
processing, respectively. In addition, compared with
the traditional orthogonal multiple access(OMA), our
proposed NOMA-enabled multi-access computation
offloading can reduce the system cost by approxi-
mately 93.4%.

Keywords Computing offloading · Non-orthogonal
multiple access · Deep learning · Internet of medical
things · Offloading decision · Mobile edge computing

1 Introduction

Combined with the current development trend of the
Internet of Things, the maturing development of Inter-
net of Things devices (IoTDs) is projected to rev-
olutionize healthcare [1, 2]. The healthcare industry
has become one of the fastest developing fields in
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the application of the Internet of things. For example,
the clinical will collect the patient’s body tempera-
ture, respiratory rate, resting blood oxygen saturation,
and oxygenation index detected by the intelligent
thermometer and intelligent stethoscope for data anal-
ysis. However, IoTDs are usually equipped with lim-
ited computing resources, some parts of computing-
intensive medical tasks need to be offloaded to the
hospital cloud center for processing. The cloud cen-
ter can collect user information online and accurately
complete patient diagnosis and treatment [3]. With
the increasing number of medical IoTDs and the
emergence of more advanced medical applications,
offloading medical tasks to remote cloud centers for
processing, it is difficult to ensure the real-time needs
of medical users. To solve the problem, mobile edge
computing (MEC) is introduced as a supplement to
mobile cloud computing (MCC). The MEC deploys
computing resources at the network edge so that
IoTDs can offload parts of tasks to closer edge nodes
for computing and storage, which can reduce the delay
of completing computing tasks and improve user qual-
ity requirements [4]. Unfortunately, the computing
speed and storage capacity of the MEC servers are rel-
atively weak. When dealing with computing-intensive
tasks, the capacity and resources will be insuffi-
cient. Therefore, MCC and MEC can complement
each other. Using the advantages of these two tech-
nologies, many researchers have studied the cloud-
edge-end collaborative computing model to reduce the
delay and energy consumption in task offloading and
improve the user’s service quality requirements [5, 6].

In the cloud-edge-end cooperative networks, the
offloading selection of medical tasks is more flexi-
ble. Medical tasks based on different service require-
ments can be processed on local devices, edge nodes
or cloud servers. The existing computing offload-
ing literatures reduce latency or energy consump-
tion by optimizing offloading decision and computing
resource allocation [7, 8]. Furthermore, various phys-
ical layer technologies are also used to further reduce
the energy consumption and computation resources
consumption while satisfying the offloading latency,
such as multiple-input multiple-output (MIMO) [9]
and orthogonal frequency division multiple access
(OFDMA) [10]. In fact, the existing cloud-edge-end
collaborative computing networks literatures ignore
the non-orthogonal multiple access (NOMA). NOMA
is an innovative multiple access technology that can

allocate a single resource to multiple users, which is
very different from the traditional orthogonal mul-
tiple access technology. NOMA has higher spectral
efficiency and access to more IoTDs, which is more
suitable for future wireless communication systems.
Therefore, to further improve the offloading efficiency
of cloud-edge-end computing networks, we integrate
cloud-edge-end computing and NOMA to propose
a novel network communication model, which can
effectively provide comprehensive and personalized
services according to different medical service levels
and performance requirements. The main contribu-
tions of this paper are summarized as follows:

1) This paper proposes a novel network commu-
nication model, which focuses on the optimiza-
tion of system cost in the IoMT of cloud-edge-
end networks supported by NOMA. Considering
the energy consumption, transmission delay and
quality of service, we jointly optimize the offload-
ing decision and its radio resource allocations
for NOMA-transmission to reduce the system
cost (the weighted sum of consumed energy and
delay).

2) Despite the non-convexity of the joint optimiza-
tion problem, we identify its layered structure
and decompose it into two subproblems for opti-
mizing NOMA-transmission time and offloading
decision. For the offloading decision problem,
we establish its convexity and use the structural
properties of the optimal solution to propose an
offloading algorithm based on deep learning. This
results in an optimal offloading decision (under
a given transmission-time). Our algorithm uses
multiple parallel deep neural networks (DNNs) to
effectively generate offloading decisions. These
generated offloading decisions are stored in a
shared memory according to experience replay
technique to train DNNs to further improve accu-
racy. Next, we propose an algorithm based on
linear search to find the optimal transmission
time. The algorithm guarantees the global delay
minimization.

3) We provide a large number of numerical results
to verify the convergence and effectiveness of our
proposed algorithm. Numerical results show that
compared with the traditional orthogonal mul-
tiple access algorithm, our proposed algorithm
has reliable convergence and near-optimal perfor-
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mance in reducing energy consumption and task
completion delay.

2 Related work

In recent years, many scholars have done a lot of
research on computing offloading in different fields.
The research on computing offloading mainly focuses
on different fields to reduce energy consumption,
delay and improve quality of service by jointly opti-
mizing the parameters such as offloading decision,
transmission efficiency and resource allocation. One
popular research field in the past decade for providing
high-computational capability service is mobile cloud
computing (MCC), which can offload the comput-
ing tasks of IoTDs to the more powerful cloud center
for processing. Literature [11] mainly on integrating
cloud services and resources with mobile applications
is to reduce battery usage and improve the efficiency
of mobile devices. In order to overcome the estimation
of communication cost of devices in task offloading,
this literature proposes an effective task offloading
model, which can improve the efficiency of mobile
devices by reducing battery use. Literature [12–17]
deploy computing resources at the edge of the net-
work so that IoTDs can offload tasks to closer edge
nodes for computing and storage, which can reduce
the delay of completing computing tasks and improve
resource utilization efficiency. Literature [12] stud-
ies that a large number of devices choose to offload
tasks to edge servers. To minimize the total delay and
corresponding energy consumption of completing all
user tasks, a mobile edge computing network offload-
ing algorithm based on distributed deep learning is
proposed. The algorithm can produce a near optimal
offloading decision in less than one second. The goal
of literatures is to minimize energy consumption [13,
14, 16] and task execution delay [15, 18].

In addition, various physical technologies are used
to further reduce the energy and computing resource
consumption in the edge computing offloading sys-
tem and meet the offloading delay. Recently, many
studies have demonstrated the potential advantages of
NOMA, such as improving transmission efficiency,
energy efficiency and spectrum efficiency. For exam-
ple, suppose that only one resource block can transmit
data at a given time and that two users need to offload
their tasks to the edge node. If traditional OMA trans-

mission is applied, only one user can perform the
offloaded tasks, while the other user must wait. How-
ever, if NOMA is applied, then both users can offload
to the edge node simultaneously. As a result, the
device can use NOMA to send its workloads to differ-
ent edge servers and the cloud server. Using NOMA,
the device can offload its computing workloads to
multiple edge servers at the same time by using
wireless access, so as to further improve the flexibil-
ity of offloading. In the literature [19, 20], NOMA
allows multiple users to share the same time and
spectrum resources, which is better than OMA in
spectrum and energy efficiency. Therefore, scholars
have made a lot of efforts in the research of mobile
edge computing supported by NOMA. The goal of
literature is to minimize energy consumption [21,
22] and task execution delay [23–25], and literature
[26, 27] achieve a compromise between energy and
delay.

These studies only focus on the computing offload-
ing between devices and edge servers, ignoring the
huge computing resources in the cloud center. There-
fore, task offloading in cloud-edge-end networks is
an important topic for many scholars. Literature [28]
proposes a general cloud and edge computing archi-
tecture to provide vertical and horizontal offloading
between service nodes. In order to study the effec-
tiveness of design in different operation scenarios, it
is expressed as a workload and capacity optimization
problem in order to minimize the system computing
and communication costs. Literature [29] developes
a low complexity and efficient offloading scheme to
minimize the average task duration under the limita-
tion of devices’ battery capacity by jointly optimizing
offloading decision and computing resource alloca-
tion. In order to solve the optimization problem, a
series of reconfigurations based on reconfiguration
linearization technology are carried out, and a parallel
optimization framework based on alternating direc-
tion multiplier method and convex function difference
method is proposed to further reduce the complexity.
The literature [30] studies the task offloading problem
of cloud-edge-end collaborative computing in mobile
networks. Optimize server selection and resource allo-
cation through federation to minimize the weighted
sum of average costs. The paper [31] formulates an
adaptive task scheduling (ATS) problem, with the
objective of minimizing the overall service latency by
best cooperating those heterogeneous nodes on the
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cloud, edge and terminal layers. Further, we propose a
genetic algorithm to solve the problem.

However, most of the research on computing
offloading of cloud-edge-end networks believe that
the wireless channel from the devices to different
edge servers is OMA. With the increasing number of
medical IoTDs and the emergence of more advanced
medical applications, the demand for wireless trans-
mission rate increases exponentially. The transmission
rate of wireless communication will still be difficult
to meet the application demand of mobile communi-
cation in the future. The NOMA can be applied to
wireless networks with higher frequency, faster rate
and larger capacity. Therefore, we integrate cloud-
edge-end and NOMA to propose a novel network
communication model and realize the balance of high
resource consumption and high communication cost
between high energy consumption and low delay ser-
vices. Table 1 summarizes the purpose of computing
offloading in different fields and the comparison of
communication technologies.

3 System Model And Problem Formation

In this section, we will focus on the system model,
communication and computing model of integrating
NOMA and the cloud-edge-end computing networks.

3.1 System Model

we investigate a cloud-edge-end collaborative com-
puting network, which consists of I base stations
(BSs), N IoTDs, and a distant cloud server. Each BS
is equipped with an edge server and can be regarded

as an edge node. We denote the set of edge nodes
and the set of all IoTDs as I = {1, 2, ..., i} and
N = {1, 2, ..., n}. To reduce computing latency,
IoTDs offload parts of their computation workloads to
edge servers via NOMA-transmission and to a remote
cloud via a wired backhaul link. Figure 1 shows a
detailed example of the medical application system in
the IoMT. Medical users can continuously sense and
collect the healthcare information (temperature, blood
pressure and heart rate) by wearing thermometer
,smart-watch ,smart-stethoscope and so on. All med-
ical devices in each user work at any time and place
for healthcare, resulting in massive data. Then, these
data are processed locally or simultaneously offload
parts of workloads (for data analysis) to different edge
servers and the cloud server via NOMA-transmission
and wired backhaul link. Finally, the server provides
users with a variety of health services by evaluat-
ing and processing the collected sensing data. Each
IoTD has a separable application that can be divided
into M independent computing tasks to deal with and
the set of all tasks is denoted M = {1, 2, ..., m}.
IoTD n will decide which tasks are processed locally,
which are offloaded to the edge node, or offloaded to
the cloud according to the offloading decision. The
tasks of device n are described by Qn = (

Ln, T
max
n

)
,

where Ln stands for the data size of tasks of device n,
and T max

n stands for the maximum delay allowed for
device n to complete its tasks. The offloading deci-
sion variable of task m of device n is expressed as
�m

n = {
xm
n , ym

n , zm
n

}
, xm

n , ym
n , zm

n ∈ {0, 1}, which
denotes whether task m of device n is processed by
the device itself, by the edge node or the cloud server,
respectively. The offloading decision of device n is
constrained by:

Table 1 Comparison of studies on computing offloading in different fields

Articles Focus area Offload vector Using NOMA Objective minimize

[11] Cloud Computing Mobile device to Cloud NO Communication cost

[15, 18] Edge Computing Mobile device to MEC NO Completion latency

[13, 14, 16] Edge Computing Mobile device to MEC NO Energy consumption

[12, 17] Edge Computing Mobile device to MEC NO Completion latency and Energy consumption

[21, 22] Edge Computing Mobile device to MEC YES Energy consumption

[23–25] Edge Computing Mobile device to MEC YES Completion latency

[26, 27] Edge Computing Mobile device to MEC YES Completion latency and Energy consumption

[28] Cloud-edge-end Mobile device to MEC or Cloud NO Computation and Communication cost

[29–31] Cloud-edge-end Mobile device to MEC or Cloud NO Completion latency
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Fig. 1 The medical
application system in the
internet of things
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xm
n + ym

n + zm
n = 1, (n ∈ N, m ∈ M). (1)

This constraint implies that task m of each device is
either executed locally, by one of edge servers, or by
the cloud server. Only one of xm

n , ym
n and zm

n for device
n can have the value 1 at any time.

3.2 Communication Model

We use gni to denote the channel power consumption
gain from the IoTD n to the edge server i. For the sake
of convenience, we assume that the edge servers in I

are ordered according to:

gn1 ≥ gn2 ≥ . . . ≥ gni (2)

When device n is connected to edge server i, let pni

denote the IoTD’s transmit power to edge server i.
Based on (2) and the Successful Interference Can-
cellation (SIC), we can express the uplink NOMA-
transmission rate from the IoTD n to edge server i as
follows:

Rni = Wn log

(

1+ gnipni

gni

∑i−1
j=1pnj +Wnn0

)

2 , ∀i ∈ I (3)

where Wn denotes the IoTD n’s channel bandwidth,
and n0 denotes the spectral power density of the
background noise. Let γi denote the received signal-
to-interference plus noise ratio (SINR) at edge server
i, i.e.,

γi = gnipni

gni

∑i−1
j=1 pnj + Wnn0

, ∀i ∈ I. (4)

Then, suppose that {γi}i∈I is given. Then we obtain :

Proposition 1: The IoTD n’s minimum total trans-
mit power for reaching {γi}i∈I can be given by:

P tot
n

({γi}∀i∈I

) = Wnn0
∑

i∈I

(
1

gni

− 1

gni−1

) I∏

j=i

(
1 + γj

)−Wnn0

gI

,

(5)

where parameter g0 is a large number such that 1
g0

= 0.

Proof The key to the proof is based on forward deduc-
tion, which is essentially similar to that for Proposition
1 in [32].

Then, based on Proposition 1, we have the follow-
ing important result.

Corollary 1 Given the NOMA-transmission duration
tn and device n’s offloaded computing workloads{
Lm

n

}
∀m∈M

to different edge servers, device n’s min-
imum transmit power (for offloaded computing work-
loads

{
Lm

n

}
∀m∈M

to the edge servers with duration tn)
is given by:

P tot
n

(
tn, L

m
n

) = Wnn0
∑

i∈I

(
1

gni

− 1

gni−1

)
2

1
Wn

1
tn

∑M
h=m Lh

n− Wnn0
gnI

(6)

Proof Given the NOMA-transmission duration tn and
the n’s offloaded workloads

{
Lm

n

}
∀m∈M

, the trans-
mission rate from device n to edge server i can be

given by Rni = Lm
n

tn
. Further with (3) and (4), we can

obtain (6) by substituting γi = 2
Lm

n
tnWn − 1 into (5). Let

Pmax denote device n’s maximum transmit power. We
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impose the following constraint to ensure that the n’s
total transmit power for sending the offloading work-
loads

{
Lm

n

}
∀m∈M

to the respective edge servers cannot
exceed Pmax:

Etrans
n = tnP

tot
n (tn,

{
Lm

n

}
m∈M

). (7)

3.3 Computing Model

3.3.1 Local computing

For tasks on each device, parts of tasks will be pro-
cessed locally. To model the delay in completing IoTD
n’s computation requirement . we introduce f l

n and
f i

nm to represent the local computing rate of device n

and the computing rate of edge server i. For the sake
of clear presentation, we consider f l

n and f i
nm to be

in units of bits per second (i.e., bits/s) in this work.
e.g., f l

n can be calculated as f l
n = vn

cl
n
, where vn repre-

sents the CPU frequency in Hz (i.e., cycles per second)
and cl

n represents the consumed CPU cycles per bit.
If task m is processed locally, then xm

n = 1, ym
n =

0, zm
n = 0, �m

n = {1, 0, 0} and the computation delay
for completing task m of device n can be expressed as:

t lm = Lm
n

f l
n

(8)

Here, we use ρn to denote IoTD n’s CPU power
consumption (in the unit of joule per second). Addi-
tionally, the energy consumption of processing task m

locally can be expressed as:

El
m = ρnt

l
m = ρn

Lm
n

f l
n

(9)

Therefore, given the offloading decision �m
n ={

xm
n , ym

n , zm
n

}
, the total delay of tasks performed

locally by the device n is:

T l
n =

M∑

m=1

t lmxm
n , ∀m ∈ M (10)

The total energy consumption of device n for perform-
ing tasks locally is:

El
n =

M∑

m=1

El
mxm

n .∀m ∈ M. (11)

3.3.2 Edge computing

Let f i
nm represent the computing resource of task m

assigned to device n. If task m is processed on edge
server i, then xm

n = 0, ym
n = 1, zm

n = 0, �m
n =

{0, 1, 0}, and the computing delay of task m on edge

server i is tcomp
m = Lm

n

f i
nm
.

Therefore, given the offloading decision �m
n ={

xm
n , ym

n , zm
n

}
, the total delay in processing tasks at the

edge node is:

T mec
n =

(
tn + max

i∈I

{
Lm

n

f i
nm

})
ym
n (12)

3.3.3 Cloud computing

If task m is offloaded to the cloud for processing, the
task is first transmitted to the edge node via NOMA,
and then the edge node forwards the task to the cloud
through a wired backhaul link. If the cloud performs
task m, then xm

n = 0, ym
n = 0, zm

n = 1, �m
n =

{0, 0, 1}. Denote the round trip time for task transmis-
sion between the edge node and the cloud server as
ttransc . Let f c

n be the cloud computation capability (in
CPU cycles/s) assigned to device n. Ordinarily, the
computing capability of the cloud is much higher than
that of edge servers, i.e., f c

n >> f i
nm. The execution

time of cloud processing the task is:

tcm = tn + t trans
c + Lm

n

f c
n

. (13)

Therefore, given the offloading decision �m
n ={

xm
n , ym

n , zm
n

}
, the total delay in processing tasks at the

cloud center is:

T c
n =

M∑

m=1

tcmzm
n , ∀n ∈ N (14)

As in [33, 34], we ignore the downlink transmission
delay of edge node and the cloud center sending the
task back to the device because the data size after the
task processing is usually much smaller than its size
before processing.

3.4 Problem Formulation

In this study, we minimize the total system cost by
jointly optimizing durations tn and the computation
offloading decision �m

n . Thus, we formulate the fol-
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lowing optimization problem ((“SCM”means “system
cost minimization”):

SCM : V (t, �) =
∑

n∈N

(
∑

m∈M

El
mxm

n + Etrans
n

(
ym
n + zm

n

)

+ βmax
{
T l

n, T mec
n , T c

n

}
)

s.t.max
{
T l

n, T mec
n , T c

n

}
≤ T max

n , (15)

Ptot
n

(
tn,

{
Lm

n

}
m∈M

) ≤ Pmax, (16)

tnP
tot
n

(
tn,

{
Lm

n

}
m∈M

) + ρL

Lm
n

f l
n

(17)

≤ Emax
n , ∀i ∈ I, m ∈ M, n ∈ N,

xm
n + ym

n + zm
n = 1, n ∈ N, m ∈ M, (18)

xm
n , ym

n , zm
n ∈ {0, 1} , n ∈ N, m ∈ M, (19)

0 ≤ tn ≤ T max
n . (20)

Note that the objective function covers the quality
of service experienced by the device in using multi-
access mobile edge computing, as well as its energy
consumption. Parameter β denotes the weight of the
device in the total delay in completing its workloads.
By changing the parameter β, we can achieve differ-
ent tradeoffs between the quality experience and the
energy consumption of devices.

In problem (SCM), constraint (15) ensures that the
delay required by the device to complete the total
workloads cannot exceed the maximum delay. Con-
straint (16) ensures that the total transmission power
that the device consumes to send its workloads to its
respective edge server cannot exceed the maximum
transmission power. Constraint (17) ensures that the
total energy consumption of the device transmission
data and local computing cannot exceed the energy
budget of the device. Constraint (18) denotes that
task m is processed either on the device, on the edge
server, or on the cloud server. Constraint (19) denotes
whether the m task of IoTD n is processed in the
device itself, the edge node or the cloud server. Con-
straint (20) denotes the device n’s transmission time
can not exceed the maximum delay allowed. Table 2
lists the important notations used in this paper.

4 Algorithm for solving problem (SCM)

In this section, because the joint optimization prob-
lem is non-convex and the problem is computationally
limited by the curse of dimensionality, especially for
large-scale medical devices, we focus on using the

hierarchical structure of the problem and propose cor-
responding effective algorithms to determine the opti-
mal offloading solution. Firstly, the key idea of solving
the problem(SCM) is to use the hierarchical structure
of Fig. 2. The original problem(SCM) is decom-
posed into two subproblems: offloading decision (P1)
and radio resource transmission duration allocation
(P2). Next, we propose a computing offloading algo-
rithm based on deep learning and a linear search
algorithm to obtain the optimal offloading decision
and NOMA-transmission time, respectively. Figure 3
shows the hierarchical structure of the algorithm.
Specifically, given NOMA-transmission time within
the time allowable range of problem (P2), we pro-
pose an offloading algorithm based on deep learning
to determine its optimal offloading decision. Next, by
adjusting the NOMA-transmission time, we propose
a linear search algorithm to find the optimal solu-
tion. We emphasize that as long as both subproblems
can be solved accurately, the hierarchical algorithms
will enable us to optimally solve the original prob-
lem (SCM). Details are shown in the remainder of this
section.

4.1 Problem Decomposition

Offloading decision (P1): We tackle here the sub-
problem of optimizing the offloading decision of
each task at a given NOMA transmission tn. First,
we consider the transmission duration tn of each
IoTD and aim to find the optimal offloading deci-
sion �∗ to minimize the overall system cost. Here,
we assume that the duration tn of transmitting dif-
ferent workloads to different edge servers is the
same. Note that tn is a decision variable in the sys-
tem model. Then, problem (SCM) will induce the
following subproblem (P1):

(P1) : minV(tn)

s.t.max
{
T l

n, T mec
n , T c

n

}
≤ T max

n , (21)

Ptot
n

(
tn,

{
Lm

n

}
m∈M

) ≤ Pmax, (22)

tnP
tot
n

(
tn,

{
Lm

n

}
m∈M

) + ρL

Lm
n

f l
n

≤ Emax
n , ∀i ∈

I, m ∈ M, n ∈ N, (23)

xm
n + ym

n + zm
n = 1, n ∈ N, m ∈ M, (24)

xm
n , ym

n , zm
n ∈ {0, 1} , n ∈ N, m ∈ M, (25)

J Grid Computing (2022) 20: 14 Page 7 of 17 14



Table 2 Model notations
Notation Definition

Qn Computation task of device n

Ln Data size for all tasks of the device n

T max
n The maximum delay allowed for the device n

Qm
n The computing task m of device n

Lm
n Data size of the computing task m of device n

T max
m The maximum delay allowed for the computing task m of device n

xm
n xm

n = 1 if the device n process its task m locally. Otherwise, xm
n = 0

ym
n ym

n = 1 if the device n offloads its task m to the edge nodes.

Otherwise, ym
n = 0

zm
n zm

n = 1 if the device n offloads its task m to the cloud server.

Otherwise, zm
n = 0

Wn The device n’s channel bandwidth

n0 the spectral power density of the background noise

Pmax The device’s maximum transmit-power

tn The NOMA transmission-duration

Emax
n The device n’s energy-budget

β Weight between energy consumption and processing delay

in the system cost

f l
n Local computing rate of the device n

f i
nm The computing rate of the edge server i

f c
n The cloud computation capability

t trans
n Average backhaul delay

We express the optimal solution as V ∗
(tn). Problem (P1)

aims at finding the minimum value of V ∗
(tn) under the

given tn. Note that different from Problem (SCM)
before, the value of tn is fixed in constraints (21),
(22),and (23)in Problem (P1).

Radio resource allocation (P2): Here we tackle
the optimization NOMA-transmission tn. First,
after obtaining V(tn) by solving problem (P1) for

Problem(SCM) to optimize：

Problem(P1) to 

optimize:

Problem(P2) to 

optimize:

SCM

1P 2P

nt

nt

,nt

Fig. 2 Problem decomposition

each given tn, we minimize V(tn) by continuing to

adjust tcur
NOMA ≤ min

{
T max

n , Ln

f l
n
,

Lm
n

f i
nm

}
and find the

best V ∗
(tn), we can further solve the original problem

(SCM) by solving the following subproblem:

Input

system parameters

Output

*,n kV t

* * *, ,nt V

Deep Learning algorithm to solve 

Problem

Linear search algorithm to solve Problem

SCM

CCODL algorithm to optimize : nt ,

1P

nt

2P

Fig. 3 Layered structure of our proposed algorithm
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(P2) : minV ∗
(tn)

s.t.0 ≤ tn ≤ T max
n . (26)

We emphasize that the hierarchical structure of our
problem will enable us to solve the original problem
(SCM) optimally, as long as both the subproblem (P1)
and the subproblem (P2) can be solved accurately. The
details of the algorithm are shown in the remainder of
this section.

4.1.1 Proposed algorithm to slove problem(P1)

In this section, a task offloading algorithm based
on distributed deep learning is proposed to obtain
the optimal decision of the problem(P1). Given the
NOMA-transmission time, in order to solve the
problem(P1), our goal is to find the offloading policy
function π to generate the best offloading decision to
reduce system cost and balance the energy consump-
tion and delay of the device.

As shown in Fig. 4, the algorithm is mainly com-
posed of two parts: offloading decision generation and
deep learning. Specifically, given a transmission dura-
tion tn and the input task workloads of all devices, we
find an offloading policy function π to generate the
optimal offloading decision of the problem P1. This
policy function can be expressed as: �∗ = πθ

(
Lm

n

)
.

Here, we approximately express π by a parameterized
function based on DNN, and θ represents the learning
parameter used in the DNN module [35]. The gen-
eration of the offloading decision relies on the use
of K DNNs, which is characterized by its embedded
learning parameters θ .

Specifically, given the transmission duration tn, for
each input task workload Lm

n , K DNNs are used to
efficiently generate K candidate decisions. Then, the
offloading action with the lowest system utility is
chosen as the output, denoted as �∗

k . Once the best
offloading decision �∗

k is obtained, we save it as a
new entry of marked data

(
Lm

n , �∗
k

)
in a finite mem-

ory structure. When the memory is full, the oldest
data entry will be discarded. After collecting a certain
number of new samples, we select a batch of samples
from the training memory and use them according to
the experience replay technique [36, 37] to train the
DNNs (i.e. update learning parameters θ ) to further
improve accuracy. Overall, the DNN iteratively learns

from the best decision pairs
(
Lm

n , �∗
k

)
and generates

better offloading decisions output as time progresses.
In practice, we use the experience replay tech-

nique in the proposed framework to train DNNs,
which has reduced complexity than using the entire
set of data samples and the random sampling fas-
tens the convergence by reducing the correlation in
the training samples. The parameters θ of the DNN
are updated by applying the Adam algorithm [38] to
reduce the averaged cross-entropy loss, as L (θk) =
−xT logπθk (L)− (1 − x)T log

(
1 − πθk (L)

)
. Adam opti-

mization algorithm is an extension of random gradient
descent algorithm, which is suitable for solving opti-
mization problems with large-scale data and param-
eters, and can achieve efficient computing. Adam
algorithm designs independent adaptive learning rate
for different parameters by computing the first-order
moment estimation and second-order moment estima-
tion of gradient.The detailed update procedure of the
Adam algorithm is omitted here for brevity. Subse-
quently, the offloading policy is also updated and used
to generate new offloading decisions.

With the learning value �∗ = πθk

(
Lm

n

)
, the corre-

sponding optimal offloading decision is obtained.

4.1.2 Proposed Algorithm to Slove Problem(P2)

Then, we continue to adjust tcur
NOMA ≤

min
{
T max

n , Ln

f l
n
,

Lm
n

f i
nm

}
by using linear search algorithm

to find the best system cost. Compared with directly
learning the whole problem(SCM) solution set, this
method can effectively improve the accuracy and effi-
ciency of the DNN module. Using the input of task
data of different samples and by adjusting different
transmission durations tn, this iteration is repeated,
and the learning strategy π of DNN is gradually
improved.

4.2 Collaborative Computing Offloading Algorithm
Based on Deep Learning(CCODL)

In this section, a collaborative computing offloading
algorithm based on distributed deep learning is pro-
posed to achieve efficient offloading. The CCODL
algorithm can run independently on the local device,
and the local device will decide whether each task
is executed locally, at the edge node or on the cloud
server. our CCODL algorithm implementsK DNNs to
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Fig. 4 Architecture of deep learning-based offloading algorithm

learn the optimal offloading decision according to dif-
ferent task workloads using historical experience. Our
goal is to train DNNs to learn the best offloading deci-
sion (according to the experience data) so as to balance
devices’ energy consumption and delay.

The details of the CCODL algorithm are shown in
Algorithm 1. It is implemented in TensorFlow [39].
The steps are detailed below:

1. Initialize K DNNs with random learning param-
eter values. The memory is initially empty. By
selecting a K >= 2, the algorithm can converge
to a better offloading decision. Given a current
NOMA transmission time tcur

n = �, set a small
step � = 1s.

2. Repeatedly input different task data sizes into
K DNNs. For each input data, based on sub-
problem P1, we can gain the optimal offloading
decision �∗

k = argminV ∗
(tcur

n )
from K offloading

decisions.
3. Obtain the best offloading decision �∗

k . We save
it as a new entry of marked data

(
Lm

n , �∗
k

)
in

a finite memory structure. When this memory is
full, the oldest data entry will be discarded. These
generated tag data are then used to train all K

DNNs and to update the learning parameter value

θ . Finally, we find the global optimal solution
giving the current time tn.

4. Until now, we can use the CCODL algorithm to
find any V ∗

(tn). At this point, we proceed to solve
the optimal transmission time, which will lead to
the lowest system cost. Note that our subprob-
lem (P2) involves only a single variable tcur

n ≤
min

{
T max

n , Ln

f l
n
,

Lm
n

f i
nm

}
. Therefore, one method to

solve the subproblem is to use a small step length
to perform a linear search.

5 Performance Evaluation

5.1 Simulation Settings

In this section, we use numerical results to verify the
convergence of our proposed algorithm and show the
performance advantages of our proposed NOMA-
enabled multiple access computing offloading. For
the simulations, we built the network model and
implemented the proposed algorithm in Python-3.6
together with TensorFlow-1.8.0 and Pandas-0.24
on a server powered by an Intel Core i5-10400F
CPU and 16 GB of memory. The network topology
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Algorithm 1 CCODL algorithm.

Input:
Input different workloads Lm

n at time t

Output:
Optimal offloading decision �∗

k at time t , optimal NOMA-transmission t∗n , and the best system cost V ∗
(t∗n)

.

1: Initialization of the K DNNs with random parameters θk, k ∈ K and emptying of the memory structure.
2: Set step-size � = 1s as a small number. Set CBV = ∞ and CBS = ∅.

3: Set the NOMA-transmission duration tcur
n = �.

4: for t = 1, 2, ..., G do
5: Replicate different workloads Lt to all K DNNs.
6: Generate the k-th offloading strategy �k from the k-th DNN in a parallel way as �k = πθk,t

(
Lm

n

)

7: while tcur
n ≤ min

{
T max

n , Ln

f l
n
,

Lm
n

f i
nm

}
do

8: Compute V ∗
(tcur

n )
for all {�k}k∈K by solving (P1).

9: if V ∗
(tcur

n )
< CBV then

10: Set CBV = V ∗
(tcurn )

and CBS = tcur
n .

11: Update tcur
n = tcur

n + �.

12: end if
13: end while
14: V ∗

(tcur
n )

= CBV, t∗n = CBS.

15: Select the best offloading decision as the output �∗
k = argminV ∗

(tcur
n )

16: Store
(
Lm

n , �∗
k

)
into the memory structure

17: Randomly Sample K batches of training data from the memory structure
18: Train the DNNs and update θk,t

19: Select the best NOMA-transmission duration t∗n when the offloading decision �∗
k is present.

20: end for

consists of the 1000m × 1000m square area with
a cloud server, 3 edge servers and 3 IoTDs. The
cloud center is located in the network center with
coordinates (0,0), and 3 edge servers, e.g., each
edge server in a warehouse, has a coverage radius of
500m. In addition, IoTDs are randomly distributed
around edge servers and the channel power gains
from the IoTD n to the edge servers are generated
according to the distance model of [40], the random
channel power gains used here are {gni}n∈N,i∈I ={
1.8185 × 10−7, 1.7793 × 10−7, 1.7793 × 10−7}.
We set T max

n = 12s,Pmax = 20W, and
Emax = 20Joul. We adopt a fully connected DNN
consisting of one input layer, two hidden layers,
and one output layer. We set training interval as 10,
training batch size as 128, memory size as 1024,
and learning rate for Adam optimizer as 0.01. The
relevant additional parameters used in the simulation
experiment are summarized in Table 3. To evaluate

the performance of the proposed algorithm, we com-
pared it with several existing schemes. Details are as
follows.

5.2 Algorithm Convergence

Figures 5 and 6 depict the convergence of the pro-
posed algorithm with various DNN learning rates and
transmission time tn. From Fig. 5, it can see that the
system cost decreases as the number of learning steps
increases until it converges within a specific range.
This is because the raw task data of different samples
are inputted directly for training without any quan-
tization. In addition, the higher the learning rate is,
the faster the convergence rate of CCODL. However,
when the learning rate increases, we are likely to
obtain the local optimal solution rather than the global
optimal solution. Therefore, we choose an appropriate
learning rate according to the specific situation.
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Table 3 The parameter
settings of simulation
experiment

Parameter Value

The number of IoTDs /N 3

The number of Tasks /M 9

The data size of task /Mbits [10,30]Mbits

The computational capability of IoTDs /f l
n 1∼ 5Mbits/s

The computational capability of ESs i /f i
nm 10∼ 20Mbits/s

The computational capability of Cloud /f c
n 150Mbits/s

The task completion deadline /T max
n 12s

Channel Bandwidth /Wn 10∼ 20MHz

Average backhaul delay /t trans
c 5s

IoT device’s CPU power consumption /ρn 0.5Joul/s

The spectral power density of the background noise/n0 10−10

Weight of energy consumption and task completion /β 1.5J/s

Figure 6 shows the convergence performance of our
algorithm at different transmission durations tn. We
observe that the convergence speed of the algorithm
is not linear with the NOMA-transmission tn. Specif-
ically, When tn < 3s, the devices need to use a large
transmit-power for sending the offloaded workloads
to edge servers or the cloud center. As a result, only
a small part of the devices’ computation requirements
can be offloaded. On the other hand, using a very large
tn > 3s will lead to a significant delay in the NOMA-

transmission, and thus the system cost is again very
large. So we should choose the optimal transmission
duration tn = 3s.

Figure 7 shows the impact of NOMA-transmission
duration on system cost under different bandwidths.
The optimal tn is different under different bandwidths.
The basic principle of solving this subproblem is now
explained. In this algorithm, we perform linear search
on the pair in a small step � = 1s. Specifically, we
observe the system cost and their convergence rate

Fig. 5 Convergence performance under different learning rates
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Fig. 6 System cost versus learning steps under different t

under different tn. A too large or too small tn will not
be beneficial to minimize the total cost of the system.
Therefore, we need to select the optimal to send the
offloaded tasks to edge servers and the cloud server
under different bandwidths.

5.3 Performance Comparisons

In the experiment, we compare the performance of
cloud-edge-end collaborative offloading based on the
frequency division multiple access (FDMA) scheme
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Fig. 7 System cost versus t under different Wn

with the other two offloading schemes to establish the
effectiveness of our proposed collaborative offloading
framework.

Cloud-edge-end: Based on our proposed algorithm
using FDMA, the tasks to be processed on each device
simultaneously will be processed locally, edge servers
or the cloud server.

Local-only scheme: Based on our proposed algo-
rithm using FDMA, all tasks on each device are
processed locally on the device.

Edge-only scheme: Based on our proposed algo-
rithm using FDMA, all tasks will be offloaded to the
edge servers for processing.

As shown in Fig. 8, when the algorithm reaches
convergence, it can observe that the system cost of
cloud-edge-end collaborative network is the lowest
compared to the other schemes. When all tasks are
processed locally, the computing power of the device
is limited, which will lead to the increased energy
consumption of the devices. It is shown that the pro-
posed algorithm stably converges to its optimal value,
providing approximately 25.2% and 79.2% lower sys-
tem cost than schemes such as only using edge com-
puting and fully local processing. Therefore, this
shows the effectiveness of our proposed collaborative
framework.

Next, we will show the performance advantages of
the proposed NOMA-enabled multi-access computa-
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Fig. 8 System cost versus learning steps under Wn = 15MHz

tion offloading. To do so, we compared it with several
existing schemes. Details are as follows:

Proposed scheme (CCODL algorithm): The
offloading tasks of the device are optimally par-
titioned locally, to the edge server and the cloud
according to our proposed algorithm using NOMA
(CCODL-NOMA) and FDMA (CCODL-FDMA).

Edge on scheme: Based on our proposed algo-
rithm, all tasks are offloaded to the edge using NOMA
(Edge-NOMA) and FDMA (Edge-FDMA).

Fully local computing (FLC): All the computation
tasks of devices are executed locally.

As shown in Fig. 9, when the algorithm reaches
convergence, we can clearly see that the system cost
of CCODL-NOMA is the lowest compared with the
algorithm in [12] and other schemes, From the figure,
we can see that the total system cost overhead with
CCODL-NOMA is approximately 93.4%, 9.8%, and
253.9% less than those with CCODL-FDMA, Edge-
NOMA and FLC, respectively. This shows the effec-
tiveness of our proposed algorithm.

In order to analyze the influence of the weighting
factor β of energy consumption and task completion
on the system cost, we compare the changes of system
cost by changing the value of the weighting factor β,
and the results are shown in the Fig. 10. As illustrated
in the figure, as β increases, the total system cost of
all schemes increases. The larger the weighting fac-
tor, the more attention is paid to the delay, and more
computing resources are needed for processing, so the
energy consumption is higher. However, its improve-

Fig. 9 System cost versus learning steps under different algo-
rithms

ment will significantly reduce the execution time of
computing tasks and greatly reduce the delay of entire
computing offloading.Therefore, the weight factor is
adjusted for different scenarios to obtain the lowest
system cost. For example, for some applications that
are more sensitive to delay, it is possible to appro-
priately increase energy consumption in exchange for
lower delay to ensure the quality of user experience.
In addtion, our proposed algorithm outperforms [12]
and other schemes.

Finally, we compare the performance of our pro-
posed algorithm with FDMA under different Wn.
Specifically, in the FDMA-based scheme, IoTD

1.0 1.5 2.0 2.5 3.0
75

125

175

225

275

325

375

425

475

525

575

625

675

S
y
st

em
 C

o
st

 (
J)

β (J/s)

 CCODL-NOMA

 Ref.[12]

 CCODL-FDMA

 FLC

Fig. 10 System cost under different β for different offloading
algorithms
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Fig. 11 Comparison between our NOMA-enabled computation
offloading scheme and the FDMA-enabled offloading scheme

divides its total bandwidth Wn into I subchannels
(the bandwidth of each subchannel is wn

I
). There-

fore, the IoTD uses a subchannel to send its offloaded
workloads to each edge server in parallel. However,
the FDMA-based scheme produces a low spectral
efficiency in comparison with the NOMA-enabled
scheme. Specifically, we tested two cases: W =
10MHz andW = 15MHz. For the sake of clear com-
parison, our algorithm has basically converged when
the learning step reaches 2000, and we have obtained
the system cost for the NOMA-based scheme and the
FDMA-based scheme in each test case. As shown
in Fig. 11, our NOMA-based scheme is always bet-
ter than the FDMA-based scheme; e.g., when Wn =
15MHz, we can see that the system cost overhead
with CCODL-NOMA is approximately 95.1% less
than that with CCODL-FDMA, which demonstrates
the effectiveness of NOMA over FDMA in IoMT. In
addition, the results show that the system cost will be
relatively low when the bandwidth increases.

6 Conclusion

In this paper, we integrate cloud-edge-end comput-
ing network and NOMA to propose a novel network
communication model, which can realize the balance
between high resource consumption and high commu-
nication cost in the process of task offloading in IoMT.
It can provide medical users with energy-efficient
and low-delay services according to different medical

service levels and performance requirements. Specif-
ically, considering the energy consumption, trans-
mission delay, and quality of service, we jointly
optimize the computing offloading decision and its
radio resource allocations for NOMA-transmission to
reduce the system cost (the weighted sum of con-
sumed energy and delay) on IoMT of cloud-edge-
end supported by NOMA. In addition, although the
joint optimization problem is non-convex, we use its
hierarchical structure to propose a collaborative com-
puting offloading algorithm based on deep learning
to find the optimal offloading strategy. This strategy
can directly offload the real-time services of medi-
cal terminal devices to edge nodes and cloud servers
for processing. Numerical results show that com-
pared with the traditional orthogonal multiple access
algorithm, our proposed algorithm has reliable con-
vergence and near-optimal performance in reducing
energy consumption and task completion delay.

However, there are still some deficiencies and a
lack of consideration in the scheme. For example, the
scheme does not consider real-time offloading in a
dynamic environment. In future research work, we
will consider the mobility of users, such as the sudden
shutdown of user equipment or the addition of new
equipment.
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